Towards Finding Hay in a Haystack: Explicit Tensors of Border Rank Greater Than $2.02m$ in $\mathbb{C}^m\otimes \mathbb{C}^m\otimes \mathbb{C}^m$

by Joseph M. Landsberg and Mateusz Michałek

Theory of Computing, Volume 21(13), pp. 1-17, 2025

Bibliography with links to cited articles

[1]   Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman: Tensor rank: Some lower and upper bounds. In Proc. 26th IEEE Conf. on Comput. Complexity (CCC’11), pp. 283–291. IEEE Comp. Soc., 2011. [doi:10.1109/CCC.2011.28]

[2]   Austin Conner, Fulvio Gesmundo, Joseph M. Landsberg, Emanuele Ventura, and Yao Wang: Towards a geometric approach to Strassen’s asymptotic rank conjecture. Collectanea Mathematica, 72(1):63–86, 2021. [doi:10.1007/s13348-020-00280-8]

[3]   Daniel R. Grayson and Michael E. Stillman: Macaulay2, a software system for research in algebraic geometry. Available at https://macaulay2.com.

[4]   James E. Humphreys: Linear Algebraic Groups. Springer, 1975. [doi:10.1007/978-1-4684-9443-3]

[5]   Joseph M. Landsberg: Nontriviality of equations and explicit tensors in Cm Cm Cm of border rank at least 2m - 2. J. Pure Appl. Algebra, 219(8):3677–3684, 2015. [doi:10.1016/j.jpaa.2014.12.016]

[6]   Joseph M. Landsberg: Secant varieties and the complexity of matrix multiplication. Rend. Istit. Mat. Univ. Trieste, 54(11):1–21, 2022. [doi:10.13137/2464-8728/34006]

[7]   Joseph M. Landsberg and Mateusz Michałek: On the geometry of border rank decompositions for matrix multiplication and other tensors with symmetry. SIAM J. Appl. Algebra Geom., 1(1):2–19, 2017. [doi:10.1137/16M1067457]

[8]   Joseph M. Landsberg and Mateusz Michałek: A 2n2 - log 2(n) - 1 lower bound for the border rank of matrix multiplication. Internat. Math. Research Notices, (15):4722–4733, 2018. [doi:10.1093/imrn/rnx025]

[9]   Joseph M. Landsberg and Giorgio Ottaviani: Equations for secant varieties of Veronese and other varieties. Ann. Mat. Pura Applicata, 192(4):569–606, 2013. [doi:10.1007/s10231-011-0238-6]

[10]   Thomas Lickteig: Typical tensorial rank. Lin. Alg. Appl., 69:95–120, 1985. [doi:10.1016/0024-3795(85)90070-9]

[11]   J. Barkley Rosser and Lowell Schoenfeld: Approximate formulas for some functions of prime numbers. Illinois J. Math., 6(1):64–94, 1962. [doi:10.1215/ijm/1255631807]

[12]   Volker Strassen: Rank and optimal computation of generic tensors. Lin. Alg. Appl., 52–53:645–685, 1983. [doi:10.1016/0024-3795(83)80041-X]

[13]   Volker Strassen: Degeneration and complexity of bilinear maps: Some asymptotic spectra. J. reine angew. Math., (413):127–180, 1991. [doi:10.1515/crll.1991.413.127]