
THEORY OF COMPUTING, Volume 21 (3), 2025, pp. 1–41
www.theoryofcomputing.org

SPECIAL ISSUE: APPROX-RANDOM 2020

Iterated Decomposition of Biased

Permutations Via New Bounds on the

Spectral Gap of Markov Chains

Sarah Miracle Amanda Pascoe Streib Noah Streib

Received April 2, 2021; Revised January 30, 2025; Published August 22, 2025

Abstract. In this paper, we address a conjecture of Fill (2003) about the spectral gap

of a nearest-neighbor transposition Markov chainℳnn over biased permutations of

[=]. Supposewe are given an array of input probabilitiesP = {?8 , 9} for all 1 ≤ 8 , 9 ≤ =
with ?8 , 9 = 1 − ? 9 ,8 . The Markov chainℳnn operates by uniformly choosing a pair of

adjacent elements, 8 and 9, and putting 8 ahead of 9 with probability ?8 , 9 and 9 ahead

of 8 with probability ? 9 ,8 , independent of their current ordering.

We build on previous work of Miracle and Streib (LATIN’18 and SIAM J. Discr.
Math., 2024) that analyzed the spectral gap ofℳnn when the particles in [=] fall into
: classes. There, the authors iteratively decomposedℳnn into simpler chains, but

incurred a multiplicative penalty of =−2
for each application of the decomposition

theorem of Martin and Randall (FOCS ’00), leading to an exponentially small

lower bound on the gap. We make progress by introducing a new complementary
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decomposition theorem. We introduce the notion of &-orthogonality, and show that

for &-orthogonal chains, the complementary decomposition theoremmay be iterated

$(1/
√
&) times while only giving away a constant multiplicative factor on the overall

spectral gap. We show that the decomposition given by Miracle and Streib (op. cit.)
of a related Markov chainℳpp over :-class particle systems is &-orthogonal for some

& ≤ 1/=2
as long as the number of particles in each class is at least � log =, where �

is a constant not depending on =. We then apply the complementary decomposition

theorem iteratively = times to prove nearly optimal bounds on the spectral gap of

ℳpp and to further prove the first inverse-polynomial bound on the spectral gap of

ℳnn when : is as large as Θ(=/log =). The previous best known bound assumed :

was bounded.

1 Introduction

For = ∈ ℕ, the problem of generating permutations of [=] = {1, 2 . . . , =} at random is founda-

tional in the history of computer science [19]. Markov chains for sampling permutations arise in

a variety of contexts, including self-organizing lists [17, 32], card shuffling [2, 35], and search

engines [5]. The spectral gap of a Markov chain provides a measure of the rate of convergence

to stationarity, which is crucial to the efficiency of Markov chain algorithms for sampling.

Suppose we are given an array of input probabilities P = {?8 , 9} (1 ≤ 8 , 9 ≤ =) with

?8 , 9 = 1 − ? 9 ,8 . A natural Markov chainℳnn over permutations operates by uniformly choosing

a pair of adjacent elements, 8 and 9, and putting 8 ahead of 9 with probability ?8 , 9 and 9 ahead

of 8 with probability ? 9 ,8 , regardless of their current ordering. We callℳnn the nearest-neighbor
transposition chain.

The Markov chainℳnn was among the first Markov chains studied in terms of its computa-

tional efficiency for sampling [1, 10, 9]. Its spectral gap has been studied extensively, both in the

uniform and in the biased settings [3, 4, 8, 10, 35].

A central question is, under what conditions is there a lower bound on the spectral gap

that is is an inverse polynomial in =. Such a lower bound implies a polynomial bound on the

mixing time, or the time until the chain will be “close” to its stationary distribution. We say P is

positively biased if ?8 , 9 ≥ 1/2 for all 8 < 9. Without the positive bias restriction, it is easy to find

examples where the mixing time ofℳnn is not polynomial (see, e. g., [4]); however, even with

this restriction the mixing time can still not be polynomial, as demonstrated in [4]. In [4], the

authors give an example of positively biased probabilities P for which they prove the mixing

time ofℳnn is exponential in =.

In 2003, Fill [14] introduced the following monotonicity conditions: ?8 , 9+1 ≥ ?8 , 9 for all

1 ≤ 8 < 9 ≤ = − 1 and ?8−1, 9 ≥ ?8 , 9 for all 2 ≤ 8 < 9 ≤ =. He conjectured that if P is positively

biased and monotone, then the spectral gap ofℳnn is at least an inverse polynomial in =, and

moreover that the smallest spectral gap is attained when each ?8 , 9 = 1/2 and the stationary

distribution is uniform.

Despite significant work on this subject, Fill’s conjecture remains mostly open after more

than 15 years. In the uniform case, Wilson [35] produced a clever path coupling argument
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showing the mixing time is Θ(=3
log =), with upper and lower bounds within a factor of 2. Fill’s

conjecture states that this should be the worst case mixing time among all arrays P which are

positively biased and monotone. Various papers [3, 4] have identified different classes of arrays

P for whichℳnn may cleverly be viewed as the direct product of simpler independent Markov

chains, and thus may be analyzed easily in terms of those chains. In [3], the authors proved a

bound of $(=2) on the mixing time ofℳnn in the case that ?8 , 9 = ? for all 8 < 9, and in [4] the

authors considered the case that ?8 , 9 depends only on the smaller of 8 and 9.

Among the positively biased, monotone arrays P that have proven to be challenging to

analyze are those arising in the context of self-organizing lists, where each element 8 has

a frequency F8 of being requested, and then moved ahead by one in the list; in this case,

?8 , 9 = F8/(F8 + F 9). The Markov chainℳnn was termed a “gladiator chain” in this case by

Haddadan and Winkler [16].

A partition of [7]:
C

1
= {1, 2, 3}

C
2

= {4, 5}
C

3
= {6}

C
4

= {7}
3765241→ 1432121

Figure 1: An example of a 4-class permutation and corresponding 4-particle process, with = = 7.

It is instructive to consider :-classes [25], where [=] is partitioned into : classes and particles

from class 8 and class 9 interact with a fixed probability ? 8 , 9 .1 When : = =, this captures

the general setting. In this context,ℳnn can be seen as having dual duties: whisking, which

uniformly mixes particles of the same type2, and sifting, which mixes particles of different types –

that is, which changes relative orders of particles of different types [16]. As themixing properties

of the uniform chain are well-understood, it is sufficient to analyze the sifting operation in

isolation [16, 25]. By discarding moves between particles in the same class, we are left with

a linear :-particle process that maintains elements within each particle class in fixed relative

orders (and therefore we may drop their individual labels and re-index, identifying all elements

from class 8 with the label 8, as is done in Figure 1).

In this paper, we use the version of the :-particle process introduced in [25], calledℳpp,

which is also allowed to make certain non-adjacent transpositions—it may swap 8 and 9 if all

elements between them are smaller than both 8 and 9. This simplifies our analysis, and as in [25],

we compensate by using comparison techniques [9, 30] when evaluating the spectral gap of

ℳnn.

The bias towards having a particle of type 8 ahead of a particle of type 9 is @ 8 , 9 = ? 8 , 9/? 9 ,8 . Let
@ = min8 , 9 @ 8 , 9 be the minimum bias. We say that the bias is bounded if @ is bounded below by

a constant greater than 1. After a series of papers [16, 25], it was shown that the mixing time

ofℳpp was $(=2:+4) (and the spectral gap is at least Ω(=−2(:−1))) which P is positively biased,

monotone, and bounded. These results apply to the gladiator chain (self-organizing lists) with

: distinct frequencies. In fact, the result in [25] requires only weak monotonicity, and not full

1The bar in the notation indicates that we have re-indexed the probabilities by class.

2We use the terms “type” and “class” interchangeably.

THEORY OF COMPUTING, Volume 21 (3), 2025, pp. 1–41 3

http://dx.doi.org/10.4086/toc


SARAH MIRACLE, AMANDA PASCOE STREIB, AND NOAH STREIB

monotonicity. Weak monotonicity for :-classes is defined as follows.

Definition 1.1 ([4]). If P forms a :-class, then P is weakly monotonic if properties 1 and either

2 or 3 are satisfied.

1. ? 8 , 9 ≥ 1/2 for all 1 ≤ 8 < 9 ≤ :, and

2. ? 8 , 9+1
≥ ? 8 , 9 for all 1 ≤ 8 < 9 ≤ : − 1 or

3. ? 8−1, 9 ≥ ? 8 , 9 for all 2 ≤ 8 < 9 ≤ :.

The aforementioned results are based on a natural decomposition ofℳpp into simpler chains,

but not as a direct product. To get a bound on the overall spectral gap, the authors of [25] used

the decomposition theorem of [23], which bounds the spectral gap of a Markov chain in terms

of the spectral gaps of the simpler Markov chains. Unfortunately, one incurs an extra factor of

=−2
each time it is applied in this setting, and in [25] it is applied iteratively : − 2 times. Thus,

this produced a bound of Ω(=−2(:−1)) on the spectral gap, which is an inverse polynomial only

for constant :.

To make this iterated decomposition scheme work for larger : requires a stronger decomposi-

tion theorem, and that is themain focus of the present paper. We introduce a new decomposition

theorem that allows us to achieve nearly optimal bounds of Ω(=−2) on the spectral gap ofℳpp

for bounded :-classes, as long as the number of particles of each type is at least �@ log = (where

�@ is a constant depending on the minimum bias @; i. e., not depending on =). We believe this

new decomposition theorem is of independent interest and will have other applications.

1.1 The decomposition method

The decomposition method was first introduced by Madras and Randall [21], and has been

subsequently used and modified to produce the first polynomial time bounds on the spectral

gaps of many interestingMarkov chains [6, 7, 11, 13, 15, 16, 18, 22, 23, 24, 27, 28]. Supposeℳ is a

finite, ergodic Markov chain that is reversible and has stationary distribution �. LetΩ =
⋃A
8=1
Ω8

be a partition of the state space ofℳ and �8 be the spectral gap ofℳ restricted to Ω8 . The

disjoint decomposition theorem of [23] states that the spectral gap � ofℳ satisfies � ≥ 1

2
�min�̄,

where �min = min8 �8 and �̄ is the spectral gap of a certain projection chain over states [A].
There has been significant effort towards improving the decomposition technique by

providing stronger bounds in special cases [7, 13, 15, 18, 22, 23, 27, 28]. While � may indeed

be on the order of �min�̄—one example is the random walk on the path, decomposed into

two shorter paths—there are instances in which it may instead satisfy the much larger bound

� ≥ 2min{�min , �̄}, for some constant 2. The simplest such example is the direct product of two

independent Markov chains [4, 13]; in this case, 2 = 1.

Tight bounds are especially important when applying the decomposition method iteratively,

as was done in [25]. At each level of the induction, �̄ = Θ(=−2), so the original bound of [23]

yields � = Ω(=−2(=−1)) for the final iteration. Even a bound of the form � ≥ 2min{�min , �̄}, such
as the one in [27], would introduce a factor of 2 for each application, and would thus yield a
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bound that is an inverse exponential in = if 2 < 1 is constant. The bounds in [18] are iterable in

some cases, butℳpp does not satisfy those conditions.

1.2 Our results

In this paper, we develop a new decomposition framework that yields iterable bounds for a

new class of Markov chains. Among our results, we present a complementary decomposition

theorem, which achieves a tight bound on � without appealing to a bound on the gap �̄ of

the projection chain, but rather the minimum gap �̃min of certain complementary restrictions
%̃1 , %̃2 , . . . , %̃Ã . We first consider the simple setting where the state space Ω can be seen as a

product space, i. e., Ω = Ω1 ×Ω2. In other words, for each 0 ∈ Ω1 and each 1 ∈ Ω2, there is

a unique � = (0, 1) ∈ Ω. This setting is similar to the direct product of independent Markov

chains, but the transition probabilities are not necessarily independent. We define a restriction

chain %0 for each 0 ∈ Ω1 that fixes 0 and operates only on the second coordinate. Similarly,

we define a complementary restriction chain %̃1 , which fixes 1 and operates only on the first

coordinate. Recall � is the stationary distribution ofℳ. We write �(0) = ∑
1∈Ω2

�(0, 1) and
�(1) = ∑

0∈Ω1

�(0, 1). Define

A(0, 1) = �(0, 1)
�(0)�(1) .

The function A(0, 1) allows us to capture the degree of dependence between 0 and 1. Let

& =
∑
(0,1)∈Ω

�(0, 1)
(√
A(0, 1) − 1/

√
A(0, 1)

)
2

. (1.1)

We say a decomposition satisfying the equality above is &-orthogonal.

Theorem 1.2. For any &-orthogonal decomposition of Markov chainℳ on product space Ω,

�(ℳ) ≥ min{�min , �̃min}
(
1 −
√
&
)

2

.

This bound can be iterated C times with only a constant overhead, as long as

√
& ≤ 1/C. We

note that parts of the proof of this theorem are similar to a “multi-decomposition” result of

Destainville [7], which we discuss in Section 4. There we also present several generalizations of

Theorem 1.2, which apply beyond the product space setting.

Favorably, analysis of &-orthogonality requires only a comparison between two stationary

distributions and not an analysis of the dynamics of any Markov chain. For example, whenℳ
is a direct product of independent Markov chains, we have that A(0, 1) = 1 for all pairs 0 ∈ Ω1

and 1 ∈ Ω2 and the decomposition is 0-orthogonal, leading to the bound � ≥ min{�min , �̃min},
as expected. Notice, however, that we do not actually require a such a strong pointwise bound

on A(0, 1). The notion of &-orthogonality captures the average value of A(0, 1), and allows us to

achieve tight bounds on � even when the constituent Markov chains are only nearly independent.
Indeed, it is possible to prove &-orthogonality for very small & even if A(0, 1) is far from 1 for
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413112413142

Figure 2: At level 2 of the decomposition, all particles of type 1 are in fixed positions, and the

underlined particle 2 may swap with the 3 to its left or the 4 immediately to its right.

1223123112133413143444

Figure 3: A “typical” configuration at level 2 has no 2’s appearing after any 9 ≥ 4.

pathological pairs 0 and 1, as long as it is close to 1 on average. Importantly, this holds even

though the elements in this “bad” space are visited polynomially often.

Armed with our new decomposition theorem, we use the iterated decomposition in [25]

to achieve nearly optimal bounds on the spectral gap of the :-particle process ℳpp. We

prove that at each level of the iteration, the value of & in the decomposition satisfies & ≤
1/=2

. Thus, we may apply Theorem 1.2 iteratively : ≤ = times to get a bound of Ω(=−2)
on the spectral gap �(ℳpp). This bound is optimal up to constants. More formally, let

# ∗ = max

{
log(6=2)+log((1+@)/(@−1))

log((1+@)/2) ,
log

2(14)
log

2(2@/(1+@))

}
, and let 28 denote the number of particles of type

8, for 1 ≤ 8 ≤ :. Note that # ∗ := �@ log = where �@ depends only on @.We prove the following.

Theorem 1.3. If the probability array P is weakly monotonic and forms a bounded :-class with 28 ≥ 2# ∗

for all 1 ≤ 8 ≤ :, then the spectral gap � of the chainℳpp satisfies � = Ω(=−2).

The iterated decomposition works as follows. Let C8 be the set of particles of type 8, C<8 the
set of particles with type less than 8, and C>8 the set of particles with type bigger than 8. At

the 8th iteration, all particles in C<8 are in fixed positions, and those in C8 ∪ C>8 are allowed to

swap across them – that is, we allow non-adjacent transpositions of, for example, a particle of

type 9 ≥ 8 and a particle of type 9′ ≥ 8, as long as all particles between them in the permutation

are of type less than 8. See Figure 2 for an example. This decomposition is designed to exploit

the hypothesis that the movement of the particles in C8 is nearly independent of the relative

order of the particles in C>8 . The tool of &-orthogonality allows us to make this precise. We

define the complementary restriction chains to contain the moves involving only particles in

C>8 , and we define the restriction chains to contain moves between particles in C8 and particles

in C>8 . We prove that this decomposition is &−orthogonal where & ≤ 1/=2
when |C8+1 | = 28+1

is large enough. Indeed, the highest probability configuration is the one in which particles

are sorted by class, with all particles of smaller type appearing before particles of larger type.

Thus, having |C8+1 | large ensures that a typical configuration will not have a particle in C8
after a particle in C>(8+1), as this requires many transpositions from the highest probability

configuration, and each costs a factor of at least the minimum bias @; see Figure 3. Note that

such “bad” configurations are polynomially suppressed (meaning, their total probability is

bounded by an inverse polynomial in =), but not exponentially suppressed (bounded by an

inverse exponential in =).

We use Theorem 1.3 and comparison techniques to prove the following result forℳnn.
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Theorem 1.4. If the probability array P is weakly monotonic and forms a bounded :-class with at
least 2# ∗ particles in each class, then �(ℳnn) = Ω(=−7).

This is the first inverse-polynomial lower bound on the spectral gap ofℳnn for monotone

bounded :-classes for : as large as Θ(=/log =). This is a significant improvement over the

previous result which was inverse polynomial only for constant : [23]. Theorem 1.4 also leads

to a bound of $(=9) on the mixing time ofℳnn under the same conditions.

1.3 Outline

The layout of the paper is as follows. In Section 2, we begin with some notation and terminology.

In Section 3, we give details on Theorem 1.2 and illustrate its use by applying it to the

one-dimensional Ising model. In Section 4, we generalize the notion of &-orthogonality to non-

product spaces and present a more general complementary decomposition theorem that applies

to all &-orthogonal decompositions. We also present a classical decomposition theorem that

generalizes some results of [18] and show how our decomposition theorems relate to previous

results. Finally, we give a brief summary of the proof techniques for the decomposition theorems.

Section 5 and Section 6 present the proofs of the complementary and classical decomposition

theorems, respectively. In Section 7, we apply Theorem 1.2 to the biased permutation problem.

2 Preliminaries

We assumeℳ is an ergodic Markov chain over a finite state space Ω with transition matrix

%. We also assumeℳ is reversible and has stationary distribution �; that is, it satisfies the
detailed balance condition: for all �, � ∈ Ω, �(�)%(�, �) = �(�)%(�, �). Notationally, we write

�(() = ∑
�∈( �(�) for any set ( ⊆ Ω.

LetΩ = ∪A
8=1
Ω8 be apartition of the state space into A pieces. For each 8 ∈ [A], define%8 = %(Ω8)

as the restriction of % to Ω8 which rejects moves that leave Ω8 . Formally, %8 is defined as follows:

if � ≠ � and �, � ∈ Ω8 then %8(�, �) = %(�, �); if � ∈ Ω8 then %8(�, �) = 1 −∑
�∈Ω8 ,�≠� %8(�, �).

The Markov chainℳ8 with transition matrix %8 is called a restriction Markov chain, and its state

space isΩ8 . Let �8 be the normalized restriction of � toΩ8 ; i. e., �8(() = �(( ∩Ω8)/�(Ω8) for any
( ⊆ Ω. The chainℳ8 is ergodic, reversible, and has stationary distribution �8 .

Classical decomposition theorems use the so-called projection chain ℳ̄ with transition matrix

%̄ on the state space [A] defined by %̄(8 , 9) = �(Ω8)−1
∑

�∈Ω8 ,�∈Ω9
�(�)%(�, �). The stationary

distribution �̄ of ℳ̄ satisfies �̄(8) := �(Ω8).
In contrast, for our complementary decomposition theorems, we will decompose % in a

slightly different way. Define %̂ as the block diagonal |Ω| × |Ω| matrix with the %8 matrices

along the diagonal; i. e., %̂ is obtained from % by rejecting moves between different parts of

the partition. Define %̃ to be the transition matrix of the Markov chain defined by rejecting

moves from � to � if � and � are within the same Ω8 . The matrix %̃ defines a complementary
partition Ω = ∪Ã

9=1
Ω̃9 , where each Ω̃9 is a maximal subset of Ω that is connected by %̃. For

each 9 ∈ [Ã], define the complementary restriction %̃9 = %(Ω̃9) as the restriction of % to Ω̃9 which
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rejects moves that leave Ω̃9 . The complementary restriction %̃9 is also ergodic, reversible, and its

stationary distribution is the normalized restriction of � to Ω̃9 , which we call �̃ 9 . Notice that the

complementary restrictions are defined by the decomposition %1 , %2 , . . . , %A .

Observe (%̂ + %̃)(�, �) = %(�, �) unless � = �, and (%̂ + %̃)(�, �) = %(�, �)+ 1, since each move

of % gets rejected in exactly one of %̂ or %̃ (and of course the probability of transitioning from a

state is 1). Therefore, we have % = %̂ + %̃ − �|Ω|, where we write �= to mean the = × = identity

matrix.

The efficiency of a Markov chainℳ is a function of its spectral gap, denoted �(ℳ), which is

defined as the difference of 1 and the second largest eigenvalue of its transition matrix. Letting

�8 = �(Ω8) and �̃9 = �(Ω̃9), the complementary decomposition theorem, Theorem 1.2, is proven

by analyzing the spectral gaps �min = min8 �8 and �̃min = min9 �̃9 . Note that if some restriction

or complementary restriction has a single element, its spectral gap is taken to be 1.

3 Introductory examples

In this section, we show how to apply our new complementary decomposition theorem by

considering a few simple examples. Recall A(0, 1) = �(0, 1)/(�(0)�(1)) and

& =
∑
(0,1)∈Ω

�(0, 1)
(√
A(0, 1) − 1/

√
A(0, 1)

)
2

.

Theorem 1.2 states that the spectral gap � ofℳ satisfies � ≥ min{�min , �̃min}
(
1 −
√
&
)
2

. A

simple application of Theorem 1.2 is to a Markov chainℳ that is the direct product of two

Markov chainsℳ1 andℳ2. It is easy to see that A(0, 1) = 1 for all 0, 1, and so this proves

�(ℳ) = min{�(ℳ1), �(ℳ2)}. By iterating on �̃min, we can immediately prove the following

well-known result.

Corollary 3.1. Ifℳ is the direct product of Markov chains {ℳ8}, then �(ℳ) = min8 �(ℳ8).

3.1 One-dimensional Ising model

Asa second introductory example prior to ourmain application,we consider the one-dimensional

Ising model. Here each configuration � ∈ Ω is an assignment of a “spin” (either +1 or -1) to

each of = vertices connected to form a line; see Figure 4. Let � = e
−�
, where � > 0 represents

inverse temperature. We are interested in sampling from the Gibbs distribution given by

�(�) = e
−��(�)//, where the Hamiltonian �(�) is the number of edges whose endpoints have

different spins and / is the normalizing constant

∑
�∈Ω e

−��(�)
, also called the partition function.

(See [20] for background on the ferromagnetic Ising model.)

Consider the Glauber dynamics Markov chainℳgd.

Glauber Dynamicsℳgd

Starting at any configuration �0, iterate the following:

• At time C , choose a vertex 1 ≤ 8 ≤ = uniformly at random.
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• Set the spin of vertex 8 to+1 with probability ? = (�(�C ,8←+))/(�(�C ,8←+)+�(�C ,8←−))where

�C ,8←+ is identical to �C with the spin of vertex 8 set to +1 (or −1 for �C ,8←−).

• Otherwise, set the spin of vertex 8 to −1 with probability 1 − ?.

For simplicity, we will assume that = is a power of 2. To apply our theorem, we decompose

the state space by breaking configurations in half along the middle edge; again, see Figure 4.

Transitions that fix the signs on the left are part of the restriction chains, and transitions that

fix signs on the right are part of the complementary restriction chains. Thus, our restrictions

and complementary restrictions are both 1 × =/2 Ising models for which we can readily apply

induction. Let 0 be the assignment of signs to the left =/2 vertices and 1 be the signs of the right

=/2 vertices. It is straightforward to see � = (0, 1) gives a unique configuration and that the

state space is a product space. However,ℳgd is not a direct product of independent Markov

chains on 0 and 1 because the probability of changing a sign of either of the middle two vertices

(=/2 or =/2 + 1) depends on the sign of the other middle vertex. In order to apply Theorem 1.2,

we first analyze A(0, 1) = �(0, 1)/(�(0)�(1)) and subsequently &. The techniques used here are

similar to, but simpler than, those used Section 7.

0 1

+ + − + − + + + F(0) = �2

F(1) = �
201 = �

Figure 4: An example configuration of the one-dimensional Ising model.

Define � = e
−�
. Let F(0) = ��(0), where �(0) is the number of edges in 0 (the left half) with

disagreeing signs. Analogously, define F(1) = ��(1). Let 201 = � if the middle signs disagree

and 201 = 1 otherwise. Thus �(0, 1) = F(0)F(1)201//. Let Ω∗ ⊂ Ω be the configurations where

the middle two vertices agree. Define /� =
∑
0 F(0) and /� =

∑
1 F(1).

For any fixed 0, we have

∑
1:(0,1)∈Ω∗ F(1) =

∑
1:(0,1)∉Ω∗ F(1) = 1

2
/�, since we can swap spins on

all vertices in 1 to obtain a unique configuration 1′ ∈ Ω \Ω∗ with F(1′) = F(1). Thus, we have

/ =
∑
(0,1)∈Ω∗

F(0)F(1) + �
∑
(0,1)∉Ω∗

F(0)F(1) = (1 + �)
∑
(0,1)∈Ω∗

F(0)F(1) = (1 + �)/�/�
2

.

We consider two different cases for A(0, 1) depending on whether the sign of the middle two

vertices agree. First consider the case where (0, 1) ∈ Ω∗. Here we have

�(0) =
∑
1′

�(0, 1′) =
∑

1′:(0,1′)∈Ω∗

F(0)F(1′)
/

+ �
∑

1′:(0,1′)∉Ω∗

F(0)F(1′)
/

=
F(0)(1 + �)/�

2/
,

and similarly �(1) = F(1)(1 + �)/�/(2/). Therefore

A(0, 1) = �(0, 1)
�(0)�(1) =

4/F(0)F(1)201
F(0)F(1)(1 + �)2/�/�

=
2

1 + � .
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The next case is almost identical except that 201 = �, so we have for (0, 1) ∉ Ω∗ that A(0, 1) =
2�/(1 + �).

Next we use our analysis of A(0, 1) to bound &. First notice that since

∑
(0,1)∈Ω∗ �(0, 1) +∑

(0,1)∉Ω∗ �(0, 1) = 1 and

∑
(0,1)∉Ω∗ �(0, 1) = �

∑
(0,1)∈Ω∗ �(0, 1), we have that

∑
(0,1)∈Ω∗ �(0, 1) =

1/(1 + �) and ∑
(0,1)∉Ω∗ �(0, 1) = �/(1 + �). This yields

& ≤
∑
(0,1)∈Ω∗

�(0, 1)(
√
A(0, 1) − 1/

√
A(0, 1))2 +

∑
(0,1)∉Ω∗

�(0, 1)(
√
A(0, 1) − 1/

√
A(0, 1))2

=
1

1 + �

(√
2

1 + � −
√

1 + �
2

)
2

+ �
1 + �

(√
2�

1 + � −
√

1 + �
2�

)
2

=

(
1 − �
1 + �

)
2

.

Applying the complementary decomposition theorem (Theorem 1.2) gives the following

recurrence: �= ≥ �=/2
(

2�
1+�

)
2

. Since the base case has gap Ω(=−1), this solves to �= = Ω(=−2) for
2 = 1 + 2 log

2

(
1+�
2�

)
. Note that while this does not give a tight bound, the constant 2 is strictly

better than the constant given by [18] and, unlike earlier decomposition approaches, we have

not incurred an extra factor of = with each application of the decomposition theorem.

3.2 Ising model on bounded-degree trees

As in [18], our proof for the one-dimensional Ising model can be easily generalized to trees

with constant maximum degree A. A straightforward induction shows that such a tree ) on =

vertices has an edge whose deletion cuts ) into two components, each with size at least =/(A + 1).
We let 0 represent the spins on one component and 1 the spins on the other. At each level of

the induction, we compute A(0, 1) and & using arguments similar to those in Section 3.1 to get

�= = Ω(=−2) for 2 = 1 + 2 log(A+1)/A
(

1+�
2�

)
.

4 Generalizations and comparison with other theorems

In Section 4.1 and Section 4.2, we present several generalizations of Theorem 1.2 and compare

these results with related prior work. Our decomposition theorems fall into two categories:

complementary decomposition theorems that rely on the notion of &-orthogonality between the

restrictions and complementary restrictions, and more classical decomposition theorems based

on the projection Markov chain. In Section 4.3, we summarize the proofs, with more details

given in Section 5 and Section 6.

4.1 Generalized complementary decomposition theorems

Theorem 1.2 generalizes easily to non-product spaces. Define A(8 , 9) = �(Ω8 ∩ Ω̃9)/(�(Ω8)�(Ω̃9)),
for any 1 ≤ 8 ≤ A, 1 ≤ 9 ≤ Ã. We say that {Ω8} and {Ω̃9} is an &-orthogonal decomposition ofℳ
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if

& =
∑
(8 , 9)

�(Ω8 ∩ Ω̃9)(
√
A(8 , 9) − 1/

√
A(8 , 9))2 .

Theorem 4.1. For any &-orthogonal decomposition ofℳ, �(ℳ) ≥ min{�min , �̃min}
(
1 −
√
&
)
2

.

We use Theorem 4.2 to prove Theorem 4.1, which in turn implies Theorem 1.2.

Theorem 4.2. �(ℳ) ≥ minG⊥
√
�,‖G‖=1

�min‖ ⫫ G‖2 + �̃min‖ ⫫ G̃‖2.

Here, ⫫ G and ⫫ G̃ are orthogonal projections of a vector G onto the complement of the

eigenspace of the top eigenvectors of certain matrices (defined in Section 5.3) containing the

%8’s and %̃9’s, respectively. This theorem is similar to a special case of the main result in [7].

Destainville [7] introduced a “multi-decomposition” scheme that uses < different partitions

of Ω. In Destainville’s result, ‖ ⫫ G‖2 + ‖ ⫫ G̃‖2 is replaced by a function of the norm of a

“multi-projection” operator Π. Bounding these norms is essential, as the Markov chainℳ can

require exponential time to mix even if all of the restrictions and complementary restrictions are

polynomially mixing3.

Unfortunately, bounding these norms can be challenging. Destainville [7] bounds the norm

of the projection Π by the spectral gap of a smaller matrix Π̄. In some cases, this gap can be

analyzed directly, or even computationally for particular problem instances. However, for very

complex distributions such as the distribution over biased permutations we consider here, it can

be challenging to find the spectral gap of Π̄. We believe one of our main contributions is the

definition of &-orthogonality, a concrete combinatorial quantity that may be easier to analyze.

This approach is particularly useful when the chain decomposes into pieces that are nearly

independent, as in the setting of Theorem 1.2.

4.2 Classical decomposition theorems

The disjoint decomposition theorem of [23] states that the spectral gap � of ℳ satisfies

� ≥ 1

2
�min�̄, where, as we recall from Section 1, �min = min8 �8 and �̄ is the spectral gap of a

projection chain over states [A]. Jerrum, Son, Tetali, and Vigoda [18] considered two quantities

related to the spectral gap: the Poincaré and log-Sobolev constants. There, the authors defined a

parameter ) = max8 max�∈Ω8

∑
�∈Ω\Ω8

%(�, �), which can be seen as the maximum probability of

escape from one part of the partition in a single step of %, and used it to produce a bound on the

order of the minimum gap when ) is on the order of �̄. They also provided improved bounds

when another parameter � is close to zero; this requires a pointwise regularity condition. More

recently, Pillai and Smith [27] introduced other conditions in order to directly bound the mixing

time by a constant times the maximum of the mixing times of the projection and the restrictions.

The techniques developed for proving the complementary decomposition theorems intro-

duced in this paper can be further applied to prove the following “classical”-style decomposition

theorem.

3Indeed, the introduction of the projection chain in [21] was a key insight to the original decomposition theorem.
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Theorem 4.3. Let � =
√

2)/�̄. Then �(ℳ) ≥ min

?2+@2=1

�min@
2 + �̄ (@� − ?)2 .

We state a more general version of this theorem, Theorem 6.1, in Section 6. This bound allows

us to rederive several known classical decomposition theorems.

Corollary 4.4. Assumeℳ is lazy. Then � ≥ �min�̄/3.
In fact, one can show that the constant is 1/2 if �min , �̄ ≤ 1/2 (which is a common situation) or

�2 ≥ 1/2 (�2 is defined in Section 5.2). In Corollary 4.5 we show that Theorem 4.3 can be seen as

a generalization of Theorem 1 of [18], except that it instead bounds the spectral gap.

Corollary 4.5. � ≥ min

{
�̄
3
,
�min �̄
3)+�̄

}
.

In particular, if )/�̄ is a constant, then we get within a constant of the minimum gap as well.

Theorem 4.3 produces slightly improved bounds over Corollary 4.5 when ) ≈ �̄ � �min.

4.3 Summary of the proofs of the decomposition theorems

Our proofs are elementary and use only basic facts from linear algebra about eigenvalues and

eigenvectors. We have chosen to assume the Markov chains are discrete and finite to keep the

proofs as accessible as possible. We utilize the following standard characterization of the second

largest eigenvalue � of a symmetric matrix � with top eigenvector E:

� = max

G⊥E
〈G, G�〉
‖G‖2 = max

G⊥E:‖G‖=1

〈G, G�〉 . (4.1)

For a general reversible Markov chain with transition matrix %, we apply equation (4.1) to a

symmetric matrix � = �(%) that has the same eigenvalues as %.

We apply the Vector Decomposition Method from the expander graph literature (see,

e. g., [31, 34]), and decompose the vector G into ⫫ G + G‖ , where G‖ is parallel to the top

eigenvector of each restriction matrix. The intuition of this method is that if a particular

distribution is far from stationarity, then it will either be far from stationarity on some part of

the partition or on the projection, and therefore applying % brings us closer to stationarity. The

benefit of this approach is that it allows us to quantify the independence of the restriction chains

with the projection or complementary restriction chains. Using equation (4.1), for any G ⊥ E, we

need to bound

〈G, G�〉 = 〈⫫ G,⫫ G�〉 + 〈G‖ , G‖�〉 + 2〈⫫ G, G‖�〉 . (4.2)

It is easy to bound 〈⫫ G,⫫ G�〉 and 〈G‖ , G‖�〉 using ideas from other decomposition results [18,

23]. The term 〈⫫ G, G‖�〉 determines whether the decomposed Markov chain is nearly the

direct product of two independent Markov chainsℳ1 andℳ2, in which case 〈⫫ G, G‖�〉 ≈ 0

and �(ℳ) ≈ min{�(ℳ1), �(ℳ2)}, or whether they are far from independent, in which case

〈⫫ G, G‖�〉 is large and �(ℳ) = Θ(�min�̄). The key to our decomposition proofs lies in our

bounds on 〈⫫ G, G‖�〉, which are different for our complementary decomposition theorems

than they are for our classical decomposition theorems. More details are provided in Section 5

and Section 6.
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5 Complementary decomposition theorems

In this section, we present the proofs of the complementary decomposition theorems. First, in

Section 5.1, we introduce some notation and terminology which will be useful for the proofs.

Next, we present key lemmas for both the complementary decomposition theorem and for the

classical decomposition theorem in Section 5.2. In Section 5.3, we prove our complementary

decomposition theorems, Theorems 1.2, 4.1, and 4.2.

5.1 Extended preliminaries

We first fix some notation and terminology. The symbol ⊗ is used for tensor product. We write

(E)8 to mean the 8th coordinate of a vector E. The second largest eigenvalue of %8 will be denoted

�8 , and �max = max8 �8 . The “top eigenvector” of a matrix will be the eigenvector corresponding

to the eigenvalue of largest absolute value.

In order to prove our decomposition results, we wish to apply equation (4.1) to %. However,

since % may not be symmetric, we appeal to the following symmetrization technique that

appears in [20, p. 153]. Given % with stationary distribution �, define a matrix � := �(%) by
�(�, �) := �(�)1/2�(�)−1/2%(�, �). � is similar to % (i. e., they have the same eigenvalues), but is

symmetric, so we can infer a bound on the second eigenvalue of % by applying equation (4.1) to

�. It is easy to check that the top eigenvector of � is

√
�, which is the vector with entries

√
�(�)

for any � ∈ Ω.

We apply this same symmetrization technique to other matrices as well. For 8 ∈ [A]we let

�8 := �(%8) and for 8 ∈ [Ã] we let �̃8 := �(%̃8). We then write �̂ to mean the |Ω| × |Ω| matrix

with �̂(�, �) = �8(�, �) if �, � ∈ Ω8 for some 8 ∈ [A], and zero otherwise. Analogously, we write

�̃ to mean the |Ω| × |Ω| matrix with �̃(�, �) = �̃8(�, �) if �, � ∈ Ω̃8 for some 8 ∈ [Ã], and zero

otherwise. It is important to note that �̂ ≠ �(%̂) and �̃ ≠ �(%̃).

Proposition 5.1. The matrix � satisfies � = �̂ + �̃ − �|Ω| .

Let �1 ≥ �2 ≥ . . . ≥ �|Ω| be the eigenvalues of �̃ with corresponding eigenvectors

E1 , E2 , . . . , E |Ω|. As �̃ is symmetric, the real spectral theorem tells us that its eigenvectors

form an orthonormal basis of ℝ |Ω|. We consider the basis representations ⫫ G =
∑
8 ⫫ 08E8

and G‖ =
∑
8 0
‖
8
E8 . More generally, for any E ∈ ℝ |Ω|, we write E =

∑
8 08E8 for some constants

01 , 02 , . . . , 0 |Ω| ∈ ℝ. Also, ‖E‖2 = ∑
8 0

2

8
‖E8 ‖2 , and E�̃ =

∑
8 08�8E8 .

5.2 Key ideas and lemmas for the proofs

We wish to apply equation (4.1) to �. Recall that
√
� is the top eigenvector of �. Let G ∈ ℝ |Ω|

with G ⊥
√
� and ‖G‖ = 1. We will decompose G into two vectors G‖ and ⫫ G as follows (note:

this is similar to the vector decomposition used for the Zig Zag Product in [31]). For any 8 ∈ [A],
let G8 ∈ ℝ |Ω8 |

be the vector defined by G8(�) = G(�) for all � ∈ Ω8 . Then G =
∑
8 48 ⊗ G8 . We further

decompose G8 into G
‖
8
, the part that is parallel to

√
�8 , and ⫫ G8 , the part that is perpendicular to
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√
�8 ; recall that

√
�8 is the top eigenvector of �8 . Finally, define G

‖ ,⫫ G ∈ ℝ |Ω| by G‖ = ∑
8 48 ⊗ G

‖
8

and ⫫ G = ∑
8 48⊗ ⫫ G8 . Hence G =

∑
8 48 ⊗ G8 = G‖+ ⫫ G. Define G̃‖ and ⫫ G̃ analogously.

As described in Section 4.3, we will bound 〈G, G�〉 via equation (4.2):

〈G, G�〉 = 〈⫫ G,⫫ G�〉 + 〈G‖ , G‖�〉 + 2〈⫫ G, G‖�〉 .

We need the following simple proposition.

Lemma 5.2. The following holds: G‖� = G‖�̃.

Applying Lemma 5.2, equation (4.2) becomes

〈G, G�〉 = 〈G‖ , G‖�̃〉 + 2〈⫫ G, G‖�̃〉 + 〈⫫ G,⫫ G(�̂ + �̃ − �|Ω|)〉 .

For ease of notation, we define the following quantities:

�1 =
〈⫫ G,⫫ G�̂〉
‖ ⫫ G‖2 , �2 =

〈⫫ G,⫫ G�̃〉
‖ ⫫ G‖2 , �3 =

〈G‖ , G‖�̂〉
‖G‖ ‖2

, �4 =
〈G‖ , G‖�̃〉
‖G‖ ‖2

.

Plugging these in, we have

〈G, G�〉 = �4‖G‖ ‖2 + 2〈⫫ G, G‖�̃〉 + (�1 + �2 − 1)‖ ⫫ G‖2 . (5.1)

Bounding �1 and �4 is straightforward, and borrows many of the ideas from classical

decomposition results. If G‖�̃ were orthogonal to ⫫ G, then doing so would be sufficient to

proving a strong decomposition theorem. However, this is not true in general, so we must also

bound 〈⫫ G, G‖�̃〉. Our two types of theorems do so in different ways, which are presented in

Section 5.3 and Section 6.

The next lemma makes concrete the intuition that if a particular distribution is far from

stationarity, then it will either be far from stationarity on some restriction—in which case �̂ will

bring it closer to stationarity (as in part 1)—or on the projection—in which case �̃ will bring it

closer to stationarity (as in part 2). The proof is straightforward from the definitions.

Lemma 5.3. With the above notation,

1. �1 ≤ �max.

2. �4 ≤ ƛ.

Note that � is formally defined in equation (4.1) and �max is defined at the beginning of

Section 5.1.
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5.3 Proofs of complementary decomposition theorems

Next we use the technology developed in Section 5.2 to prove Theorem 4.2. Recall that

�1 ≥ �2 ≥ . . . ≥ �|Ω| are the eigenvalues of �̃ with corresponding eigenvectors E1 , E2 , . . . , E |Ω|,
and that for any E ∈ ℝ |Ω|, we write E =

∑
8 08E8 for some constants 01 , 02 , . . . , 0 |Ω| ∈ ℝ. Also,

‖E‖2 = ∑
8 0

2

8
‖E8 ‖2 , and E�̃ =

∑
8 08�8E8 . Define the set ( = {8 : �8 = 1}. Let �̃1 =

〈⫫G̃ ,⫫G̃�̃〉
‖⫫G̃‖2 . Now

we can make an explicit statement about the gap ofℳ; notice the equality in equation (5.2).

Theorem 4.2.
�(ℳ) = min

G⊥
√
�,‖G‖=1

(1 − �1)‖ ⫫ G‖2 + (1 − �̃1)‖ ⫫ G̃‖2 . (5.2)

In particular,

�(ℳ) ≥ min

G⊥
√
�,‖G‖=1

�min‖ ⫫ G‖2 + �̃min‖ ⫫ G̃‖2 . (5.3)

Proof. Notice �̃1‖ ⫫ G̃‖2 =
∑
8∈( �8(⫫ 08 + 0

‖
8
)2. Thus,

(1 − �̃1)‖ ⫫ G̃‖2 =
∑
8

(1 − �8)(⫫ 08 + 0‖8 )
2 = (1 − �2)‖ ⫫ G‖2 + (1 − �4)‖G‖ ‖2 − 2〈⫫ G, G‖�̃〉 .

On the other hand, from equation (6.1), we have

1 − 〈G, G�〉 = (1 − �1)‖ ⫫ G‖2 + (1 − �2)‖ ⫫ G‖2 + (1 − �4)‖G‖ ‖2 − 2〈⫫ G, G‖�̃〉 .

Thus, for all G ⊥
√
� with norm 1, we have

1 − 〈G, G�〉 = (1 − �1)‖ ⫫ G‖2 + (1 − �̃1)‖ ⫫ G̃‖2 .

Applying equation (4.1), we get equation (5.2). To get equation (5.3), we apply Lemma 5.3,

which yields 1 − �1 ≥ 1 − �max = �min. An analogous statement to Lemma 5.3 holds for �̃1, and

shows 1 − �̃1 ≥ �̃min. �

It remains to prove Theorem 4.1. By Theorem 4.2, if �min and �̃min are not too small, it suffices

to show that ‖ ⫫ G‖2 and ‖ ⫫ G̃‖2 cannot both be small. To this end, we further decompose ⫫ G
and G̃‖ based on the eigenvectors of �̃. Define ( = {8 : �8 = 1} and vectors G11 =

∑
8∈( 0

‖
8
E8 and

G12 =
∑
8∉( 0

‖
8
E8 . Similarly, let G21 =

∑
8∈( ⫫ 08E8 and G22 =

∑
8∉( ⫫ 08E8 . Notice G̃‖ = G11 + G21 and

⫫ G̃ = G12 + G22, so that the vectors in each row (respectively, column) of the following table sum

to the vector in its row (respectively, column) label.

G̃‖ ⫫ G̃
G‖ G11 G12

⫫ G G21 G22

The vectors within each row are orthogonal, as they are in the span of eigenvectors with distinct

eigenvalues. However, the vectors within each column are not necessarily orthogonal.

The idea of the proof of Theorem 4.1 is that if ‖G11‖ is small, then ‖ ⫫ G‖2 + ‖ ⫫ G̃‖2 is large.
The following lemma states that &-orthogonality is sufficient to guarantee ‖G11‖ is small.
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Lemma 5.4. Let & be as defined in equation (1.1). Then ‖G11‖2 ≤ &.

Proof. Recall G11 is the projection of G‖ onto the top eigenvectors of �̃. The top eigenvectors of �̃

are precisely the set of all

√
�̃ 9 for 9 ∈ [Ã]. Therefore,

G11 =
∑
9

〈G‖ ,
√
�̃ 9〉

‖
√
�̃ 9 ‖2

√
�̃ 9 .

As the eigenvectors of �̃ are an orthonormal basis, we have

‖G11‖2 =
∑
9

〈G‖ ,
√
�̃ 9〉2 .

For any 9 ≠ 9′ ∈ [Ã] and any � ∈ Ω̃9′ ,
√
�̃ 9(�) = 0 and for 8 ∈ [A], �̃ 9(Ω8 ∩ Ω̃9) = �(Ω8 ∩ Ω̃9)/�(Ω̃9).

Therefore,

〈G‖ ,
√
�̃ 9〉 =

∑
8

∑
�∈Ω8

G‖(�)
√
�̃ 9(�) =

∑
8


8
∑

�∈Ω8∩Ω̃9

√
�8(�)�̃ 9(�) =

∑
8∈[A]


8
�(Ω8 ∩ Ω̃9)√
�(Ω8)�(Ω̃9)

. (5.4)

Since G ⊥
√
� and ⫫ G ⊥

√
� by definition, it follows that G‖ ⊥

√
� as well. This implies that


 ⊥
√
�̄, as

0 = 〈G‖ ,
√
�〉 =

∑
8


8
∑
�∈Ω8

√
�8(�)�(�) =

∑
8


8
∑
�∈Ω8

√
�(�)√
�(Ω8)

√
�(�) =

∑
8


8
√
�(Ω8) , (5.5)

and this final term is equal to

∑
8 
8
√
�̄8 = 〈
,

√
�̄〉. Multiplying equation (5.5) by �(Ω̃9) and

subtracting it from equation (5.4), we have

〈G‖ ,
√
�̃ 9〉 =

∑
8∈[A]


8
©­­«

�(Ω8 ∩ Ω̃9)√
�(Ω8)�(Ω̃9)

−
√
�(Ω8)�(Ω̃9)

ª®®¬ = 〈
, +9〉,
where

+9(8) :=
©­­«

�(Ω8 ∩ Ω̃9)√
�(Ω8)�(Ω̃9)

−
√
�(Ω8)�(Ω̃9)

ª®®¬ =
√
�(Ω8 ∩ Ω̃9)(

√
A(8 , 9) − 1/

√
A(8 , 9)) .

By the Cauchy–Schwarz inequality and the fact that ‖
‖ = ‖G‖ ‖ ≤ ‖G‖ = 1, we have 〈
, +9〉 ≤
‖
‖‖+9 ‖ = ‖+9 ‖. Therefore we get,

‖G11‖2 =
∑
9

〈G‖ ,
√
�̃ 9〉2 ≤

∑
9

‖+9 ‖2 =
∑
8 , 9

�(Ω8 ∩ Ω̃9)(
√
A(8 , 9) − 1/

√
A(8 , 9))2 . �
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To prove Theorem 4.1 from Theorem 4.2, we must show that if ‖G11‖2 ≤ &, then ‖ ⫫ G‖2+ ‖ ⫫
G̃‖2 ≥ (1 −

√
&)2. As the sum of the squared norms of the vectors in the above table is 1, it is

reasonable to expect that if ‖G11‖2 is small, then ‖ ⫫ G‖2 + ‖ ⫫ G̃‖2 is large. However, this is not

as straightforward as one might expect, as the vectors within each column are not necessarily

orthogonal, so we may have ‖ ⫫ G̃‖2 < ‖G12‖2 + ‖G22‖2.

Proof of Theorem 4.1. By equation (5.3) from Theorem 4.2, it suffices to show that ‖ ⫫ G‖2 + ‖ ⫫
G̃‖2 ≥ (1 −

√
&)2. If ‖ ⫫ G‖2 ≥ (1 −

√
&)2 we are done, so we may assume not. As the vectors

within each row of the table are orthogonal, we have (1 −
√
&)2 > ‖ ⫫ G‖2 = ‖G22‖2 + ‖G21‖2.

Furthermore, since

0 = 〈⫫ G, G‖〉 =
∑
8

⫫ 080‖8 ‖E8 ‖
2

we have

〈G22 , G12〉 =
∑
8∉(

⫫ 080‖8 ‖E8 ‖
2 = −

∑
8∈(
⫫ 080‖8 ‖E8 ‖

2 = −〈G21 , G11〉 .

Thus,

‖ ⫫ G̃‖2 = ‖G22 + G12‖2

= ‖G22‖2 + ‖G12‖2 + 2〈G22 , G12〉 (5.6)

= ‖G22‖2 + ‖G12‖2 − 2〈G21 , G11〉
≥ ‖G22‖2 + ‖G12‖2 − 2‖G21‖‖G11‖ .

We used Cauchy–Schwarz for the final inequality. Putting everything together,

‖ ⫫ G‖2 + ‖ ⫫ G̃‖2 ≥ ‖G22‖2 + ‖G21‖2 + ‖G22‖2 + ‖G12‖2 − 2‖G21‖‖G11‖
= ‖G22‖2 + ‖G21‖2 + (1 − ‖G21‖2 − ‖G11‖2) − 2‖G21‖‖G11‖
= 1 + ‖G22‖2 − ‖G11‖2 − 2‖G21‖‖G11‖

≥ 1 + ‖G22‖2 − & − 2

√
&

√
(1 −
√
&)2 − ‖G22‖2

≥ 1 − & − 2

√
&(1 −

√
&)

= (1 −
√
&)2. �

6 Classical decomposition theorems

In this section, we will prove our classical decomposition theorem, Theorem 4.3. It will be a

corollary of the following theorem.

Theorem 6.1. Let � =
√
(1 − �2)/�̄. Then

�(ℳ) ≥ min

?2+@2=1

�min@
2 +

(
@
√

1 − �2 − ?
√
�̄
)

2

.
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With the technology developed in Section 5.2, there is one critical piece remaining to prove

Theorem 6.1, which is to bound the cross terms generated by applying the matrix �̃ to G‖ .

Lemma 6.2. With the above notation, |〈⫫ G, G‖�̃〉| ≤
√
(1 − �4)(1 − �2)‖G‖ ‖‖ ⫫ G‖.

Proof. Recall that {�8} are the eigenvalues of �̃ with corresponding eigenvectors {E8}, and
⫫ G = ∑

8 ⫫ 08E8 and G‖ =
∑
8 0
‖
8
E8 are the basis representations of ⫫ G and G‖ .

Since ⫫ G is perpendicular to G‖ , we have 0 = 〈⫫ G, G‖〉 = ∑
8 ⫫ 080

‖
8
‖E8 ‖2. Notice

〈⫫ G, G‖�̃〉 =
∑
8

�8 ⫫ 080‖8 ‖E8 ‖
2

=
∑
8

⫫ 080‖8 ‖E8 ‖
2 −

∑
8

(1 − �8) ⫫ 080‖8 ‖E8 ‖
2

= 0 −
∑
8

(1 − �8) ⫫ 080‖8 ‖E8 ‖
2 .

Define vectors I‖ :=
∑
8

√
1 − �80‖8 E8 and ⫫ I :=

∑
8

√
1 − �8 ⫫ 08E8 . Then because the E8 are

mutually orthogonal, we have

〈⫫ I, I‖〉 =
∑
8

(1 − �8) ⫫ 080‖8 ‖E8 ‖
2 = −〈⫫ G, G‖�〉 .

By Cauchy–Schwarz, |〈⫫ I, I‖〉| ≤ ‖ ⫫ I‖‖I‖ ‖. Moreover,

‖I‖ ‖2 =
∑
8

(1 − �8)(0‖8 )
2‖E8 ‖2 = ‖G‖ ‖2 −

∑
8

�8(0‖8 )
2‖E8 ‖2 = ‖G‖ ‖2 − 〈G‖ , G‖�̃〉 = (1 − �4)‖G‖ ‖2.

Similarly, ‖ ⫫ I‖2 = (1 − �2)‖ ⫫ G‖2. Taken together, this proves the lemma. �

Finally, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let G ∈ ℝ |Ω| with G ⊥
√
� and ‖G‖ = 1. By equation (4.1), �(ℳ) ≥

1 − 〈G, G�〉. Applying Lemma 5.2 and the definitions of �1, �4, and �2, equation (4.2) becomes

〈G, G�〉 = 〈G‖ , G‖�̃〉 + 2〈⫫ G, G‖�̃〉 + 〈⫫ G,⫫ G(�̂ + �̃ − �|Ω|)〉
= �4‖G‖ ‖2 + 2〈⫫ G, G‖�̃〉 + (�1 + �2 − 1)‖ ⫫ G‖2 . (6.1)

Applying Lemma 6.2, we have

�(ℳ) ≥ 1 − (�4‖G‖ ‖2 + 2

√
(1 − �4)(1 − �2)‖G‖ ‖‖ ⫫ G‖ + (�1 + �2 − 1)‖ ⫫ G‖2) .

Rearranging terms and using the fact that 1 = ‖G‖2 = ‖ ⫫ G‖2 + ‖G‖ ‖2, we have

�(ℳ) ≥ min

G⊥
√
�:‖G‖=1

(1 − �1)‖ ⫫ G‖2 +
(√

1 − �2‖ ⫫ G‖ −
√

1 − �4‖G‖ ‖
)

2

. (6.2)
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By setting @ = ‖ ⫫ G‖ and ? = ‖G‖ ‖, we immediately get

�(ℳ) ≥ min

?2+@2=1

(1 − �1)@2 +
(√

1 − �2@ −
√

1 − �4?
)

2

.

By Lemma 5.3 and the definition of the spectral gap, (1 − �1) ≥ �min and (1 − �4) ≥ �̄. Thus
we have, for any values of @ and ?,

(1 − �1)@2 +
(√

1 − �2@ −
√

1 − �4?
)

2

≥ �min@
2 +

(√
1 − �2@ −

√
1 − �4?

)
2

.

Define 5 (@, ?) = 0@2 + (1@ − 2?)2, where 0, 1, 2 ≥ 0. Assume 2 ≥ 2∗ ≥ 0, and define

5 ′ = 0@2 + (1@ − 2∗?)2. We want to show that

min

@2+?2=1

5 ≥ min

@2+?2=1

5 ′ . (6.3)

If 2∗ = 0 then 5 ′ is minimized at the point (0, 1), and 5 ′(0, 1) = 0 ≤ min@2+?2=1
5 . Thus, we

may assume 2 ≥ 2∗ > 0. If 0 = 0 then min@2+?2=1
5 = min@2+?2=1

(1@ − 2?)2 = 0, since we can

choose ?/@ = 1/2. Similarly, in this case, min@2+?2=1
5 ′ = 0. Hence we may assume 0 > 0.

The minimum of the function 5 with respect to @ and ? =
√

1 − @2
occurs either at the

endpoints @ = 0 or @ = 1, or at the critical point (@∗ , ?∗) satisfying % 5
%@ (@∗ , ?∗) = 0. Note that

5 (0, 1) = 22 ≥ 22

∗ = 5 ′(0, 1) ≥ min@2+?2=1
5 ′, and 5 (1, 0) = 0 + 12 = 5 ′(1, 0) ≥ min@2+?2=1

5 ′. Now

we may assume @, ? > 0.

Now,

% 5

%@
= 20@ + 2(1@ − 2?)

(
1 +

2@

?

)
.

Since 2, @, ? > 0 and 1 ≥ 0, we have 1 + 2@

? > 0. Thus, the point (@∗ , ?∗) satisfies

1@∗ − 2?∗ =
−0@∗
1 + 2@∗

?∗

< 0 ,

since 0, @∗ > 0.

We will now take the derivative of 5 with respect to 2:

% 5

%2
= 2(2? − 1@)? .

Thus,
% 5
%2 (@∗ , ?∗) = 2(2?∗ − 1@∗)?∗ > 0. This implies 5 is increasing with 2 in the neighborhood

around the point (@∗ , ?∗), and so by decreasing 2 by & we will lower the value of min@2+?2=1
5 ;

this is true for every 2 > 0, so we have min@2+?2=1
5 ≥ min@2+?2=1

5 ′. This proves Equation 6.3.

Therefore, we have

�(ℳ) ≥ min

?2+@2=1

�min@
2 +

(
@
√

1 − �2 − ?
√
�̄
)

2

. �
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The statement of Theorem 6.1 is admittedly technical. However, from it we may derive

several corollaries, as listed in Section 4.

To see that Theorem 4.3 follows from Theorem 6.1, we prove that �2 ≥ 1 − 2).

Proof of Theorem 4.3. Recall) = max8 max�∈Ω8

∑
�∈Ω\Ω8

%(�, �). This is the parameter � from [18].

We will now show that �2 ≥ 1 − 2). Notice the probability of a move in �̂ is at least 1 − ),
so every element has a self-loop probability of at least 1 − ) in �̃. Thus, �̃ can be written as

�̃ = )�̃′ + �(1 − )) for some transition matrix �̃′ with minimum eigenvalue −1. This implies

that the minimum eigenvalue of �̃ satisfies �min ≥ 1 − 2). On the other hand, �2 ≥ �min. �

Next we prove Corollary 4.4, which states that � ≥ �min�̄/3. In fact, one can show that the

constant is 1/2 if �min , �̄ ≤ 1/2 or 1 − �2 ≤ 1/2.

Proof of Corollary 4.4. Since the bound in Theorem 4.3 is minimized when �2 is minimized, we

may assume �2 = 0. Thus, � = 1/
√
�̄. We will show that for all ?, @ satisfying ?2 + @2 = 1, we

have

�min@
2 + �̄

(
? − @√

�̄

)
2

≥ �min�̄

3

.

Clearly if @2 ≥ �̄/3, then we are done. So we may assume @2/�̄ < 1/3. Notice that since �̄ ≤ 1,(
? −

@√
�̄

)
2

=

(√
1 − @2 −

@√
�̄

)
2

≥ ©­«
√

1 −
@2

�̄
−

@√
�̄

ª®¬
2

.

As @2/�̄ < 1/3, we have

(√
1 − @2

�̄ −
@√
�̄

)
2

≥ 1

3
− @2

�̄ . Therefore,

�min@
2 + �̄

(
? − @√

�̄

)
2

≥ �min@
2 + �̄

3

− @2

=
�̄

3

− @2(1 − �min)

>
�̄

3

(1 − (1 − �min))

= �min�̄/3 . �

Next, we will show that a variant of Theorem 1 of [18] follows from Theorem 4.3 from this

paper, which is the content of Corollary 4.5. Theorem 4.3 produces slightly improved bounds

over Corollary 4.5 when ) ≈ �̄ � �min.

Proof of Corollary 4.5. We wish to show � ≥ min

{
�̄
3
,
�min �̄
3)+�̄

}
. As �2 ≤ 2)/�̄, it suffices to show

that for all ?2 + @2 = 1,

�min@
2 + �̄(? − �@)2 ≥ min

{
�̄

3

,
�min

1 + 1.5�2

}
.
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If @2 ≥ 1

1+1.5�2
then we are done, so we may assume

1

1+1.5�2
− @2 ≥ 0. Define

51 =
(? − �@)2

1/(1 + 1.5�2) − @2

and 52 =
1/3 − (? − �@)2

@2

.

Notice that �min@
2 + �̄(? − �@)2 ≥ �min

1+1.5�2
if and only if �min/�̄ ≤ 51. On the other hand,

�min@
2 + �̄(? − �@)2 ≥ �̄/3 if and only if �min/�̄ ≥ 52. Thus, it suffices to show 51 ≥ 52 for all

parameter choices. First, notice that since
1

1+1.5�2
− @2 ≥ 0, we have 51 ≥ 52 whenever

1 ≥
(

1

3(? − �@)2 − 1

) (
1

(1 + 1.5�2)@2

− 1

)
.

This is satisfied whenever 3(? − �@)2 ≥ 1 − (1 + 1.5�2)@2
. Expanding and bringing all to the left

hand side shows this is true because (2? − 3�@)2 ≥ 0. �

While we do not currently have a comparison between our Theorem 4.3 and Corollary 2

of [18], which requires a pointwise bound on �
9

8
, we believe that Corollary 2 of [18] is insufficient

for our application to permutations. We expound upon this in Remark 7.5.

7 Application to permutations

In this section, we apply the complementary decomposition theorem, Theorem 1.2, to the

problem of sampling biased permutations. We give the proofs of Theorem 1.3 and Theorem 1.4

which bound the spectral gap of the nearest-neighbor Markov chainℳnn and the :-particle

process Markov chainℳpp, respectively. The section is laid out as follows. In Section 7.1,

we describe the state spaces and stationary distributions ofℳnn andℳpp , and formally give

the definitions of the weakly monotonic property for each chain. Next, in Section 7.2 we give

the proof of Theorem 1.3, and then in Section 7.3 we complete the proof by proving that our

decomposition is &-orthogonal, where & ≤ 1/=2
(Lemma 7.6). Finally, in Section 7.4 we use

comparison techniques [9, 30] to bound the spectral gap ofℳnn (Theorem 1.4) using the bound

on the spectral gap ofℳpp (Theorem 1.3).

7.1 Biased permutations and :-particle processes

We begin by giving the formal definition for the nearest neighbor Markov chainℳnn over biased

permutations. Here we are interested in the problem of sampling from the symmetric group (= ,

the permutations of [=], where we interpret the elements of (= as strings of length = with each

symbol in [=] appearing exactly once. We are given as input a set of probabilities P = {?8 , 9} for
all 1 ≤ 8 , 9 ≤ = with ?8 , 9 = 1 − ? 9 ,8 . Let �(8) denote the element in position 8 of � ∈ (= .

The Nearest Neighbor Markov chainℳnn

Starting at any permutation �0, iterate the following:
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• At time C ≥ 0, choose a position 1 < 8 ≤ = uniformly at random in permutation �C .

• With probability ?�C (8),�C (8−1)/2, exchange the elements �C(8) and �C(8 − 1) to obtain �C+1
.

• Otherwise, do nothing so that �C+1 = �C .

The chainℳnn connects the state space (= and has the following stationary distribution (see,

e. g., [4]):

�nn(�) =
∏

8< 9:�(8)>�(9)

?�(8),�(9)
?�(9),�(8)

/−1

nn
=

∏
8< 9:�(8)>�(9)

@�(8),�(9)/
−1

nn

where /nn is a normalizing constant and @�(8),�(9) =
?�(8),�(9)
?�(9),�(8)

.

Our central question is under what conditions doesℳnn mix in polynomial time. Fill [14]

introduced monotonicity conditions under which he conjecturedℳnn would be rapidly mixing.

In our analysis ofℳnn we use the weakly monotonic condition that appears in [4, 25]:

Definition 7.1 ([4]). The set P is weakly monotonic if properties 1 and either 2 or 3 are satisfied.

1. ?8 , 9 ≥ 1/2 for all 1 ≤ 8 < 9 ≤ =, and

2. ?8 , 9+1 ≥ ?8 , 9 for all 1 ≤ 8 < 9 ≤ = − 1 or

3. ?8−1, 9 ≥ ?8 , 9 for all 2 ≤ 8 < 9 ≤ =.

We consider the special case of :-classes where [=] is partitioned into : classes C1 , C2 , . . . , C: ,
and assume elements in class C8 interact with elements in class C9 with the same probability.

That is, if 81 , 82 ∈ C8 and 91 , 92 ∈ C9 then ?81 , 91 = ?82 , 92 . In this case we define ? 8 , 9 to be this shared

probability for classes C8 and C9 (the bar indicates that we have reindexed the set of probabilities

by the classes) and we say that P forms a k-class. Note that ? 8 ,8 is assumed to be 1/2, so that

ℳnn swaps elements within the same class with probability 1/2. Define P = {? 8 , 9} as the set of
probabilities over pairs of classes C8 and C9 where 8 , 9 ≤ :. In this case, we say P forms a :-class.
When : = =, the :-class assumption does not lose any generality, but this structure allows us to

simplify the problem by considering : < =, as was done in [25, 16].

Define @ 8 , 9 = ? 8 , 9/? 9 ,8 to be the bias towards having a particle of type 8 ahead of a particle of

type 9. We say that P is bounded if there exists a constant @ > 1 such that @ 8 , 9 ≥ @ for all 8 < 9 ≤ :.
The constant @ is called the minimum bias.

The chainℳnn samples over (= using these probabilities, and in particular the order of

elements within each class approaches the uniform distribution. The spectral gap of this uniform

sampling is well-understood andmay be analyzed separately (see Section 7.4). In order to isolate

the biased moves, we define a new Markov chainℳpp that eliminates swaps within each class.

Asℳpp maintains a fixed order on particles within each class, it makes sense to relabel each

element of [=] by the index of the class it is in. That is, we let 28 = |C8 | and we consider a linear

array of length = with 28 particles labeled 8 for each 1 ≤ 8 ≤ :. We call this a :-particle system

for the given set {28}, and the Markov chainℳpp is called a :-particle process. We view the

new state space as the set Ω of :-particle systems for {28}.
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TheMarkov chainℳpp over :-particle systemsalso allows certainnon-adjacent transpositions.

In particular, we let a particle of type 8 and a particle of type 9 swap across particles of type less

than 8 and 9. More formally, the chainℳpp is defined as follows.

The particle process Markov chainℳpp

Starting at any :-particle system �0, iterate the following:

• At time C , choose a position 1 ≤ 8 ≤ = and direction 3 ∈ {!, '} uniformly at random.

• If 3 = !, find the largest 9 less than 8 with �C(9) ≥ �C(8) (if one exists). If �C(9) > �C(8), then
with probability 1/2, exchange �C(8) and �C(9) to obtain �C+1.

• If 3 = ', find the smallest 9 with 9 > 8 and �C(9) ≥ �C(8) (if one exists). If �C(9) > �C(8), then
exchange �C(8) and �C(9) to obtain �C+1

with probability

1

2

@�C (9),�C (8)

∏
8<;< 9

@�C (9),�C (;)@�C (;),�C (8) .

• With all remaining probability, �C+1 = �C .

The chainℳpp connects the space Ω and has the stationary distribution (see, e. g., [4])

�(�) =
∏

8< 9:�(8)>�(9)

?�(8),�(9)

?�(9),�(8)
/−1 =

∏
8< 9:�(8)>�(9)

@�(8),�(9)/
−1

where / is a normalizing constant and @�(8),�(9) =
?�(8),�(9)
?�(9),�(8)

.

We adapt the definition of weakly monotonic to the setting of :-particle systems as follows:

Definition 7.2 ([4]). The set P is weakly monotonic if properties 1 and either 2 or 3 are satisfied.

1. ? 8 , 9 ≥ 1/2 for all 1 ≤ 8 < 9 ≤ :, and

2. ? 8 , 9+1
≥ ? 8 , 9 for all 1 ≤ 8 < 9 ≤ : − 1 or

3. ? 8−1, 9 ≥ ? 8 , 9 for all 2 ≤ 8 < 9 ≤ :.

As in [25], wewill assume that property (2) holds. If instead property (3) holds, then as described

in [25] we would modifyℳpp (andℳT defined below) to allow swaps between elements of

different particle types across elements whose particle types are larger (instead of smaller)

and modify the induction so that at each step �8 restricts the location of particles larger than 8

(instead of smaller).
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Ω0 = Ω�8↓

� ← Ω̃1

�2 = 12_1_2_1_ _

�3 = 1231_2_13_

0 = 3_ _3_

1 = 454

� = 1231425134

Figure 5: The state space Ω�8−1
decomposed, with 8 = 3.

7.2 Details of the decomposition and proof of Theorem 1.3

In this section, we present the proof of Theorem 1.3, which bounds the mixing time of the

particle process chainℳpp.

Theorem 1.3. If the probabilities P are weakly monotonic and form a bounded :-class with

28 ≥ 2# ∗ for all 1 ≤ 8 ≤ :, then the spectral gap � of the chainℳpp satisfies � = Ω(=−2).

Our proof uses the same inductive technique as [25], where at each level of the induction

we fix the locations of particles in one less particle class. Recalling notation from Section 1,

let C<=8 = C ∪ C<8 be the set of particles with type less than or equal to 8 (i. e., particles of

type 1, 2, . . . , 8), and similarly, C>=8 = C ∪ C>8 . For 8 ≥ 0, let �8 represent a fixed location of the

particles in C<=8 (�0 represents no restriction); for example, in Figure 5, we set �2 = 12_1_2_1__,

where “_” represents locations that can be filled with particles in C>=3. We will consider the

chainℳ�8 whose state space Ω�8 is the set of all :-particle systems � where the location of

particles in C<=8 are consistent with �8 . The moves ofℳ�8 are those moves fromℳpp that do not

involve particles in C<=8 . We prove by induction thatℳ�8 has spectral gapΩ(=−2(1−1/=)2(:−2−8))
for all choices of �8 . To be clear, we assume that the spectral gap ofℳ�8 are bounded for all �8
by induction, and then prove our bound on the spectral gap ofℳ�8−1

.

To start, we show that Ω�8−1
is a product space, which is required to apply Theorem 1.2. Let

� consist of all 2-particle systems with 28 = |C8 | particles of type 8 and
∑:
9=8+1

2 9 particles of type

“_”. Let � consist of all : − 8 particle systems with 2 9 = |C9 | particles of type 9 for all 8 + 1 ≤ 9 ≤ :.
For example, using our running example where �2 = 12_1_2_1__, an example 0 ∈ � is _3_3_

and 1 ∈ � is 544. See Figure 5 for an additional example. Our goal is to show that the set of

permutations � consistent with �8−1 on particles in C<8 is in bĳection with �× �. To this end, we

can write � = (0, 1), where 0 ∈ � is the 2-particle system obtained from �8 by removing particles

in C<8 (see Figure 5), as those particles are in a fixed position for all of Ω�8−1
. Next, define 1 ∈ �

to be the restriction of � to particles in C>8 . For the other direction, given any (0, 1) pair, it is
clear that there is a unique � ∈ Ω�8−1

corresponding to that pair. Returning to our example,

given �2 = 12_1_2_1__, 0 = _3_3_, and 1 = 544, then the unique � ∈ Ω�2
is 1251324134.

We next describe the decomposition. Note that the moves ofℳ�8 fix an 0 ∈ � and perform

(91 , 92) transpositions, where 91 , 92 > 8; i. e., they operate exclusively on �. Thus, the Markov

chainℳ�8 is a restriction ofℳ�8−1
with state spaceΩ0 . On the other hand, the remaining moves
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8 _ 8 8 _ 8 _ 8 _ 8 _ 8 8 _

Figure 6: An exclusion process on staircase walks operates by adding or removing a square.

ofℳ�8−1
are (8 , 9) transpositions for 9 > 8. These are the complementary restrictions; these moves

fix a 1 ∈ � and operate on �, so we label the state space of this Markov chain Ω̃1 . As these

moves fix the relative order of all particles in C>8 , the complementary restriction chains can be

seen as a 2-particle process on particles in C8 with particles in C>8 . This process is easily seen as

in bĳection with staircase walks by mapping each particle in C8 to a step right and each particle

in C>8 to a step down, as in Figure 6. In [25], they define a bounded generalized biased exclusion
process as a processes that operate on staircase walks as in Figure 6, where every square has

a different bias but they are all bounded by some @. More formally, an exclusion process is a

process on =1 1’s and =0 0’s which occupy linear positions: 1, . . . , =0 + =1.. The set of all distinct

linear orderings of these particles are called 2-particle systems. In the generalized setting, for a

configuration �, the probability ?�,8 of swapping two particles at position 8 and 8 + 1 can depend

on both the current ordering and the particles being exchanged. The process is bounded if there

exists a constant � > 1 such that for all configurations � if �(8) = 1 and �(8 + 1) = 0 and � is

obtained from � by swapping particles �(8) and �(8 + 1), then ?�,8/?�8 ≥ @. Bounded generalized

biased exclusion processes were analyzed in [25].

Theorem 7.3 ([25]). Letℳex be a bounded generalized exclusion process on =1 1’s and =0 0’s. The
spectral gap ofℳex is Ω((=0=1)−1).

Next we prove the following lemma.

Lemma 7.4. The complementary restrictions at each level of the induction are bounded generalized biased
exclusion processes with spectral gap Ω(=−2).

Proof. Since 1 is fixed, each particle in 1 corresponds to a given row of squares in Figure 6. Each

column in the figure corresponds to a particular element of type 8 in 0. The bias of swapping

an element 8 with a particular “_” depends only on the position of those two elements in the

array �, and not on the relative order of all other elements in C>8−1. In this way, that bias

corresponds to a particular square in Figure 6. Elements in C<8 change the bias of all squares
along a given diagonal in Figure 6. For example, let � = 3243315324 and suppose 8 = 3. Then

0 = 3_33_3_ and 1 = 454. The highlighted square in Figure 6 corresponds to swapping the 3

and 5 in positions 5 and 7, respectively. The probability of making that move is @
5,3@5,1/2@3,1.

Thus, each complementary restriction chain can be viewed as a generalized exclusion process

acting on 0 ∈ �. The minimum bias is @ := min8< 9 @ 8 , 9 , which we have assumed is a constant

bigger than 1. We use the following result from [25].
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Since the probabilities P are weakly monotonic (specifically, they satisfy condition (1) of weak

monotonicity) and bounded, the exclusion process involving the particles in C8 and the particles

in C<8 is a bounded generalized exclusion process and we can apply Theorem 7.3. There are 28
particles of type 8,

∑:
9=8+1

2 9 < = particles of type “_”, and the moves are selected with probability

28/4=. Applying Theorem 7.3 shows that the spectral gap of each complementary restriction

chain is Ω( 28= 1

=28
) = Ω(=−2). �

The chain ℳ�8−1
is not the direct product of the chains on � and � because, e. g., for

(0, 1) ∈ �×�, %((0, 1), (0′, 1)) depends on 1. However, in Section 7.3 we prove Lemma 7.6 which

states that the above decomposition is &-orthogonal where & ≤ 1/=2
.Specifically, Lemma 7.6 says

that if the probabilities P are weakly monotonic and bounded with 28 ≥ 2# ∗ for all 1 ≤ 8 ≤ :,
then at each step of the induction, & ≤ 1/=2

. Here, we use Lemma 7.6 to complete the proof of

Theorem 1.3 which says that if the probabilities P are weakly monotonic and bounded, and

28 ≥ 2# ∗ for 1 ≤ 8 ≤ : then the spectral gap � of the chainℳpp satisfies � = Ω(=−2). Note that

P being weakly monotonic implies that P is as well.

Proof of Theorem 1.3. At each step of the induction, we apply the complementary decomposition

theorem (Theorem 1.2). The restrictions of each decomposition will be rapidly mixing by

induction and the complementary restriction chains are boundedgeneralized exclusionprocesses,

by Lemma 7.4. The base case is 8 = : − 2 and the final decomposition is 8 = 0.

We begin with our base case, 8 = : − 2. Let �:−2 be any fixed location of the particles in

C<=:−2. The Markov chainℳ�:−2
rejects all moves ofℳpp unless they exchange a particle in

C:−1 with a particle in C: , making it a generalized exclusion process. Thus,ℳ�:−2
is a bounded

generalized exclusion process slowed down by a factor of 2:−1/4=, as this is the probability

that these transitions are chosen. By Theorem 7.3 for any such �:−2,ℳ�:−2
has spectral gap

Ω( 2:−1

=
1

=2:−1

) = Ω(=−2).
We assume by induction the mixing time bound holds for all ℳ�8 for some 8 ≤ : − 2,

and we will use this result to prove that our mixing time bound holds for all ℳ�8−1
. Let

�8−1 represent any fixed choice of locations for all particles in C<8 . In order to bound the

spectral gap �(ℳ�8−1
) of the chain ℳ�8−1

we will apply Theorem 1.2. Given any �8 that is
consistent with �8−1 (i. e., they agree on the locations of all particles in C<=8), the Markov chain

ℳ�8 will be a restriction Markov chain ofℳ�8−1
. By induction, we have that the spectral gap

�(ℳ�8 ) = Ω
(
=−2

(
1 − 1

=

)
2(:−2−8))

. Lemma 7.4 shows that the complementary restrictions have

minimum gap Ω(=−2). By Lemma 7.6, we know that the decomposition is &-orthogonal, with

& ≤ 1/=2
. Combining these with Theorem 1.2 implies �(ℳ�8−1

) = Ω

(
=−2

(
1 − 1

=

)
2(:−2−8)+2

)
.

Substituting 8 = 0 gives the desired theorem

�(ℳpp) = Ω
(
=−2

(
1 − 1

=

)
2:−2

)
= Ω

(
=−2

(
1 − 1

=

)=)
= Ω

(
=−2

)
. �
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Remark 7.5. It is worth pointing out that this decomposition ofℳ�8−1
does not satisfy the

regularity conditions of [18] needed to obtain a better bound. For any  ∈ Ω9 , define

�
9′

9
( ) = � 9( )

∑
 ′∈Ω9′ %( ,  

′)

%̄(9 , 9′)
.

We need to bound �
9′

9
( )/� 9( ) for any 9 , 9′, and  ∈ Ω9 . For example, let �2 = 12_11111_2_1_ _

and �3 = 12311111_231_ _. Notice that the two permutations  1 = 12311111423156 and

 2 = 12311111523146 are in the same restriction Ω9 (i. e., they are both consistent with �3).

They each have a single move to Ω9′: the move of swapping the first 3 with the 4 (in the case

of  1) or 5 (in the case of  2). However, the probability of these moves differ by a factor of

(@
4,3/@5,3)(@4,1/@5,1)5 , as there are five 1’s between them. In principle, there could be order =

smaller numbers between the two numbers we are swapping. Thus, �
9′

9
( )/� 9( ) cannot be

uniformly bounded to within 1 ± � unless � is exponentially large.

7.3 Bounding the orthogonality of the decomposition.

In order to complete the proof of Theorem 1.3, it remains to prove Lemma 7.6, which states that

at each step of the induction, the value of & is bounded by 1/=2
.

Lemma 7.6. If the probabilities P are weakly monotonic and bounded with 28 ≥ 2# ∗ for all 1 ≤ 8 ≤ :,
then at each step of the induction the quantity & defined in equation (1.1) satisfies & ≤ 1/=2.

Before proceeding with the proof, recall that the chain ℳ�8−1
is not the direct product

of the chains on � and � because, e. g., for (0, 1) ∈ � × �, %((0, 1), (0′, 1)) depends on 1.

However, we show that the decomposition given in Section 7.2 is 1/=2
-orthogonal by bounding

A(0, 1) = �(0, 1)/(�(0)�(1)). Recall that at each step of the induction, 0 is a 2-particle system

obtained from �8 by removing all particles in C<8 , 28 = |C8 |, and there are

∑:
9=8+1

2 9 particles of

type “_”. Also recall that 1 is the (: − 8)-particle system consisting of the particles in C>8 , and the

location of the particles in C<8−1 are fixed throughout this step of the induction (see Figure 5).

We define 0 to be “good” when it has fewer than # ∗ = �@ log = inversions; otherwise 0

is “bad.” Similarly, we define 1 to be “good” when it has fewer than # ∗ inversions involving
particles in C8+1; otherwise it is “bad.” Thus, as |C8+1 | ≥ 2# ∗, (0, 1) has no inversions between 8

and 9 for 9 > 8 + 1 when 0 and 1 are both good. For such pairs, A(0, 1) is very close to 1. We will

show that almost all weight contributing to � comes from pairs (0, 1)where 0 and 1 are good.

For all other pairs we show A(0, 1)�(Ω0 ∩ Ω̃1) is small.

By viewing 1 as a staircase walk on C8+1 and C>8+1, we see that for either 0 or 1, the probability

it is bad is smaller than the weighted sum of all biased exclusion processes with more than # ∗

inversions (equivalently, area # ∗ under the curve). We start with the following lemma.

Lemma 7.7. For any biased exclusion process with minimum bias constant @ > 1, the total weight of
staircase walks with area larger than # ∗ satisfies∑

�:#(�)≥#∗
@−#(�) ≤ 1

6=2

.
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Proof. The number of staircase walks with area # under the curve is precisely the partition

number ?(#). By a theorem of Erdős [12], ?(#) < e
�
√

2#/3
, and as e

�
√

2/3 < 14, we have

?(#) < 14

√
#
. We can use this bound on ?(#) to bound the weight of a set of staircase walks,

where each inversion contributes a factor of 1/@ to the weight of the staircase walk (recall

@ := min8< 9 @ 8 , 9). Define

# ∗ = max

{
log(6=2) + log((1 + @)/(@ − 1))

log((1 + @)/2) ,
log

2(14)
log

2(2@/(1 + @))

}
= Θ(log =) .

Let #(�) be the number of inversions in a particular staircase walk �. For all # ≥ log
2(14)

log(2@/(1+@)) ,

we have 14

√
# @−# ≤ (2/(1 + @))# . Therefore∑

�:#(�)≥#∗
@−#(�) ≤

∑
#≥#∗

?(#)@−# ≤
∑
#≥#∗

14

√
# @−# ≤

∑
#≥#∗

(
2

1 + @

)#
=

(
2

1 + @

)#∗
1

1 − 2

1+@
≤ 1

6=2

by the choice of # ∗. �

7.3.1 High-level summary

We are now ready to use Lemma 7.7 to prove that & ≤ 1/=2
. For improved readability, we

illustrate the main ideas of the proof here in the simplified : = 3 case before proving Lemma 7.6.

In this case, there is no recursion but instead just a single application of the decomposition

theorem. The restriction chains ofℳ =ℳ�0
are the set {ℳ�1

}, which fix all elements in class

C1. The stationary distribution ofℳ is

�(�) = /−1

∏
8< 9:

�(8)>�(9)

@�(8),�(9) , (7.1)

where / is a normalizing constant.

Let F(0) and F(1) be the parts of this product that depend only on 0 and only on 1,

respectively, and let F(0, 1) be a correction factor that depends on both 0 and 1. Let C1,3
(respectively, C1,2 and C2,3) denote the number of inversions in � between a 1 and a 3 (respectively

a 1 and a 2 and a 2 and a 3). For example, let � = 111221312323, which has stationary probability

/−1(@
1,2)4(@2,3)3(@1,3). Then 0 = 111_ _1_1_ _ _ _ 1 = 2232323. From 1 we find that C2,3 = 3

and F(1) = (@
2,3)3; more generally, define F(1) to be the product (@

2,3)C2,3 . From 0, we can see

that there are five inversions involving 1, but the number of those that are inversions with a 3

versus a 2 depends on 1 as well. Ignoring this for a moment, we define F(0) to be the product

(@
1,2)C1,2+C1,3 . In our example, F(0) = (@

1,2)5. Since we have made the false assumption that there

were no inversions between a 1 and a 3 in �, we need a correction factor F(0, 1) = (@
1,3/@1,2)C1,3 .

With these definitions, it is clear that �(�) = /−1F(0)F(1)F(0, 1).
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A key idea in the proof of Lemma 7.6 is that if 0 and 1 are both good, then C1,3 = 0—indeed,

the total number of inversions is less than 2# ∗ and the number of 2’s is at least 2# ∗—and thus

the correction factor satisfies F(0, 1) = 1, implying �(0, 1) ≈ �(0)�(1). Moreover, the probability

that 0 or 1 is bad is very small, so these pairs (0, 1) do not contribute much to the sum in

equation (1.1).

7.3.2 Proof of Lemma 7.6

We may now prove Lemma 7.6 in its full generality.

Proof of Lemma 7.6. Assume that at this step in the induction, all particles in C<8 are fixed in the

same position in all :-particle systems according to some �8−1. The stationary distribution of the

chainℳ�8−1
is

��8−1
(�) =

∏
8< 9:�(8)>�(9)

@�(8),�(9)/
−1

�8−1

where/�8−1
is the normalizing constant

∑
�∈Ω�8−1

�(�), the setΩ�8−1
contains the :-particle systems

consistent with �8−1 , and @�(8),�(9) =
?�(9),�(8)
?�(9),�(8)

. For ease of notation, throughout the remainder of

this section we will let � = ��8−1
and / = /�8−1

.

Let 0∗ and 1∗ be the highest weight elements in � and �, respectively. Using these definitions,

the :-particle system (0∗ , 1∗) has the particles in C<8 fixed according to �8−1 and all other

higher particles in sorted order. In our example, 1∗ = 445, (0, 1∗) = 1231423145, 0∗ = 33_ _ _,

(0∗ , 1) = 1231324154, and (0∗ , 1∗) = 1231324145.

Next, we will decompose the product over inversions in equation (7.1) into several quantities.

Notice that �(0∗ , 1∗) is the product over inversions that are in every � ∈ Ω, normalized by /�8−1
.

Define F(0) = �(0, 1∗)/�(0∗ , 1∗). This is the product over inversions that are in every � ∈ Ω0

that are not in every � ∈ Ω. Similarly, F(1) = �(0∗ , 1)/�(0∗ , 1∗) is the product over inversions in
every � ∈ Ω̃1 , and F(0, 1) = �(0, 1)�(0∗ , 1∗)/(�(0, 1∗)�(0∗ , 1)) is the product over inversions in
� = (0, 1) beyond those that are required by being in Ω0 and Ω̃1 . From these definitions, it is

clear that �(0, 1) = F(0)F(1)F(0, 1)�(0∗ , 1∗).We will prove in the following lemma that if both

0 and 1 are good then F(0, 1) = 1; i. e., that the weight of (0, 1) is determined entirely by being

in Ω0 and Ω̃1 .

Lemma 7.8. If 0 and 1 are both good then F(0, 1) = 1.

Proof. From the definitions, it is sufficient to show that �(0, 1) = �(0, 1∗)�(0∗ , 1)/�(0∗ , 1∗). First
consider the inversions (9 , ;) for 9 , ; < 8. These are present in every term—�(0, 1), �(0, 1∗),
�(0∗ , 1), and �(0∗ , 1∗)—and thus cancel. The inversions (8 + 1, 8) are exactly the same in �(0, 1)
and �(0, 1∗), and there are none in �(0∗ , 1), and �(0∗ , 1∗); thus these also cancel. Similarly,

inversions (9 , ;) for 9 ≥ 8 + 1, ; ≥ 8 are exactly the same in �(0, 1) and �(0∗ , 1), and there are none

in �(0, 1∗), and �(0∗ , 1∗); thus these cancel. Next consider the inversions (9 , ;) for 9 > 8 + 1, ; < 8.

Since there are no (9 , 8) inversions, these are the same in �(0, 1) and �(0∗ , 1) and the same in
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�(0∗ , 1∗) and �(0, 1∗). Similarly, the (8 , 9) for 9 < 8 inversions are the same in �(0∗ , 1) and �(0∗ , 1∗)
and the same in �(0, 1) and �(0, 1∗).

Finally, the (8 + 1, 9) for 9 < 8 inversions are the most complicated. Assume the particles in

C8+1 are numbered and in order in all 4 :-particle systems. Consider any particular particle in

C8+1 and look at its position in �(0, 1). If it is to the left of any particle in C8 (i. e., it is involved
in an (8 + 1, 8) inversion) then it must come before all particles in C>8+1 and it will be in the

same position in �(0, 1) and �(0, 1∗) and the same positions (which may be different positions)

in �(0∗ , 1) and �(0∗ , 1∗); thus any (8 + 1, 9) inversions will cancel. If not, then it comes after all

particles in C8 and it will be in the same position in �(0, 1) and �(0∗ , 1) and again the same

positions in �(0, 1∗) and �(0∗ , 1∗).
As there are no (9 , 8) inversions for 9 > 8 + 1, we conclude that F(0, 1) = 1 when 0 and 1 are

good. �

Next, define /� =
∑
0 F(0), /� =

∑
1 F(1), and &1 = 1/6=2

. We show that

∑
0 bad

F(0) ≤ &1

and

∑
1 bad

F(1) ≤ &1//�. Thus, we find /� ≈
∑
0 good

F(0) and /� ≈
∑
1 good

F(1), andmoreover

/ =
∑
0,1 F(0)F(1)F(0, 1) ≈ /�/� .We show that when 0 and 1 are both good, �(0) ≈ F(0)/�//

and �(1) ≈ F(1)/�//. Thus, when 0 and 1 are both good, A(0, 1) = �(0,1)
�(0)�(1) ≈

/
/�/�

≈ 1.

Let /
,>>3
�

=
∑
0 good F(0) be the sum /� restricted to only good configurations 0 and

/
,>>3
�

=
∑
1 good F(1) be the sum /� restricted to only good configurations 1. By Lemma 7.7, this

is a bound on the total weight of staircase walks with area more than # ∗ under the curve. We

will use this to bound the weight of the bad 0’s contributing to /� and the weight of the bad 1’s

contributing to /�. Specifically, we will prove the following lemma.

Lemma 7.9.

1. /� − /,>>3
�

=
∑
0 bad F(0) ≤ &1 and /� − /,>>3

�
=

∑
1 bad F(1) ≤ &1/� .

2. For all 0, 1 we have �(0) ≤ F(0)�(0∗ , 1∗)/� and �(1) ≤ F(1)�(0∗ , 1∗)/�.

3. For good 0 and good 1 we have �(0) ≥ F(0)�(0∗ , 1∗)/,>>3
�

and �(1) ≥ F(1)�(0∗ , 1∗)/,>>3
�

.

4. For all 1 we have �(1) ≥ F(1)�(0∗ , 1∗)F(0∗ , 1).

Proof. Part (1.) Recall that F(0) = �(0, 1∗)/�(0∗ , 1∗). Both :-particle systems (0, 1∗) and (0∗ , 1∗)
have the same inversions (9 , ;) for 9 , ; < 8, so when we consider the ratio F(0), this contains the
(8 , 9) for 9 > 8 inversions and the (9 , ;) for 9 ≥ 8 , ; < 8 inversions. Since there are no (8 , 9) for 9 > 8

inversions in (0∗ , 1∗), and the weight of the (9 , ;) for 9 ≥ 8 , ; < 8 inversions is less in (0, 1∗) than it

is in (0∗ , 1∗), we have

/� − /,>>3
�

=
∑
0 bad

F(0) ≤
∑
0 bad

∏
9<;:0(9)>8
0(;)=8

@0(9),8 ≤
∑
0 bad

∏
9<;:0(9)>8
0(;)=8

@8+1,8 ≤ &1 .

The last two steps follow from P being weakly monotonic and from Lemma 7.7, respectively.
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Next, we consider /� − /,>>3
�

and recall that F(1) = �(0∗ , 1)/�(0∗ , 1∗). The two :-particle

systems (0∗ , 1) and (0∗ , 1∗) have the same inversions (9 , ;) for 9 , ; ≤ 8. When considering the

ratio F(1), there are several types of inversions remaining. There are the (9 , ;) for 9 , ; > 8 + 1

inversions, which arise due to the order of the particles in C>=8+2. We will represent these �8+2.

Additionally, there are the inversions (9 , 8 + 1) for 9 > 8 + 1, of which there are at least # ∗ if 1
is bad, and the (9 , ;) for 9 ≥ 8 + 1, ; ≤ 8 inversions, which are maximized in �∗

8+2
, which we will

define as the highest weight configurations consistent with �8−1 and �8+2. In other words, �∗
8+2

is

the configuration that has the particles in C<8 ordered according to �8−1, the particles in C8 as far
forward as possible, then the particles in C8+1 again as far forward as possible, and finally the

particles in C>8+1 in the remaining positions ordered according to the (: − 8 − 1)-particle system
�8+2. Given these definitions, we have the following:

/� − /,>>3
�

=
∑
1 bad

F(1) =
∑
�8+2

F(�∗8+2
)

∑
�-(8+1, 9:9>8+1, bad)

F(1)/F(�∗8+2
)

≤
∑
�8+2

F(�∗8+2
)

∑
�-(8+1, 9:9>8+1, bad)

∏
9<;:0(9)>8+1

0(;)=8+1

@0(9),8+1

≤
∑
�8+2

F(�∗8+2
)

∑
�-(8+1, 9:9>8+1, bad)

∏
9<;:0(9)>8+1

0(;)=8+1

@8+2,8+1

≤
∑
�8+2

F(�∗8+2
)&1 ≤ &1/� ,

where �-(8 + 1, 9 : 9 > 8 + 1, bad) is an exclusion process (2-particle system) with more than # ∗

inversions; one particle in this process is C8+1 and the other is the elements of C>8+1 with more

than # ∗ inversions. In other words, we are dividing the (: − 8)-particle system 1 based on the

location of the particles in C8+1.

Part (2.) Both of these bounds are straightforward from the definitions. For all 0 we have the

following:

�(0) =
∑
1′

�(0, 1′) =
∑
1′

F(0)F(1′)F(0, 1′)�(0∗ , 1∗) ≤ F(0)�(0∗ , 1∗)
∑
1′

F(1′) = F(0)�(0∗ , 1∗)/� .

Similarly, for all 1 we have the following:

�(1) =
∑
0′

�(1, 0′) =
∑
0′
F(0′)F(1)F(0′, 1)�(0∗ , 1∗) ≤ F(1)�(0∗ , 1∗)

∑
0′
F(0′) = F(1)�(0∗ , 1∗)/� .

Part (3.) Next, we give a lower bound on �(0) and �(1) for good 0 and good 1. Using the
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property that if 0 and 1 are both good then F(0, 1) = 1, we have the following bound for good 0:

�(0) =
∑
1′

�(0, 1′) =
∑
1′

F(0)F(1′)F(0, 1′)

≥ F(0)�(0∗ , 1∗)
∑

1′ good

F(1′)F(0, 1′)

= F(0)�(0∗ , 1∗)
∑

1′ good

F(1′) = F(0)�(0∗ , 1∗)/,>>3
�

.

For good 1 we have a similar lower bound:

�(1) =
∑
0′

�(0′, 1) =
∑
0′
F(0′)F(1)F(0′, 1)�(0∗ , 1∗)

≥ F(1)�(0∗ , 1∗)
∑

0′ good

F(0′)F(0′, 1)

= F(1)�(0∗ , 1∗)
∑

0′ good

F(0′) = F(1)�(0∗ , 1∗)/,>>3
�

.

Part (4.) Finally, we prove a weaker lower bound on 1 that holds for all 1:

�(1) =
∑
0′

�(0′, 1) =
∑
0′
F(0′)F(1)F(0′, 1)�(0∗ , 1∗)

= F(1)�(0∗ , 1∗)
∑
0

F(0)F(0, 1)

≥ F(1)�(0∗ , 1∗)F(0∗)F(0∗ , 1) = F(1)�(0∗ , 1∗)F(0∗ , 1). �

Returning to the proof of Lemma 7.6, we start by assuming both 0 and 1 are good. We will

handle the case where either 0 or 1 is bad next. Recall from Lemma 7.8 that if 0 and 1 are both

good then F(0, 1) = 1. Then, by parts (3) and (1) of Lemma 7.9, we have

A(0, 1) = �(0, 1)
�(0)�(1) =

F(0)F(1)�(0∗ , 1∗)
�(0)�(1)

≤ F(0)F(1)�(0∗ , 1∗)
(F(0)�(0∗ , 1∗)/,>>3

�
)(F(1)�(0∗1∗)/,>>3

�
)

=
1

�(0∗ , 1∗)/,>>3
�

/
,>>3
�

≤
(

1

(1 − &1)2

)
1

/�/��(0∗ , 1∗)
≤ 1

(1 − &1)2
.

The last step uses the following lower bound on /�/��(0∗ , 1∗).

/�/��(0∗ , 1∗) =
∑
(0,1)

F(0)F(1)�(0∗ , 1∗) >
∑
(0,1)

F(0)F(1)F(0, 1)�(0∗ , 1∗) =
∑
(0,1)

�(0, 1) = 1 .

THEORY OF COMPUTING, Volume 21 (3), 2025, pp. 1–41 32

http://dx.doi.org/10.4086/toc


ITERATED DECOMPOSITION OF BIASED PERMUTATIONS VIA SPECTRAL GAP OF MARKOV CHAINS

From part (2) of Lemma 7.9 we have the following lower bound when 0 and 1 are both good:

A(0, 1) = �(0, 1)
�(0)�(1) =

F(0)F(1)�(0∗ , 1∗)
�(0)�(1)

≥ F(0)F(1)�(0∗ , 1∗)
(F(0)�(0∗ , 1∗)/�) (F(1)�(0∗ , 1∗)/�)

=
1

/�/��(0∗ , 1∗)
≥ (1 − &1)2.

In the last step we upper bound /�/��(0∗ , 1∗) as follows using part (1) of Lemma 7.9:

/�/��(0∗ , 1∗) ≤
/
,>>3
�

/
,>>3
�

�(0∗ , 1∗)
(1 − &1)2

=
∑
0 good,

1 good

F(0)F(1)�(0∗ , 1∗)
(1 − &1)2

<
∑
(0,1)

�(0, 1)
(1 − &1)2

=
1

(1 − &1)2
.

In order to apply Lemma 5.4, we need to bound the quantity

∑
(0,1) �(0, 1)

(√
A(0, 1) − 1√

A(0,1)

)
2

.

There are two cases depending on whether A(0, 1) ≤ 1, but either way we have(√
A(0, 1) − 1√

A(0, 1)

)
2

≤
(

1

1 − &1

− (1 − &1)
)

2

≤ 5&2

1
,

as long as &1 ≤ .191 (this is true since &1 ≤ 1/(6=2) and = ≥ 2). Therefore∑
0 good,

1 good

�(0, 1)
(√
A(0, 1) − 1√

A(0, 1)

)
2

≤ 5&2

1
.

Next, we address the case where at least one of 0 or 1 is bad. In this case, we will show

that the weight of these configurations is so small that it overcomes the fact that F(0, 1) and

A(0, 1) may be exponentially small. If A(0, 1) ≤ 1 then �(0, 1)
(√
A(0, 1) − 1√

A(0,1)

)
2

≤ �(0)�(1).

Otherwise, �(0, 1)
(√
A(0, 1) − 1√

A(0,1)

)
2

≤ �(0,1)2
�(0)�(1) . Either way,

�(0, 1)
(√
A(0, 1) − 1√

A(0, 1)

)
2

≤ �(0)�(1) + �(0, 1)2
�(0)�(1) .

In order to upper bound
�(0,1)2
�(0)�(1) , we will bound the conditional probabilities �(0, 1)/�(0) for

good 0 and �(0, 1)/�(1) for all 1. Using part (3) of Lemma 7.9 we have for 0 good:

�(0, 1)
�(0) ≤

F(0)F(1)F(0, 1)�(0∗ , 1∗)
F(0)�(0∗ , 1∗)/,>>3

�

≤ F(1)
/
,>>3
�

.
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Using part (4) of Lemma 7.9 we have for all 1:

�(0, 1)
�(1) ≤

F(0)F(1)F(0, 1)�(0∗ , 1∗)
F(1)F(0∗ , 1)�(0∗ , 1∗) ≤ F(0) .

Nowwe may use these facts to bound

∑
0,1

�(0,1)2
�(0)�(1) for bad 0 and all 1 using part (1) of Lemma 7.9:∑

0 bad,1

�(0, 1)2
�(0)�(1) ≤

∑
0 bad,1

�(0, 1)
�(0) F(0)

=
∑
0 bad

F(0)
∑
1 �(0, 1)
�(0)

=
∑
0 bad

F(0) ≤ &1.

Similarly, we bound

∑
0,1

�(0,1)2
�(0)�(1) for good 0 and bad 1 using part (1) of Lemma 7.9.∑
0 good,1 bad

�(0, 1)2
�(0)�(1) ≤

∑
0 good,1 bad

�(0, 1)
�(1)

F(1)
/
,>>3
�

≤
∑
1 bad

F(1)
/
,>>3
�

=
/� − /,>>3

�

/
,>>3
�

≤ &1

1 − &1

.

We continue our analysis of the case where at least one of 0 or 1 is bad and bound∑
0,1 �(0)�(1). Notice that the summations over 0 and 1 are separable, so we have the following:∑

0 bad,1

�(0)�(1) = Pr(0 bad)

and ∑
1 bad,0

�(0)�(1) = Pr(1 bad).

We may bound these probabilities via the following inequalities.

/��(0∗ , 1∗) ≤
/
,>>3
�

/
,>>3
�

�(0∗ , 1∗)
(1 − &1)

=
1

(1 − &1)
∑
0 good,

1 good

F(0)F(1)�(0∗ , 1∗) < 1

1 − &1

.
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Similarly, we have /��(0∗ , 1∗) ≤ 1/(1 − &1). Using part (2) of Lemma 7.9, this implies that

Pr(0 bad) =
∑
0 bad

�(0) ≤
∑
0 bad

F(0)�(0∗ , 1∗)/� ≤
∑
0 bad

F(0)
1 − &1

≤ &1

1 − &1

.

We also have Pr(1 bad) ≤ &1/(1 − &1). Thus when at least one of 0 and 1 is bad we have∑
0,1

�(0, 1)
(√
A(0, 1) − 1√

A(0, 1)

)
2

≤
∑
0,1

(
�(0)�(1) + �(0, 1)2

�(0)�(1)

)
≤ &1 +

3&1

1 − &1

.

Putting both cases together, we have∑
0,1

�(0, 1)
(√
A(0, 1) − 1√

A(0, 1)

)
2

≤ 5&2

1
+ &1 +

3&1

1 − &1

≤ 6&1 = 1/=2 ,

as long as &1 ≤ .225, which is true since = ≥ 2. Thus, this decomposition is &-orthogonal, where

& ≤ 1/=2
This completes the proof of Lemma 7.6. �

7.4 The Markov chainℳnn

Here we give the details to show how we can use Theorem 1.3, which gives a lower bound on

the spectral gap of the particle process Markov chainℳpp, to obtain an upper bound on the

mixing time of the nearest-neighbor Markov chainℳnn.

First, we begin with some preliminaries on Markov chains and mixing times. The time a

Markov chain takes to converge to its stationary distribution, or mixing time, is measured in

terms of the distance between the distribution at time C and the stationary distribution �. The
total variation distance at time C is ‖%C ,�‖CE = maxG∈Ω

1

2

∑
H∈Ω |%C(G, H) − �(H)|, where %C(G, H) is

the C-step transition probability, and Ω is the state space of the Markov chain. For all & > 0, the

mixing time �(&) ofℳ is defined as

�(&) = min{C : ‖%C′ ,�‖CE ≤ &,∀C′ ≥ C} .

In order to use the lower bound on the spectral gap to obtain an upper bound on the

mixing time we will use the following well-known result. Again, let �(%) = 1 − |�1 | denote
the spectral gap, where �0 ,�1 , . . . ,�|Ω|−1

are the eigenvalues of the transition matrix % and

1 = �0 > |�1 | ≥ |�8 | for all 8 ≥ 2. The following result relates the spectral gap with the mixing

time (see, e. g., [33],[29]):

Theorem 7.10 ([29]). Let �∗ = minG∈Ω �(G). For all & > 0 we have

(0) �(&) ≤ 1

�(%) log

(
1

�∗&

)
.

.(1) �(&) ≥ |�1 |
2�(%) log

(
1

2&

)
.

THEORY OF COMPUTING, Volume 21 (3), 2025, pp. 1–41 35

http://dx.doi.org/10.4086/toc


SARAH MIRACLE, AMANDA PASCOE STREIB, AND NOAH STREIB

We also require the following comparison theorem from [9]. Let %′ and % be two reversible

Markov chains on the same state space Ω with the same stationary distribution � and let

�(%) = {(G, H) : %(G, H) > 0} and �(%′) = {(G, H) : %′(G, H) > 0} denote the sets of edges of the
two chains, viewed as directed graphs. For each G, H with %′(G, H) > 0, define a path �GH using a

sequence of states G = G0 , G1 , · · · , G: = H with %(G8 , G8+1) > 0, and let |�GH | denote the length of

the path. Let Γ(I, F) = {(G, H) ∈ �(%′) : (I, F) ∈ �GH} be the set of paths that use the transition
(I, F) of %. Finally, define

� = max

(I,F)∈�(%)


1

�(I)%(I, F)
∑
Γ(I,F)

|�GH |�(G)%′(G, H)
 . (7.2)

Theorem 7.11 ([9]). With the above notation, �(%) ≥ 1

��(%′).

Now we may prove Theorem 1.4.

Proof of Theorem 1.4. Given our improved bound on the spectral gap ofℳpp from Theorem 1.3,

the remainder of this proof uses exactly the sameapproach as [25], except thatweuseCorollary 3.1

to eliminate one factor of =. We include a summary here for completeness. The complete details

can be found in [25]. Instead of analyzingℳnn directly we will analyze an auxiliary chainℳT

that allows a larger set of transpositions (including those allowed byℳpp) and then use the

comparison theorem, Theorem 7.11, to obtain a bound forℳnn. In what follows, we write �(G)
to mean the index of the class containing element G ∈ [=], so if G ∈ �8 then �(G) = 8.

The Transposition Markov chainℳT

Starting at any permutation �0, iterate the following:

• At time C ≥ 0, choose a position 1 ≤ 8 ≤ = in permutation �C and a direction 3 ∈ {!, ', #}
uniformly at random.

• If 3 = !, find the largest 9 with 1 ≤ 9 < 8 and �(�C(9)) ≥ �(�C(8)) (if one exists). If

�(�C(9)) > �(�C(8)), then with probability 1/2, exchange �C(8) and �C(9) to obtain �C+1.

• If 3 = ', find the smallest 9 with = ≥ 9 > 8 and �(�C(9)) ≥ �(�C(8)) (if one exists). If

�(�C(9)) > �(�C(8)), then with probability

1

2

@�C (9),�C (8)
∏
8<:< 9

(
@�C (9),�C (:)@�C (:),�C (8)

)
,

exchange �C(8) and �C(9) to obtain �C+1.

• If 3 = #, find the largest 9 with 1 ≤ 9 < 8 and �(�C(9)) = �(�C(8)). If such an element exists,

then with probability 1/2, exchange the elements �C(8) and �C(9) to obtain �C+1.

• With all remaining probability, �C+1 = �C .
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The Markov chainℳT has the same stationary distribution asℳnn and is a product of : + 1

independent Markov chains [25]. The first : chains involve moves between particles in the

same class and the 8th is an unbiased nearest-neighbor Markov chain over permutations on 28
particles. This chain has spectral gap Θ(2−3

8
). (This is an unpublished result of Diaconis. See,

e. g., [35].)

Lemma 7.12 (Diaconis). The spectral gap of the unbiased nearest neighbor Markov chain over
permutations on [=] is (1 − cos(�/=))/(= − 1) = Θ(=−3).

However, the chainℳT updates one of the first : chains only if direction # is selected, which

happens with probability 28/(6=) for each particle class 1 ≤ 8 ≤ :. Thus, the spectral gap of the

slowed-down version of this chain is Θ(1/(=22

8
)). The final chainℳpp which we analyzed in

Section 7 allows only moves between different particle classes; it is updated when direction

! or ' is selected (i. e., with probability 2/3), so, by Theorem 1.3, it has spectral gap Ω(=−2).
Therefore, by Corollary 3.1, the spectral gap ofℳT is Ω(=−3).

The final step is to relate the spectral gap ofℳnn to that ofℳT using the comparison theorem

of [9], Theorem 7.11. Section 5 of [25] proves the following lemma where � is defined as in

equation (7.2).

Lemma 7.13 ([25]). If the probabilities P are weakly monotonic and form a bounded :-class for : ≥ 2,
then � = $(=4).

Combining Lemma 7.13 and Theorem 7.11 with our bound on the gap ofℳT, we get �(ℳnn) =
Ω(=−7). �

Finally, we may bound the mixing time ofℳnn.

Theorem 7.14. If the probability array P is weakly monotonic and forms a bounded :-class for : ≥ 2,
with |�8 | ≥ 2# ∗, then the mixing time �nn ofℳnn satisfies �nn = $(=9

ln(1/&)).

Proof. Finally, to get the mixing time ofℳnn, we let @∗ = max8< 9 @8 , 9 then �∗ = minG∈Ω �nn(G) ≥
(@(

=
2
)
∗ =!)−1

(see [4] and [25] for more details), so log(1/&�∗) = $(=2
ln &−1) since @ is bounded from

above by a positive constant (all ?8 , 9 are constant with respect to =). Applying Theorem 7.10(a)

we have that the mixing time ofℳnn is $(=9
ln &−1). This proves Theorem 7.14. �
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