Iterated Decomposition of Biased Permutations Via New Bounds on the Spectral Gap of Markov Chains
by Sarah Miracle, Amanda Pascoe Streib, and Noah Streib
Theory of Computing, Volume 21(3), pp. 1-41, 2025
Bibliography with links to cited articles
[1] David Aldous: Random walk on finite groups and rapidly mixing Markov chains. In Séminaire de Probabilités XVII, pp. 243–297. Springer, 1983. [doi:10.1007/BFb0068322]
[2] Dave Bayer and Persi Diaconis: Trailing the dovetail shuffle to its lair. Ann. Appl. Probab., 2(2):294–313, 1992. [doi:10.1214/aoap/1177005705]
[3] Itai Benjamini, Noam Berger, Christopher Hoffman, and Elchanan Mossel: Mixing times of the biased card shuffling and the asymmetric exclusion process. Trans. AMS, 357(8):3013–3029, 2005. [doi:10.1090/S0002-9947-05-03610-X]
[4] Prateek Bhakta, Sarah Miracle, Dana Randall, and Amanda Pascoe Streib: Mixing times of Markov chains for self-organizing lists and biased permutations. Random Struct. Algor., 61(4):638–665, 2022. Preliminary version in SODA’13. [doi:10.1002/rsa.21082]
[5] Flavio Chierichetti, Anirban Dasgupta, Ravi Kumar, and Silvio Lattanzi: On reconstructing a hidden permutation. In Proc. 18th Internat. Workshop on Randomization and Computation (RANDOM’14), pp. 604–617. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014. [doi:10.4230/LIPIcs.APPROX-RANDOM.2014.604]
[6] Colin Cooper, Martin Dyer, Alan Frieze, and Rachel Rue: Mixing properties of the Swendsen–Wang process on the complete graph and narrow grids. J. Math. Phys., 41(3):1499–1527, 2000. [doi:10.1063/1.533194]
[7] Nicolas Destainville: Bounding spectral gaps of Markov chains: A novel exact multi-decomposition technique. J. Phys. A: Math. Theoret., 36(13):3647–3670, 2003. [doi:10.1088/0305-4470/36/13/301]
[8] Persi Diaconis and Laurent Saloff-Coste: Comparison techniques for random walk on finite groups. Ann. Appl. Probab., 21(4):2131–2156, 1993. [doi:10.1214/AOP/1176989013]
[9] Persi Diaconis and Laurent Saloff-Coste: Comparison theorems for reversible Markov chains. Ann. Appl. Probab., 3(3):696–730, 1993. [doi:10.1214/AOAP/1177005359]
[10] Persi Diaconis and Mehrdad Shahshahani: Generating a random permutation with random transpositions. Probab. Theory Relat. Fields, 57(2):159–179, 1981. [doi:10.1007/BF00535487]
[11] Jian Ding, Eyal Lubetzky, and Yuval Peres: Mixing time of critical Ising model on trees is polynomial in the height. Comm. Math. Phys., 295(1):161–207, 2010. [doi:10.1007/s00220-009-0978-y]
[12] Paul Erdős: On an elementary proof of some asymptotic formulas in the theory of partitions. Ann. Math., 43(3):437–450, 1942. [doi:10.2307/1968802]
[13] Péter L. Erdős, István Miklós, and Zoltán Toroczkai: New classes of degree sequences with fast mixing swap Markov chain sampling. Combin. Probab. Comput., 27(2):186–207, 2018. [doi:10.1017/S0963548317000499]
[14] James Allen Fill: An interesting spectral gap problem, from Jim Fill. Unpublished manuscript, 2003, posted on arXiv in 2025. [arXiv:2508.12557]
[15] Robert Grone, Karl Heinz Hoffmann, and Peter Salamon: An interlacing theorem for reversible Markov chains. J. Phys. A: Math. Theoret., 41(21):212002, 2008. [doi:10.1088/1751-8113/41/21/212002]
[16] Shahrzad Haddadan and Peter Winkler: Mixing of permutations by biased transpositions. Theory Computing Sys., 63:1068–1088, 2018. Preliminary version in STACS’17. [doi:10.1007/s00224-018-9899-5]
[17] James Herbert Hester and Daniel S. Hirschberg: Self-organizing linear search. ACM Computing Surveys (CSUR), 17(3):295–311, 1985. [doi:10.1145/5505.5507]
[18] Mark Jerrum, Jung-Bae Son, Prasad V. Tetali, and Eric Vigoda: Elementary bounds on Poincaré and log-Sobolev constants for decomposable Markov chains. Ann. Appl. Probab., 14(4):1741–1765, 2004. [doi:10.1214/105051604000000639]
[19] Donald Knuth: The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison-Wesley, 1969/1997. Link at ACM DL.
[20] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer: Markov chains and mixing times. American Mathematical Society, 2006. [doi:10.1090/mbk/058]
[21] Neal Madras and Dana Randall: Markov chain decomposition for convergence rate analysis. Ann. Appl. Probab., 12(2):581–606, 2002. [doi:10.1214/AOAP/1026915617]
[22] Yong Hua Mao and Liang Hui Xia: Spectral gap for open Jackson networks. Acta Math. Sinica, English Ser., 31(12):1879–1894, 2015. [doi:10.1007/S10114-015-4138-3]
[23] Russell A. Martin and Dana Randall: Sampling adsorbing staircase walks using a new Markov chain decomposition method. In Proc. 41st FOCS, pp. 492–502. IEEE Comp. Soc., 2000. [doi:10.1109/SFCS.2000.892137]
[24] Sarah Miracle, Dana Randall, and Amanda Pascoe Streib: Cluster algorithms for discrete models of colloids with bars. In Proc. 8th Workshop on Analytic Algorithmics and Combinatorics (ANALCO’11), pp. 135–150. SIAM, 2011. [doi:10.1137/1.9781611973013.15]
[25] Sarah Miracle and Amanda Pascoe Streib: Rapid mixing of k-class biased permutations. SIAM J. Discr. Math., 38(1):702–725, 2024. Preliminary version in LATIN’18. [doi:10.1137/22M148063X]
[26] Sarah Miracle, Amanda Pascoe Streib, and Noah Streib: Iterated decomposition of biased permutations via new bounds on the spectral gap of Markov chains. In Proc. 24th Internat. Conf. on Randomization and Computation (RANDOM’20), pp. 3:1–21. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020. [doi:10.4230/LIPICS.APPROX/RANDOM.2020.3]
[27] Natesh S. Pillai and Aaron Smith: Elementary bounds on mixing times for decomposable Markov chains. Stoch. Proc. Appl., 127(9):3068–3109, 2017. [doi:10.1016/J.SPA.2017.02.002]
[28] Dana Randall: Decomposition methods and sampling circuits in the Cartesian lattice. In Proc. Internat. Symp. Math. Foundations of Comp. Sci. (MFCS’01), pp. 74–86. Springer, 2001. [doi:10.1007/3-540-44683-4_8]
[29] Dana Randall: Mixing. In Proc. 44th FOCS, pp. 4–15. IEEE Comp. Soc., 2003. [doi:10.1109/SFCS.2003.1238175]
[30] Dana Randall and Prasad Tetali: Analyzing Glauber dynamics by comparison of Markov chains. J. Math. Phys., 41:1598–1615, 2000. Preliminary version in LATIN’98. [doi:10.1063/1.533199]
[31] Omer Reingold, Salil Vadhan, and Avi Wigderson: Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. Math., 155(1):157–187, 2002. Preliminary version in FOCS’00. [doi:10.2307/3062153]
[32] Ronald Rivest: On self-organizing sequential search heuristics. Comm. ACM, 19(2):63–67, 1976. [doi:10.1145/359997.360000]
[33] Alistair Sinclair: Algorithms for Random Generation and Counting: A Markov Chain Approach. Progr. in Theoret. Comp. Sci. Birkhäuser, 1993. [doi:10.1007/978-1-4612-0323-0]
[34] Salil Vadhan: Pseudorandomness. Found. Trends Theor. Comp. Sci., 7(1–3):1–336, 2012. [doi:10.1561/0400000010]
[35] David Bruce Wilson: Mixing times of lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab., 1(1):274–325, 2004. [doi:10.1214/aoap/1075828054]