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Abstract. At STOC 2018, Kaufman and Oppenheim presented an elementary

construction of high-dimensional spectral expanders using elementary matrices. We
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As a bonus, this also yields a simple construction and analysis of standard expanders

of bounded degree.

ACM Classification: F.2.2, G.2.2

AMS Classification: 68R10

Key words and phrases: high-dimensional expanders, groups, cosets

1 Introduction

In the last few years, there has been a surge of activity related to high-dimensional expanders

(HDXs). High-dimensional expanders are high-dimensional generalizations of classical graph
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expanders. Depending on which definition of graph expansion is generalized, there are several

different (and unfortunately, often inequivalent) definitions of HDXs. For the purposes of

this note, we will restrict ourselves to the spectral definition of HDXs (see Definition 2.4).

Ramanujan graphs are families of expander graphs which have optimal spectral expansion (see

Definition 2.3). Lubotzky, Phillips and Sarnak [5] and Margulis [8] independently gave explicit

constructions of Ramanujan graphs. Ramanujan complexes are high-dimensional generalizations

of Ramanujan graphs. Lubotzky, Samuels and Vishne [6, 7] and Sarveniazi [12] gave explicit

constructions of Ramanujan complexes, which are the high-dimensional analgoues of the

construction of Lubotzky, Phillips and Sarnak [5]. These constructions were the first construction

of constant-degree spectral HDXs. The Ramanujan graphs constructed by Lubotzky, Phillips and

Sarnak [5] and Margulis [8] have the nice property that they are simple to describe, however the

proof of the optimality of their expansion is involved. The Ramanujan complexes constructed

by Lubotzky, Samuels and Vishne [6, 7] and Sarveniazi [12], on the other hand, are non-trivial to

describe and it is difficult to prove their high-dimensional expansion property. Subsequently

Kaufman and Oppenheim [4, See STOC version] gave an elegant elementary construction

of bounded-degree spectral HDXs using elementary matrices. While their HDXs are not

Ramanujan, their construction gives rise to new families of expander graphs whose spectral gap

is close to the optimal Ramanujan bound.

Despite the Kaufman–Oppenheim construction being elementary and simple, the proof of

expansion is not elementary. The purpose of this exposition is to give an elementary proof of

the expansion of the Kaufman–Oppenheim HDX construction. In particular, we obtain the same

eigenvalue bound as their proof.

The 1-skeleton (see Def. 2.1) of a HDX (even of a one-sided spectral HDX) is a two-sided

spectral expander (see Def. 2.3). Thus, this construction has the added advantage that it yields

an elementary construction (accompanied by a simple proof) of a standard two-sided spectral

expander (though not an optimal one).

2 Preliminaries

We begin by recalling what a simplicial complex is.

Definition 2.1 (Simplicial complex). A simplicial complex - over a finite set* is a collection of

subsets of* with the property that if ( ∈ - then any ) ⊆ ( is also in -.

• For all 8 ≥ −1, define -(8) := {( ∈ - : |( | = 8 + 1}. Thus, if - is non-empty, then

-(−1) = {∅}.

• The elements of - are called simplices or faces. The elements of -(0), -(1) and -(2) are
usually referred to as vertices, edges and triangles, respectively.

• For any 1 ≤ : ≤ 3, the :-skeleton of the complex - is the subcomplex -(−1)∪-(0)∪-(1)∪
· · · ∪ -(:). We identify the 1-skeleton with the graph defined by -(0) and -(1).

• The dimension of the simplicial complex - is defined as the largest 3 such that -(3) (which

consists of faces of size 3 + 1) is non-empty.
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• The simplicial complex is said to be pure if every face is contained in some face in -(3),
where 3 = dim(-).

• For a face ( ∈ -, the link of (, denoted by -(, is the simplicial complex defined as

-( := {) \ ( : ) ∈ - , ( ⊆ )} .

Thus, a graph � = (+, �) is just a simplicial complex � of dimension one with �(0) = +

and �(1) = �. We will deal with weighted pure simplicial complexes where the weight function

satisfies a certain balance condition.

Definition 2.2 (weighted pure simplicial complexes). Given a 3-dimensional pure simplicial

complex - and an associated weight function F : - → ℝ≥0, we say the weight function is

balanced if the following two conditions are satisfied.∑
(∈-(3)

F(() = 1 ; F(() = 1

8 + 2

∑
)∈-(8+1),)⊃(

F()), for all 8 < 3 and ( ∈ -(8). (2.1)

A weighted simplicial complex (-, F) is a pure simplical complex accompanied with a balanced

weight function F. If no weight function is specified, then we work with the balanced weight

function F induced by the uniform distribution on the set -(3) of maximal faces.

For a face ( ∈ -, the balanced weight function F( associated with the link -( is the restricted

weight function, suitably normalized, more precisely F( := F |-(/F(().
Condition (2.1) states that the weight function can be interpreted as a family of joint distri-

butions (F |-(−1) , . . . , F |-(3)) where F |-(8) is a probability distribution on -(8). The distribution
F |-(3) is specified by the first condition in (2.1) while the second condition implies that the

weight distribution F |-(8) is the distribution on -(8) obtained by picking a random � ∈ -(3)
according to F |-(3) and then removing (3 − 8) elements uniformly at random.

We now recall the classical definition of what it means for a graph to be a spectral expander.

We will be exclusively discussing only undirected graphs.

Definition 2.3 (spectral expander). Given a weighted graph � = (+, �, F) on = vertices, let ��
be its normalized adjacency matrix given as follows:

��(D, E) :=

{
F(D,E)
F(D) if {D, E} ∈ �,

0 otherwise.

Let 1 = �1 ≥ �2 ≥ · · · ≥ �= ≥ −1 be the = eigenvalues1 of ��. We denote the second largest

eigenvalue of � by �(�).
� is said to be a �-spectral expander if max{�2 , |�= |} ≤ �. This is sometimes also referred to

as a �-two-sided spectral expander.

� is said to be a �-one-sided spectral expander if �2 ≤ �.

1By the balance condition, F satisfies F(E) = ∑
{D,E}∈� F(D, E). The matrix �� is self-adjoint with respect to the

inner product 〈 5 , ,〉F := EE∼F[ 5 (E),(E)] since 〈 5 , �,〉F = 〈� 5 , ,〉F = E{D,E}∼F[ 5 (D),(E)]. Hence, �� has = real

eigenvalues which can be obtained using the Courant–Fischer Theorem (Theorem A.1).
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This spectral definition of expanders is generalized to higher-dimensional simplicial com-

plexes as follows.

Definition 2.4 (�-spectral HDX). A weighted simplicial complex (-, F) of dimension 3 ≥ 1

is said to be a �-spectral HDX (or a �-two-sided spectral HDX)2 if for every −1 ≤ 8 ≤ 3 − 2 and

B ∈ -(8), the weighted 1-skeleton of the link (-B , FB) is a �-spectral expander.
A weighted simplicial complex (-, F) of dimension 3 ≥ 1 is said to be a �-one-sided spectral

HDX if for every −1 ≤ 8 ≤ 3 − 2 and B ∈ -(8), the weighted 1-skeleton of the link (-B , FB) is a
�-one-sided spectral expander.

Using Garland’s technique [2], Oppenheim [10] showed that if the 1-skeletons of all the links

are connected, then a spectral gap at dimension (3 − 2) descends to all lower levels.

Descent Theorem 2.5 (Oppenheim, 2018). Let (-, F) be a 3-dimensional weighted simplicial complex
with the following properties.

• For all B ∈ -(3 − 2), the link (-B , FB) is a �-one-sided spectral expander for some � < 1

3−1
.

• The 1-skeleton of every link is connected.

Then, (-, F) is a
(

�
1−(3−1)�

)
-one-sided spectral HDX.

Thus to prove that a given simplicial complex is a spectral HDX, it suffices to show that the

1-skeleton of every link is connected and to show a spectral gap at the top level. For the sake of

completeness, we give a proof of the Descent Theorem in Appendix A which includes a descent

theorem for the least eigenvalue as well.

3 Coset complexes

The HDX construction of Kaufmann and Oppenheim is a particular instantiation of a certain

type of simplicial complex called a coset complex based on a group and its subgroups. In this

section, we give an exposition of these objects. For a basic primer on group theory, see Section B.

Definition 3.1 (coset complex). Let � be a group and let  1 , . . . ,  3 be 3 subgroups of �. The

coset complexX(�, { 1 , . . . ,  3}) is a (3− 1)-dimensional simplicial complex defined as follows:

• The set of vertices, X(0), consists of the left cosets of  1 , . . . ,  3 and we shall say the left

cosets of  8 are of type 8.

• The set of maximal faces, X(3 − 1), consists of the 3-sets of cosets of different types with a

non-empty intersection. That is,

{,1 1 , . . . , ,3 3} ∈ X(3 − 1) ⇐⇒ ,1 1 ∩ · · · ∩ ,3 3 ≠ ∅.

2These are sometimes also referred to as �-link HDXs or �-local-expanders to distinguish from an alternative

global definition of high-dimensional expansion.
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An equivalent way of stating this is that {,1 1 , . . . , ,3 3} ∈ X(3 − 1) if and only if there is

some , ∈ � such that ,8 8 = , 8 for all 8, since

,8 8 = , 8 ⇐⇒  8 = ,−1

8 , 8 ⇐⇒ ,−1

8 , ∈  8 ⇐⇒ , ∈ ,8 8 .

• The lower-dimensional faces are obtained by down-closing the maximal faces. Hence, for

0 ≤ A ≤ 3, {,81 81 , . . . , ,8A 8A } ∈ X(A − 1) if and only if 8 9 ≠ 8: for all 9 ≠ : and

,81 81 ∩ · · · ∩ ,8A 8A ≠ ∅.

We shall call the set {81 , . . . , 8A} the type of this face.

• The dimension of this complex is 3 − 1.

• The weight function we will use is the one induced by the uniform distribution on the set

X(3 − 1) of maximal faces.

A simplicial complex constructed this way is partite in the sense that each maximal face

consists of vertices of distinct types.

It follows from the definition, that X(8) is precisely the set of cosets of the form , ( where

 ( =
⋂
9∈(  9 for sets ( ⊆ [3] of size exactly 8 + 1. In particular, X(3 − 1), the set of maximal

faces, is in 1-1 correspondence with the group � if

⋂
9∈[3]  9 = {id} where “id” is the identity

element of the group �.

Connectivity

Observation 3.2. ,1 1 ∩ ,2 2 ≠ ∅ if and only if ,−1

1
,2 ∈  1 2.

Proof. (⇒) Say G = ,1:1 = ,2:2 for :1 ∈  1 and :2 ∈  2. Then ,−1

1
,2 = ,−1

1
G · G−1,2 = :1:

−1

2
∈

 1 2.

(⇐) If ,−1

1
,2 = :1:2 for some :1 ∈  1 and :2 ∈  2, then ,1:1 = ,2:

−1

2
∈ ,1 1 ∩ ,2 2. �

Lemma 3.3 (Criterion for connected 1-skeletons). The 1-skeleton ofX(�, { 1 , . . . ,  3}) is connected
if and only if � = 〈 1 , . . . ,  3〉.

Proof. (⇐) Since there is always an edge between , 8 and , 9 for 8 ≠ 9, it suffices to show that

 1 is connected to , 1 for an arbitrary , ∈ �. Suppose, for an arbitrary element , ∈ �, we have

, = ,1 . . . ,A where , 9 ∈  8 9 and 8 9 ≠ 8 9+1 for each 9. We might, without loss of generality, assume

that (a) ,1 ∈  1 (otherwise set , = 1 · ,1 · · · ,A) and (b) if A ≥ 2, then 8A ≠ 1 (since otherwise we

might then have worked with ,′ = ,1,2 . . . ,A−1 as , 1 = ,′,A 1 = ,′ 1).

Then, we get the following path connecting  1 and , 8A

 1 = ,1 81 → (,1,2) 82 → (,1,2,3) 83 → . . .→ (,1 · · · ,A) 8A = , 8A .

Note that, due to Observation 3.2, each successive pair of cosets are connected by an edge in the

simplicial complex. Now, since , 8A is adjacent to , 1 (as 8A ≠ 1), we have that  1 is connected
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to , 1.

(⇒) For an arbitrary , ∈ �, since the 1-skeleton is connected we have a path

 1 = ,0 80 → ,1 81 → · · · → ,A 8A = , 1.

By Observation 3.2, for every 9 = 0, . . . , A − 1, we have ,−1

9
, 9+1 ∈  8 9 8 9+1

∈ 〈 1 , . . . ,  3〉.
Therefore,

, = (,−1

0
,1) · (,−1

1
,2) · · · (,−1

A−1
,A) ∈ 〈 1 , . . . ,  3〉 . �

Structure of links of the coset complex

For any set ( ⊆ [3], define the group  ( :=
⋂
8∈(  8 ; let  ∅ := 〈 1 , . . . ,  3〉. The following lemma

shows that the links of a coset complex are themselves coset complexes.

Lemma 3.4. For any E ∈ X(:) of type ( ⊆ [3], the link -E is isomorphic to the simplicial complex
defined by X( ( , { ( ∩  8 : 8 ∉ (}).
Proof. It suffices to prove this lemma for E ∈ X(0) as links of higher levels can be obtained by

inductive applications of this case.

Observe that if , is any element of �, then (,81 81 , . . . , ,8A 8A ) ∈ X(A − 1) if and only if

(,,81 81 , . . . , ,,8A 8A ) ∈ X(A − 1). Therefore, the link of a coset , 8 is isomorphic to the link of

the coset  8 . Thus, it suffices to prove the lemma for links of the type - 8 for some 8 ∈ [3].
Let E be the coset  1, without loss of generality. The vertices of the link, -E(0), are cosets of

 2 , . . . ,  3 that have a non-empty intersection with  1. Note that any non-empty intersection

, 9 9 ∩  1 of a coset with  1 is itself a coset ,̃ 9( 9 ∩  1) of the intersection subgroup  9 ∩  1 in

 1. Indeed, suppose that , 9ℎ 9 ∈  1 for some ℎ 9 ∈  9 . Then, , 9ℎ 9 9 = , 9 9 and , 9ℎ 9 1 =  1 and

hence

, 9 9 ∩  1 = , 9ℎ 9 9 ∩ , 9ℎ 9 1 = , 9ℎ 9( 9 ∩  1).
Therefore, the vertices of the link -E(0) are in bĳective correspondence with the cosets of the

subgroups

{
 9 ∩  1 : 9 ∈ {2, . . . , 3}

}
.

The maximal faces in - that contain the coset  1 are precisely the 3-sets { 1 , ,2 2 , . . . , ,3 3}
of cosets with a non-empty intersection and hence

∅ ≠  1 ∩ ,2 2 ∩ · · · ∩ ,3 3 = (,2 2 ∩  1) ∩ · · · ∩ (,3 3 ∩  1) = ,̃2( 2 ∩  1) ∩ · · · ∩ ,̃3( 3 ∩  1),

which are precisely the maximal faces of the coset complex X
(
 1 ,

{
 9 ∩  1 : 9 ∈ {2, . . . , 3}

})
.

This establishes the isomorphism between -E and X
(
 1 ,

{
 9 ∩  1 : 9 ∈ {2, . . . , 3}

})
. �

4 A concrete instantiation

The simplicial complex of Kaufman and Oppenheim [4, See STOC version] is a specific

instantiation of the above coset complex construction. This section is devoted to an exposition of

this instantiation of Kaufman and Oppenheim. We will need some notation to describe their

group.
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Notation

• Let ? be a prime power and consider the ring F?[C] of polynomials over the finite field

F? . Let ' denote the quotient ring F?[C]/〈CB〉 where 〈CB〉 denotes the ideal generated by

CB . This is a ring whose elements can be identified with polynomials in F?[C] of degree
less than B (where addition and multiplication are performed modulo CB), with C being a

formal variable and B a positive integer3. By increasing the value of B, the construction

will provide a family of complexes on a growing number of vertices.

• For any 3 ≥ 3, and 1 ≤ 8 , 9 ≤ 3 with 8 ≠ 9 and an element A ∈ ', we define 48 , 9(A) to be the

3 × 3 elementary matrix with 1’s on the diagonal and A on the (8 , 9)-th entry.

For the sake of notational convenience, we shall extend this notation and write 4:,ℓ (A) :=

48 , 9(A) for all :, ℓ ∈ ℤ such that : ≡ 8 (mod 3) and ℓ ≡ 9 (mod 3) (1 ≤ 8 , 9 ≤ 3). For

example, 43,3+1(A) refers to 43,1(A).
We will extend further and use {8 , 8 + 1, . . . , 9 − 1}

mod 3 to denote the set 8 , 8 + 1, · · · 9 − 1

when 8 < 9, and the set {8 , 8 + 1, . . . 3, 1, 2, . . . , 9 − 1} when 9 ≤ 8.

We are now ready to describe the groups in the construction.

For 8 ∈ {1, . . . , 3},  8 =
〈
4 9 , 9+1(0C + 1) : 0, 1 ∈ F? , 9 ∈ [3] \ {8}

〉
.

� = 〈 1 , . . . ,  3〉

Each  8 is generated by elementary matrices that have 1’s on the diagonal and an arbitrary

linear polynomial in one entry of the generalised diagonal {(8 , 9) : 8 + 1 ≡ 9 (mod 3)}.
It so happens that the group � generated by the subgroups  1 , . . . ,  3 is SL3('), the group

of 3 × 3 matrices with entries in ' whose determinant is 1 (in '). This is a non-trivial fact (see

[3, Theorem 4.3.9]). All we will need is the simpler fact that |� | grows exponentially with B (for

fixed ? and 3) while the size of the groups  8 are functions of ? and 3 (and independent of B).

This will follow from the sequence of observations and lemmas developed in the following

section.

Given the above definition, there are two “different” subgroups we can define.

 ( =
⋂
8∈(

 8 ,

 ̃( :=
〈
48 ,8+1(0C + 1) : 0, 1 ∈ F? , 8 ∉ (

〉
.

That is,  ( is the intersection of the groups { 8 : 8 ∈ (}, and  ̃( is the group generated by the

intersection of the sets of generators of the  8 . Thus, clearly,  ̃( ⊆  (. The following lemma

shows that in fact the two groups are identical.

3In the subsequent journal version [4], the authors generalise the ring ' to any unital commutative ring. For the

purposes of this exposition, we focus exclusively on finite rings of the form described above.
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Lemma 4.1 (Intersections of  8’s). For any ( ⊆ [3],

 ̃( =
〈
48 ,8+1(0C + 1) : 0, 1 ∈ F? , 8 ∉ (

〉
=

⋂
8∈(

 8 =  (

In other words, the group generated by the intersection of generators equals the group intersection.

We will prove this lemma in the following section by giving an explicit description of the

groups that makes the above lemma evident. An immediate consequence of this lemma is that

 [3] = {id} and hence X(3 − 1), the set of maximal faces, is in 1-1 correspondence with the

group �.

4.1 Explicit description of the groups

The following is an easy consequence of the definition of 48 , 9(A). Note that 48 , 9(A) is defined only

if 8 ≠ 9.

Observation 4.2. (a) Sum: 48 , 9(A1) · 48 , 9(A2) = 48 , 9(A1 + A2).
As a corollary, 48 , 9(A)−1 = 48 , 9(−A).

(b) Product: If 8 ≠ ℓ , the commutator4 [48 , 9(A1), 4:,ℓ (A2)] behaves as follows.

[48 , 9(A1), 4:,ℓ (A2)] =
{
48 ,ℓ (A1A2) if 9 = :,

id if 9 ≠ :.

Proof. Let �8 , 9 denote the matrix that has a 1 at the (8 , 9)-th entry, and 0 everywhere. Then, (a)

follows as

48 , 9(A1)48 , 9(A2) = (� + �8 , 9A1) · (� + �8 , 9(A2))
= � + �8 , 9 · (A1 + A2) (since �2

8 , 9 = 0 when 8 ≠ 9).

As for (b), we follow along a similar calculation. Note that

�8 , 9 · �:,ℓ =
{

0 if 9 ≠ :

�8 ,ℓ if 9 = :.

Therefore,

[48 , 9(A1), 4:,ℓ (A2)] = (� − �8 , 9A1) · (� − �:,ℓ A2) · (� + �8 , 9A1) · (� + �:,ℓ A2).

When 9 = : (along with the assumption that 8 ≠ 9, : ≠ ℓ ), this simplifies to

[48 , 9(A1), 4:,ℓ (A2)] = (� − �8 , 9A1 − �:,ℓ A2 + �8 ,ℓ · A1A2) · (� + �8 , 9A1 + �:,ℓ A2 + �8 ,ℓ · A1A2)
= � + �8 , 9(A1 − A1) + �:,ℓ (A2 − A2) + �8 ,ℓ (A1A2 + A1A2 − A1A2)
= � + A1A2�8 ,ℓ .

4The commutator of two elements , , ℎ, denoted by [, , ℎ], is defined as ,−1ℎ−1,ℎ. (Definition B.3)
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If 9 ≠ :, then we get

[48 , 9(A1), 4:,ℓ (A2)] = (� − �8 , 9A1) · (� − �:,ℓ A2) · (� + �8 , 9A1) · (� + �:,ℓ A2).
= � + �8 , 9(A1 − A1) + �:,ℓ (A2 − A2) = � �

Therefore, for distinct 8 , 9 , : ∈ [3] (which exist when 3 ≥ 3), we have[
48 , 9(A1),

[
4 9 ,8(A2), 48 ,:(A3)

] ]
= 48 ,:(A1A2A3)

Thus, for all 3 ≥ 3, using the above observation along with Observation 4.2(a), we get that

48 , 9(A) for any A ∈ ' can be generated by

{
4:,ℓ (0C + 1) : :, ℓ ∈ [3] , 0, 1 ∈ F?

}
. This in particular

implies that |� | is at least ?B . On the other hand, the size of  8 depends only on 3, ? and is

independent of B. The lemma below describes  3; the other  8 are just rearrangements of rows

and columns in  3.

Lemma 4.3 (Explicit description of  3). The group  3 =
〈
48 ,8+1(0C + 1) : 0, 1 ∈ F? , 8 ≠ 3

〉
consists

of the matrices � = (�8 , 9) of the following form:

�8 , 9 =


1 if 8 = 9 ,

a polynomial of degree ≤ 9 − 8 if 8 < 9 ,

0 if 8 > 9.

Stating the above differently, for any = ∈ [3], the group  = =
〈
48 ,8+1(0C + 1) : 0, 1 ∈ F? , 8 ≠ =

〉
consists of the matrices � = (�8 , 9) of the following form:

�8 , 9 =


1 if 8 = 9 ,

a polynomial of degree (9 − 8) mod 3 if 9 ≠ 8 and = ∉ {8 , 8 + 1, . . . , 9 − 1}
mod 3 ,

0 otherwise.

Proof. Follows by repeated application of Observation 4.2. �

Therefore, we can obtain a crude bound of | 8 | ≤ ?$(3
3)
for any 8. Also, the above lemma also

gives an explicit description of the groups  (.

Corollary 4.4 (Explicit description of  (). For any subset ( ⊆ [3], the group  ( =
⋂
8∈(  8 consists

of matrices � = (�8 , 9) of the following form:

�8 , 9 =


1 if 8 = 9 ,

a polynomial of degree (9 − 8) mod 3 if 9 ≠ 8 and {8 , 8 + 1, . . . , 9 − 1}
mod 3 ∩ ( = ∅,

0 otherwise.

Recall the other set of subgroups defined for each ( ⊆ [3]:

 ̃( :=
〈
48 ,8+1(0C + 1) : 0, 1 ∈ F? , 8 ∉ (

〉
.

These groups can also be explicitly described.
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Lemma 4.5 (Explicit description of  ̃(). For any ∅ ≠ ( ⊆ [3], the group  ̃( is the set of all 3 × 3
matrices � = (08 9) of the form

08 , 9 =


1 if 8 = 9 ,

a polynomial of degree ≤ 9 − 8 if 9 ≠ 8 and {8 , 8 + 1, . . . , 9 − 1}
mod 3 ∩ ( = ∅,

0 otherwise.

Proof. Any � ∈  ̃( can be expressed as � = �1 · · · �< where each �A = 48A ,8A+1(ℓA), for some linear

polynomial ℓA , with 8A ∉ (. Then,

�8 , 9 =
∑

81 ,...,8<+1

81=8 , 8<+1=9

(�1)81 ,82(�2)82 ,83 · · · (�<)8< ,8<+1
.

From the structure of each �A , any nonzero contribution from the RHS must involve either

8A+1 = 8A , or 8A+1 = 8A + 1 if A ∉ (. This forces that the only entries of � that are nonzero, besides

the diagonal, are at (8 , 9)with none of {8 , 8 + 1, . . . , 9 − 1} in (.
In the case when {8 , 8 + 1, . . . , 9 − 1} ∩ ( = ∅, the above argument also shows that the entry

�8 , 9 has degree at most 9 − 8. Furthermore, using Observation 4.2, we can easily see that

48 , 9( 5 ) ∈  ̃( for an arbitrary polynomial 5 (C) of degree at most 9 − 8. From this, we can deduce

that the structure of  ̃( is exactly as claimed. �

Proof of Lemma 4.1. Follows immediately from Corollary 4.4 and Lemma 4.5. �

From this point on, since the groups  ( and  ̃( are identical, we drop the tilde notation and use

 ( for  ̃(.

4.2 Connectivity of the coset complex

Lemma 4.6. Let ( ⊂ [3] with |( | ≤ 3 − 2. Then,

 ( = 〈 ( ∩  8 : 8 ∈ [3] \ (〉 .

Proof. It is clear that  ( is a superset of the RHS. It only remains to show that the other

containment also holds. To see this, consider an arbitrary generator 4 9 , 9+1(A) of  (. Since 9 ∉ (
and |( | ≤ 3 − 2, there is some 8 ∈ [3] \ (( ∪ { 9}). Therefore, 4 9 , 9+1(A) ∈  ( ∩  8 and hence is

generated by the RHS. �

Combining the above lemma with Lemma 3.3 and Lemma 3.4, we have the following corollary.

Corollary 4.7. For the coset complex X(�, { 1 , . . . ,  3}) defined by the above groups, the 1-skeleton of
every link is connected.
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5 Spectral expansion of the complex

In this section we prove that the coset complex X(�, { 1 , . . . ,  3}) is a good spectral HDX. The

Descent Theorem (Theorem 2.5) states that it suffices to show that the 1-dimensional links of

faces in X(3 − 3) are good spectral expanders.

5.1 Structure of 1-dimensional links

One-dimensional links of the coset complex constructed are links of E ∈ X(�, { 1 , . . . ,  3}) of
size exactly 3−2 (which are elements ofX(3−3)). Any such E can be written as {, 1 , . . . , , 3} \{
, 8 , , 9

}
for 8 , 9 ∈ [3] with 8 ≠ 9 and , ∈ �. Since the link of E is isomorphic to the link of

{ 1 , . . . ,  3} \
{
 8 ,  9

}
, we might as well assume that , = id. These happen to be of two types

depending on whether 8 and 9 are consecutive or not.

Observation 5.1. Consider E = { 1 , . . . ,  3} \
{
 8 ,  9

}
where 8 and 9 are not consecutive (i. e.,

(8 − 9) ≠ ±1 mod 3). Then the 1-dimensional link of E is a complete bipartite graph.

Proof. Note that since 9 ≠ 8 ± 1, we have [48 ,8+1(A1), 4 9 , 9+1(A2)] = id by Observation 4.2. Hence,

these two elements commute.

The link of E corresponds to the coset complex X(�, {�1 , �2})where

� =  [3]\{8 , 9} =
〈
48 ,8+1(0C + 1), 4 9 , 9+1(0C + 1) : 0, 1 ∈ F?

〉
,

�1 =  [3]\{8} =
〈
48 ,8+1(0C + 1) : 0, 1 ∈ F?

〉
,

�2 =  [3]\{ 9} =
〈
4 9 , 9+1(0C + 1) : 0, 1 ∈ F?

〉
.

Thus, the groups �1 and �2 commute with each other and hence any element of ℎ ∈ � can be

written as ℎ = ,1 · ,2 where ,1 ∈ �1 and ,2 ∈ �2. Observation 3.2 implies that the resulting

graph is the complete bipartite graph. �

The interesting case is when E = { 1 , . . . ,  3}\ { 8 ,  8+1}. Without loss of generality, wemay

focus on the link of E = { 3 ,  4 , . . . ,  3}. This corresponds to the coset complex X(�, {�1 , �2})
where

� =  3,4,...,3 =
〈
41,2(0C + 1), 42,3(0C + 1) : 0, 1 ∈ F?

〉
,

�1 =  2,3,4,...,3 =
〈
41,2(0C + 1) : 0, 1 ∈ F?

〉
,

�2 =  1,3,4,...,3 =
〈
42,3(0C + 1) : 0, 1 ∈ F?

〉
.

Hence, it suffices to focus on the first three rows and columns of these matrices as the rest of
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them are constant. Written down explicitly,

� =



1 ℓ1 &

0 1 ℓ2
0 0 1

 :

ℓ1 , ℓ2 are linear polynomials in F?[C]
and & is a quadratic polynomial in F?[C]

 ,
�1 =



1 ℓ 0

0 1 0

0 0 1

 : ℓ is a linear polynomial in F?[C]
 ,

�2 =



1 0 0

0 1 ℓ

0 0 1

 : ℓ is a linear polynomial in F?[C]
 .

Multiplication of an arbitrary element of � with an arbitrary element of �1 is of the form
1 ℓ1 &

0 1 ℓ2
0 0 1

 ·

1 ℓ 0

0 1 0

0 0 1

 =


1 ℓ1 + ℓ &

0 1 ℓ2
0 0 1

 .
Note that the a unique choice of ℓ that makes the (1, 2)-th entry of the RHS zero is ℓ = −ℓ1. Thus,
each coset of �1 in � has a unique representative of the form "1(ℓ , &) described below, and

similarly, each coset of �2 in � has a unique representative of the form "2(ℓ , &):

"1(ℓ , &) :=


1 0 &

0 1 ℓ

0 0 1

 , "2(ℓ , &) :=


1 ℓ &

0 1 0

0 0 1


respectively, where ℓ is a linear polynomial and & is a quadratic polynomial in F?[C]. This is
because any element of � can be uniquely written as

1 ℓ1 &

0 1 ℓ2
0 0 1

 =


1 ℓ1 & − ℓ1ℓ2
0 1 0

0 0 1



1 0 0

0 1 ℓ2
0 0 1


=


1 0 & − ℓ1ℓ2
0 1 ℓ2
0 0 1



1 ℓ1 0

0 1 0

0 0 1

 .
Lemma 5.2. For linear polynomials ℓ1 , ℓ2 ∈ F?[C] and quadratic polynomials &1 , &2 ∈ F?[C], we have
that

"1(ℓ1 , &1)�1 ∩"2(ℓ2 , &2)�2 ≠ ∅ ⇐⇒ ℓ1ℓ2 = &1 −&2.

Proof. Note that matrices in �1�2 are of the form
1 ℓ1 0

0 1 0

0 0 1



1 0 0

0 1 ℓ2
0 0 1

 =


1 ℓ1 ℓ1ℓ2
0 1 ℓ2
0 0 1

 .
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By Observation 3.2, the cosets have a non-empty intersection if and only if

�1�2 3 "1(ℓ1 , &1)−1"2(ℓ2 , &2) =

1 0 −&1

0 1 −ℓ1
0 0 1



1 ℓ2 &2

0 1 0

0 0 1

 =


1 ℓ2 &2 −&1

0 1 −ℓ1
0 0 1


which happens if and only if (ℓ2)(−ℓ1) = &2 −&1 which is the same as &1 −&2 = ℓ1ℓ2. �

Therefore, the 1-dimensional link is the bipartite graph � = (*,+, �) with left and right

vertices identified by pairs (ℓ , &)where ℓ and & are linear and quadratic polynomials in F?[C],
respectively, with (ℓ1 , &1) ∼ (ℓ2 , &2) ⇔ ℓ1ℓ2 = &1 + &2 (by associating "1(ℓ , &)with the tuple

(ℓ , &) on the left, and "2(ℓ , &)with the tuple (ℓ ,−&) on the right).

Note that � is a ?2
-regular bipartite graph with ?5

vertices on each side. It suffices to show

that � is a good expander.

Kaufman and Oppenheim [4] prove the expansion properties of this graph using the

representation theory of the associated groups, while we directly analyse the spectral gap of

the adjacency matrix associated with this graph. O’Donnell and Pratt [9, Case 2 in the Proof of

Theorem 3.23] give yet another proof of the spectral gap using the Polynomial Identity Lemma

(also referred to as the Schwartz–Zippel lemma).

5.2 A related graph

The following graph is the “lines-points” or the “affine plane” graph used by Reingold, Vadhan

and Wigderson [11] (as the base graph in their construction of constant-degree expanders, using

the zig-zag product). Let F@ be a finite field. Consider the bipartite graph �@ = (*′, +′, �′)
defined as follows:

*′ = +′ = F@ × F@ �′ = {((0, 1), (2, 3)) : 02 = 1 + 3} .

Note that the graph �@ is @-regular as for any 0, 1, 2 ∈ F@ , there is a unique 3 ∈ F@ such that

02 = 1 + 3 and thus the vertex (0, 1) has exactly @ neighbours in �@ .

Lemma 5.3 ([11, Lemma 5.1]). The @-regular bipartite graph �@ is a 1√
@
-one-sided spectral expander.

Proof. Let �2

@ denote the multigraph whose adjacency matrix is the square of the adjacency

matrix of �@ . Note that �2

@ is a multigraph as each edge in �2

@ corresponds to a length-two path

in �@ and there may be more than one such path between a pair of vertices. It is easy to see that

Number of edges between (0, 1) and (2, 3) in �2

@ =


1 if 0 ≠ 2,

@ if 0 = 2 and 1 = 3,

0 otherwise.
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Therefore, the adjacency matrix of �2

@ can be written5 (under a suitable order of listing vertices)

as

@�@2 + (�@ − �@) ⊗ �@ (where �@ is the @ × @ matrix of 1B).

By observing that �@ has eigenvalue of @ with multiplicity 1, and eigenvalue 0 with multiplicity

(@ − 1), a simple calculation shows that �2

@ has eigenvalue of @
2
with multiplicity 1, eigenvalue @

with multiplicity @(@ − 1) and eigenvalue 0 with multiplicity @ − 1. Hence the unnormalized

second largest eigenvalue of �2

@ is @ and hence we have that the normalized second largest

eigenvalue of �@ is 1/√@. �

5.3 Relating the graph �@ with �

Set @ = ?3
so that F@ = F?[H]/〈�(H)〉 for some irreducible polynomial �(H) of degree 3. Therefore,

each element in F@ is expressible as 00 + 01H + 02H
2
for some 00 , 01 , 02 ∈ F? . Thus, the graph

�@ = (*′, +′, �′) defined above, for @ = ?3
, is a ?3

-regular bipartite graph with ?6
vertices on

either side.

Let*′′ = +′′ =
{
(00 + 01H, 10 + 11H + 12H

2) : 00 , 01 , 10 , 11 , 12 ∈ F?
}
, which is a subset of*′

and +′, respectively, of size ?5
each.

Observation 5.4. The induced subgraph of �@ on *
′′, +′′ is exactly the graph � = (*,+, �)

described earlier.

Proof. Note that ((ℓ1(H), &1(H)), (ℓ2(H), &2(H))) ∈ �′ if and only if

ℓ1(H) · ℓ2(H) = &1(H) +&2(H) mod �(H).

However, since the above equation has degree at most 2, we have

ℓ1(H) · ℓ2(H) = &1(H) +&2(H) ⇔ ℓ1(H) · ℓ2(H) = &1(H) +&2(H) (mod �(H)),

and the first equation is exactly the adjacency condition of the graph �. Hence, the induced

subgraph of �@ on*
′′, +′′ is indeed the graph �. �

Normally, induced subgraphs of expanders need not even be connected. However, the

following lemma shows that there are some instances where we may be able to give non-trivial

bounds on �.

Lemma 5.5. Let - be a 3-regular graph that is an induced subgraph of a �-regular graph .. Then,

�(-) ≤ ��(.)
3

.

5In the equation, the notation ⊗ refers to the Kronecker product, or tensor product of matrices. It is well known

that, for square matrices � and �, the multiset of eigenvalues of � ⊗ � is all products of the form �8 · �9 where �8 is
an eigenvalue of � and �9 is an eigenvalue of �.
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Proof. The Courant–Fischer characterization of the second largest eigenvalue (Theorem A.1)

tells us that �(-) = max0⊥1|- |
0)�0
3·0) 0 where � is the adjacency matrix of -. Consider an arbitrary

0 ∈ ℝ |- | such that 0 ⊥ 1|- | = 0. Since - is an induced subgraph of., the vector 0 can be padded

with zeroes to obtain a vector 10 ∈ ℝ |. | such that 10 ⊥ 1|. |. Therefore, if �- and �. are the

normalised adjacency matrices of - and ., we have

�(-) = max

0⊥1|- |

0)�- 0

0)0
=
�

3
· max

0⊥1|- |

1)0�.10

1)0 10
≤ �

3
· max

1⊥1|. |

1)�.1

1)1
=
��(.)
3

. �

Corollary 5.6. The graph �(*,+, �) corresponding to the 1-dimensional links of X(�, { 1 , . . . ,  3})
is a 1√

?
-one-sided spectral expander.

Proof. The graph �?3 is a bipartite, ?3
-regular graph with �(�?3) ≤ 1

?3/2 and �(*,+, �) is a

?2
-regular graph that is an induced subgraph of �?3 . Hence, by Lemma 5.5,

�(�) ≤ ?3 · (1/?3/2)
?2

=
1√
?
. �

The final expansion bounds

From the corollary above, we obtain the following theorem of Kaufman and Oppenheim.

Theorem 5.7 ([4]). For ? > (3 − 2)2, the (3 − 1)-dimensional coset complex X(�, { 1 , . . . ,  3}) is a
1√

?−(3−2) -one-sided spectral HDX.

Proof. It follows directly from Theorem 2.5 that X(�, { 1 , . . . ,  3}) is a �-one-sided spectral

HDX for

� ≤
1/√?

1 − (3 − 2)(1/√?) =
1

√
? − (3 − 2) . �

Constructing two-sided spectral HDXs and standard expanders: The (3 − 1)-dimensional

coset complex X(�, { 1 , . . . ,  3}) is not a two-sided spectral HDX as the 1-skeletons of the links

of the faces in X(3 − 3) are bipartite. However, if we restrict attention to the :-skeleton of X for

some : < 3 − 1 then we can bound the least eigenvalue by applying the Descent Theorem to the

least eigenvalue (Theorem A.2(2)). This is summarized in the following corollary.

Corollary 5.8. For ? > (3 − 2)2 and any 1 ≤ : < 3 the :-skeleton of the (3 − 1)-dimensional coset
complex X(�, { 1 , . . . ,  3}) is a max

{
1√

?−(3−2) ,
1

3−:

}
-two-sided spectral HDX.

In particular, if we set : = 1 in the above corollary, we get a standard max

{
1√

?−(3−2) ,
1

3−1

}
-

two-sided spectral expander. This graph is a 3-partite graph and hence its least eigenvalue is at

most
− 1/(3 − 1), while the above argument shows that it is least (and hence equal to)

− 1/(3 − 1).
Thus, this not only yields an elementary construction and proof of one-sided spectral HDXs

(Theorem 5.7), but also one of standard spectral expander (Corollary 5.8).
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A Proof of the Descent Theorem

For the sake of completeness, we present the proof of Theorem 2.5 that asserts that proving

spectral expansion for the maximal faces is sufficient to obtain expansion of any link. This

exposition is essentially from the lecture notes by Dikstein [1].

Let (-, F) be a weighted 3-dimensional simplicial complex. Let �3 = F |-(3) be the distribu-
tion on the set -(3) of (3 + 1)-sized faces. This distribution induces distributions �8 on -(8) in
the natural way.

For two functions 5 , , : -(0) → ℝ, define their inner product 〈 5 , ,〉- = ED∼�0
[ 5 (D),(D)]. We

will drop the subscript - if it is clear from context. Note that, by the definition of �1, sampling

D according to �0 can be equivalently achieved by sampling an edge (D, E) according to �1 and

returning one of the points uniformly at random. Therefore,

〈 5 , ,〉- = ED∼�0
[ 5 (D),(D)] = E{D,E}∼�1

[ 5 (D),(D)] = EE∼�0
ED∼-E(0)[ 5 (D),(D)] = EE∼�0

[〈 5E , ,E〉-E ],
(A.1)

where 5E , ,E : -E(0) → ℝ are the restrictions to the link of E.

Define the adjacency operator � that, on a function 5 : -(0) → ℝ on vertices returns another

function � 5 on vertices defined via

� 5 (E) = ED∼E[ 5 (D)],

where D ∼ E refers to a random neighbour of E according to the distribution D ∼ �0(-E). In
other words, � averages 5 over neighbours. Furthermore, � is self-adjoint with respect to the

above inner product, i.e, 〈� 5 , ,〉 = 〈 5 , �,〉. Hence, it has = real eigenvalues and an orthonormal

set of eigenvectors. Clearly �1 = 1; the constant 1 function is an eigenvector for this operator (in

fact, it is an eigenvector corresponding to the largest eigenvalue 1). The remaining eigenvalues

are characterized by the Courant–Fischer Theorem, stated below.

Theorem A.1 (Courant–Fischer). Let � ∈ ℝ=×= be an = × = matrix over the reals that is self-adjoint
with respect to some inner product 〈·, ·〉 : ℝ= ×ℝ= → ℝ. Then � has = real eigenvalues �1 ≥ · · · ≥ �=
which have the following characterization.

�8 = max

+ : dim+=8
min

0≠G∈+

〈G, �G〉
〈G, G〉 = min

+ : dim+==−8+1

max

0≠G∈+

〈G, �G〉
〈G, G〉 .

Similar to (A.1), we have

〈� 5 , ,〉- = E{D,F}∼�1
[ 5 (D),(F)] = E{D,E,F}∼�2

[ 5 (D),(F)]
= EE∼�0

[
E{D,F}∼�1(-E)[ 5 (D),(F)]

]
= EE∼�0

[
〈�E 5E , ,E〉-E

]
(A.2)

where �E denotes the adjacency operator restricted to the link -E .

With the above notation, we can now state the theorem we wish to prove. It suffices to prove

the theorem in the case of 3 = 3 as we can obtain Theorem 2.5 by induction.
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Theorem A.2. Suppose (-, F) is weighted 2-dimensional simplicial complex. Then, we have the
following two implications:

1. Suppose the 1-skeleton of - is connected and for every vertex E ∈ -(0), 〈�E 5 , 5 〉 ≤ � 〈 5 , 5 〉 for
all 5 : -E(0) → ℝ with 5 ⊥ 1-E for some � ∈ [0, 1). Then, for any , : -(0) → ℝ with , ⊥ 1- ,
we have 〈�, , ,〉 ≤ � 〈, , ,〉 where � ≤ �

1−� .

2. Suppose the 1-skeleton of - is non-empty and for every vertex E ∈ -(0), we have 〈�E 5 , 5 〉 ≥
� 〈 5 , 5 〉 for all 5 : -E(0) → ℝ for some � ∈ [−1, 1). Then, for any , : -(0) → ℝ, we have
〈�, , ,〉 ≥ � 〈, , ,〉 where � ≥ �

1−� .

Before we see a proof of this, let us see how Theorem 2.5 follows from this.

Descent Theorem A.3 (Theorem 2.5 restated). Suppose (-, F) is a non-empty 3-dimensional
weighted simplicial complex with the following properties.

• The 1-skeleton of every link is connected.
• For all E ∈ -(3 − 2), the link (-E , FE) is a �-one-sided spectral expander for some � < 1

3−1
. I. e.,

there is a � > 0 such that, for every E ∈ -(3 − 2) and every , : -E(0) → ℝ with , ⊥ 1, we have

〈�E, , ,〉 ≤ � 〈, , ,〉 .

Then, (-, F) is a �-one-sided spectral HDX for � ≤ �
1−(3−1)� . That is, for any E ∈ -(−1)∪ · · ·∪-(3−2)

and every , : -E(0) → ℝ with , ⊥ 1, we have 〈�E, , ,〉 ≤ � 〈, , ,〉.

Furthermore, suppose we also know that there is a � ∈ [−1, 0) such that, for every E ∈ -(3 − 2) and
every , : -E(0) → ℝ, we have 〈�E, , ,〉 ≥ � 〈, , ,〉. Then, - is a �-two-sided spectral HDX with

� ≤ max

(
�

1 − (3 − 1)� ,
���� �

1 − (3 − 1)�

����) .
That is, for every , : -E(0) → ℝ with , ⊥ 1, we have | 〈�E, , ,〉 | ≤ � 〈, , ,〉.

Proof. For any 8 ≤ 3 − 2, let

�8 = min

E∈-(8)
max

,:-E(0)→ℝ
,⊥1

〈�E, , ,〉
〈, , ,〉 ,

the smallest one-sided spectral expansion with respect to -(8). From repeated applications of

Theorem A.2,

�−1 ≤
�0

1 − �0

≤ �1/(1 − �1)
1 − (�1/(1 − �1))

=
�1

1 − 2�1

≤ · · · ≤ �3−2

1 − (3 − 1)�3−2

which eventually completes the proof for one-sided spectral expansion.
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For two-sided spectral expansion, we also have to show that all the eigenvalues are bounded

away from −1. One again, let �8 be such that

�8 = max

E∈-(8)
min

, : -E(0)→ℝ
,⊥1

〈�E, , ,〉
〈, , ,〉 .

By repeated applications of Theorem A.2 (2), we obtain

�−1 ≥
�0

1 − �0

≥ �1/(1 − �1)
1 − (�1/(1 − �1))

=
�1

1 − 2�1

≥ · · · ≥ �3−2

1 − (3 − 1)�3−2

Together, we have that - is a �-two-sided spectral HDX for

� = max

(
�

1 − (3 − 1)� ,
���� �

1 − (3 − 1)�

����) . �

Proof of Theorem A.2. Let , be an eigenvector that satisfies 〈, , ,〉 = 1 and , ⊥ 1- that maximises

(or minimises) 〈�, , ,〉, and � = 〈�, , ,〉 be the extremal value. In particular, �, = � · ,. From
(A.2) we have � = 〈�, , ,〉 = EE [〈�E,E , ,E〉].

Even though , ⊥ 1- , the local component ,E need not be perpendicular to 1-E . Hence,

let us write ,E = E1-E + ,⊥E where ,⊥E ⊥ 1-E ; we shall drop the subscript from 1-E for the

sake of brevity as the length of the vector will be clear from context. Note that E = 〈,E , 1〉 =
EF∈-E(0)[,E] = �,(E). Therefore, EE[2

E] = 〈�, , �,〉 = �2
. Hence,

� = 〈�, , ,〉 = EE [〈�E,E , ,E〉] = EE
[
2

E +
〈
�E,

⊥
E , ,

⊥
E

〉]
(A.3)

We shall now focus on the proof of Theorem A.2 (1). The other direction is exactly identical

with the inequality flipped.

In the case of Theorem A.2 (1), where we are given 〈�E,⊥E , ,⊥E 〉 ≤ � 〈,⊥E , ,⊥E 〉 for all E ∈ -(0),
we have

� = EE
[
2

E +
〈
�E,

⊥
E , ,

⊥
E

〉]
≤ EE

[
2

E + �
〈
,⊥E , ,

⊥
E

〉]
= EE

[
(1 − �)2

E + � 〈,E , ,E〉
]

= (1 − �)�2 + �.
=⇒ �(1 − �) ≤ �(1 − �2)

=⇒ � ≤ �(1 + �) (connected, thus � < 1)

=⇒ � ≤ �
1 − � .

In the case of Theorem A.2 (2), where we are given 〈�E,⊥E , ,⊥E 〉 ≥ � 〈,⊥E , ,⊥E 〉 for all E ∈ -(0),
the same argument yields

� = EE
[
2

E +
〈
�E,

⊥
E , ,

⊥
E

〉]
≥ EE

[
2

E + �
〈
,⊥E , ,

⊥
E

〉]
= (1 − �)�2 + �

=⇒ � ≥ �

1 − � �
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B Primer on group theory

In this section, for completeness, we shall note the basic definitions and properties of groups

that are used in this exposition.

Definition B.1 (Groups and subgroups). A set of elements � equipped with a binary operation

★ : � × �→ � is said to be a group if it satisfies the following properties:

Associativity: For all ,1 , ,2 , ,3 ∈ �, we have (,1 ★,2)★,3 = ,1 ★ (,2 ★,3).

Identity: There exists an identity element id ∈ � such that, for all , ∈ �, we have , ★ id =

id★, = ,.

Inverses: For every element , ∈ �, there is an element ,−1 ∈ � such that , ★,−1 = ,−1 ★, = id.

A subset � ⊆ � is said to be a subgroup of � if � the binary operation ★ restricted to �

satisfies the above three properties (including the fact that ℎ1 ★ ℎ2 ∈ � for all ℎ1 , ℎ2 ∈ �).

Often the binary operation ★ is omitted and products just expressed as concatenation of

elements.

Definition B.2 (Cosets). Given a subgroup � of a group �, if G ∈ � is an arbitrary element, the

left coset of � containing G, denoted by G�, is defined as the set

G� = {Gℎ : ℎ ∈ �} .

Two cosets G� and H� are identical if and only if G−1H ∈ �. Hence, any element G′ ∈ G� is also

referred to as a coset representative of G� as G′� = G�.

Right cosets are defined similarly. A subgroup � is said to be normal if the right cosets and
the left cosets agree for all G, i. e., G� = �G,∀G ∈ �.

Since two cosets of a subgroup � of � are either identical or disjoint, the set of distinct cosets

of a subgroup � of � partition the elements of �. If a subgroup � is normal, this set of cosets

forms a group �/�, called the quotient group of � in �.

For subgroups �,  of �, we will often consider the product � (or � ★  ) which refers

to the set {ℎ: : ℎ ∈ � , : ∈  }. It is worth stressing that � need not be a subgroup of � and

the above just refers to a set of elements that can be expressed as an (ordered) product of an

element in � and an element in  .

For an arbitrary subset ( of �, we will define 〈(〉 as the smallest subgroup of � that contains

the set (. This is also referred to as the group generated by (.

In general, the binary operation ★ is order dependent. Groups where ,1,2 = ,2,1 for all

,1 , ,2 ∈ � are said to be commutative or abelian groups. The following notion of commutators (and
commutator subgroups) is a way to measure how non-commutative a group � is.
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Definition B.3 (Commutators). For a pair of elements , , ℎ ∈ �, we shall define the commutator
of , , ℎ (denoted by [, , ℎ]) as

[, , ℎ] := ,−1ℎ−1,ℎ.

The commutator subgroup of �, denoted by [�, �] is the group generated by all commutators. That is,

[�, �] := 〈{[, , ℎ] : , , ℎ ∈ �}〉 .

Note that if � is abelian, then [�, �] = {id}. As mentioned earlier, the commutator subgroup

can be thought of as a way of describing how non-abelian a group is. In fact, the commutator

subgroup of � is the smallest normal subgroup � of � such that the quotient �/� is abelian

(although these are concepts that are not necessary to follow this exposition).
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