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Abstract. Intersection graphs of planar geometric objects such as intervals, disks,

rectangles and pseudodisks are well-studied. Motivated by various applications,

Butman et al. (ACM Trans. Algorithms, 2010) considered algorithmic questions

in intersection graphs of C-intervals. A C-interval is a union of C intervals—these

graphs are also referred to as multiple-interval graphs. Subsequent work by Kammer

et al. (APPROX-RANDOM 2010) considered intersection graphs of C-disks (union

of C disks), and other geometric objects. In this paper we revisit some of these

algorithmic questions via more recent developments in computational geometry.

For the minimum-weight dominating set problem in C-interval graphs, we obtain a

polynomial-time$(C log C)-approximation algorithm, improvingupon the previously

known polynomial-time C2-approximation by Butman et al. (op. cit.). In the same

class of graphs we show that it is NP-hard to obtain a (C − 1 − &)-approximation for

any fixed C ≥ 3 and & > 0.

The approximation ratio for dominating set extends to the intersection graphs of

a collection of C-pseudodisks (nicely intersecting C-tuples of closed Jordan domains).

We obtain an Ω(1/C)-approximation for the maximum-weight independent set in the
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intersection graph of C-pseudodisks in polynomial time. Our results are obtained

via simple reductions to existing algorithms by appropriately bounding the union

complexity of the objects under consideration.

1 Introduction

A number of interesting optimization problems can be modeled as packing and covering

problems involving geometric objects in the plane such as intervals, disks, rectangles, triangles,

convex polygons and pseudodisks1. Some of these problems can be studied via properties

of the intersection graph2 defined by the objects under consideration. Geometric intersection

graphs are interesting for both theoretical and practical reasons. For instance, the well-known

Koebe–Andreev–Thurston theorem shows that every planar graph can be represented as the

intersection graph of interior-disjoint disks in the plane (see Sections 13.6 and 13.7 of [34]).

Interval graphs are another well-studied class of geometric intersection graphs that are

defined by a finite set of intervals on the real line. Algorithmic problems on interval graphs have

been motivated by applications in scheduling, resource allocation, and computational biology.

Several papers [8, 9, 10, 26] have studied geometric intersection graphs in the setting where

each composite object is now the union of a set of base geometric objects. To make the discussion

concrete we first discuss C-interval graphs. For an integer parameter C ≥ 1, a C-interval is the
union of C intervals. A C-interval graph is the intersection graph of a set of C-intervals. These

graphs are also called multiple-interval graphs. They have been well-studied from graph

theoretic and algorithmic points of view. For instance, every graph with maximum degree Δ can

be represented as a C-interval graph for C = d(Δ + 1)/2e [21]. This demonstrates the modeling

power obtained by considering unions of simple geometric objects. Butman et al. [10], building

on [8, 9] (which primarily studied the maximum independent set problem), considered several

optimization problems in C-interval graphs such as minimum vertex cover, dominating set

and maximum clique. Unlike the case of interval graphs, where these problems are tractable,

the corresponding problems in C-interval graphs are NP-hard even for small values of C and

unweighted instances; this can be seen from the preceding comment on the modeling power

of C-interval graphs, and the NP-hardness of several problems on bounded-degree graphs.

Butman et al. describe polynomial-time approximation algorithms for these problems, and the

approximation ratios they obtain depend on C. We refer the reader to [10] and references therein

for a more detailed discussion on applications of multiple-interval graphs. In subsequent work,

Kammer et al. [26, 25] studied (among other models) intersection graphs of C-disks (a C-disk is a
union of C disks) and C-fat objects3. They obtained approximation algorithms for optimization

problems on these graphs such as maximum independent set, minimum vertex cover and

1A collection of pseudodisks is a set of closed Jordan domains in which the boundaries of any two in the set intersect

in at most two points, counting a point of tangency as a double intersection. Note that the property is defined by the

entire set. See also Def. 2.4.

2The intersection graph of a set of sets has a node for each set and two nodes are adjacent if the corresponding

sets intersect (their intersection is not empty).

3There are several equivalent definitions of fatness in the plane. We say that a geometric object $ is 
-fat for some


 ≥ 1, if the ratio of the radius of the smallest enclosing disk of $ to the radius of the largest disk enclosed by $, is at
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minimum dominating set. We also refer the reader to [38] for connections between geometric

intersection graphs and approximation algorithms.

We now formally define the three problems that are central to this paper. Let � = (+, �)
be an undirected graph with non-negative rational weights on the nodes. ( ⊆ + is said to be

a dominating set if for any node D ∈ + , D ∈ ( or D has a neighbor in (. The Minimum-Weight
Dominating Set (MWDS) problem is to find a dominating set of minimum weight in a given

weighted graph. A subset of nodes, � ⊆ + , is said to be an independent set if no two nodes in � are

adjacent in �. The Maximum-Weight Independent Set (MWIS) problem is to find an independent

set of maximum weight in a given weighted graph. Consider a set system (-,S), where - is a

finite ground set, and S is a set of subsets of -. Each set in S has a non-negative rational weight.

The Minimum-Weight Set Cover (MWSC) problem is to find a set ℛ∗ ⊆ S of minimum weight

such that - =
⋃
(8∈S (8 . We denote the unweighted versions (that is, all weights are unit) of the

MWDS, MWIS, and MWSC problems by MDS, MIS, and MSC, respectively.

Convention 1.1 (rational weights). In all our results, the weights are rational numbers.

Remark 1.2. The focus in this paper is on polynomial-time approximation algorithms for

a class of NP-hard optimization problems. As common in this literature, we use the term

“approximation algorithm” to refer to a deterministic polynomial-time approximation algorithmunless

we explicitly mention the running time or additional aspects such as the use of randomness or

specific oracles.

Our assumption that the weights are rational (as opposed to real) is necessitated by the fact

that our algorithms rely on solving linear programming relaxations. The emphasis in this paper

is on the approximation ratio achievable via the LP relaxation approach. For these reasons we

do not emphasize the precise polynomial running times of the algorithms.

1.1 Motivation and our contribution

In this paper we utilize powerful techniques from computational geometry [11, 12, 35] to

provide algorithmic results for C-interval graphs, C-disks and other geometric objects, in a unified

fashion. For some problems we obtain substantially improved approximation bounds that

are near-optimal. Our results extend to C-pseudodisks while techniques in earlier work that

exploited properties of intervals [10], or fatness properties of the underlying objects [26], do not

apply.

Before stating our results in full generality, we discuss the following geometric covering

problem to illustrate some of the basic ideas. Given a set of points on the line, and a set of

weighted intervals, find a minimum-weight subset of the given intervals that cover all the points.

This is a special case of MWSC, and can be solved efficiently via dynamic programming or via

mathematical programming. The natural LP relaxation in the interval case happens to yield

an integer polytope—the incidence matrix between intervals and points is totally unimodular

(TUM) (it has the consecutive ones property) [33]. Now consider the same problem where

we need to cover a given set of points by (weighted) C-intervals. Approximation algorithms

most 
. We say that ℛ is a set of fat objects, if there exists a constant 
 such that every object in ℛ is 
-fat.
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for this problem were first given by Hochbaum and Levin [23] (in the more general setting of

multicover)—they derived a C-approximation for this problem by reducing it, via the natural LP

relaxation, to the case of C = 1. As far as we are aware, this was the best known approximation

to this problem until our work. A natural question is whether the approximation ratio of C can

be improved. In this paper we show that an $(log C)-approximation can be obtained via tools

from computational geometry such as shallow-cell complexity and quasi-uniform sampling.

It is an easy observation that an MWSC instance in which each set has at most C elements can

be captured as a special case of covering points by C-intervals. Thus, for large values of C, via

known hardness results for MSC [30, 18], one obtains NP-hardness of (2 log C)-approximation

for some universal constant 2 > 0 for covering points by C-intervals. The geometric machinery

allows us to derive an $(log C)-approximation in the much more general setting of covering

points by C-pseudodisks.

We state our results for C-pseudodisks which capture several shapes of interest, including

intervals and disks. The geometric approach applies in greater generality but here we confine

our attention to pseudodisks.

• An $(log C)-approximation for minimum-weight cover of points by C-pseudodisks, in

other words, the instances of MWSC defined by points and C-pseudodisks in the plane

(Theorem 3.9).

• An $(C log C)-approximation for MWDS in C-pseudodisk graphs (Theorem 3.7). Even

for C-intervals, the best known previous approximation factor was C2 [10]. We observe

that, via a simple reduction from Hypergraph Vertex Cover, it is NP-hard to approximate

MDS within a factor better than (C − 1 − &) for any fixed & > 0 in C-interval graphs. We

also show UG-hardness4 for reaching the slightly improved approximation ratio of (C − &)
(Corollary 3.13).

• An Ω(1/C)-approximation for MWIS in C-pseudodisk graphs (Theorem 4.4). A 1/(2C)-
approximation has been known for C-intervals [9]. For more general shapes such as

disks and fat objects, the approximation bounds in [25] depend on C and on the fatness

parameters. (See [25] for the actual definition.) Our approach also works for packing

weighted C-pseudodisks into capacitated points (Theorem 4.5).

Our results are obtained via simple reductions to existing algorithms in geometric packing

and covering, however, the known algorithms use fairly sophisticated ideas. Consequently, in

some cases, the constants in the approximation guarantees we obtain may be worse compared

to the known results for special cases. On the other hand, our results are applicable to a much

more general class of geometric objects. It may be possible to improve the constants for various

special cases by examining the details more closely.

We describe the necessary geometric background in the next subsection.

4UG refers to Khot’s “Unique Games” problem [28, 29].
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1.2 Background from geometric approximation via LP relaxations

The approximability of MWDS and MWIS in general graphs is well understood and essentially

tight upper and lower bounds are known. For MWDS there is an approximation ratio of

(1 + ln =) where = is the number of nodes [36, 37], and moreover, it is NP-hard to obtain an

((1 − >(1)) ln =)-approximation [30, 18] even in the unweighted setting. In general graphs, it is

NP-hard to approximate MIS to within a factor of 1/=1−&
for any fixed & > 0 [22, 39], and the

best known approximation ratio is Ω((log
2 =)/=) for some small integer constant 2 (see [19, 6]).

MWDS and MWSC are closely related and their approximability is essentially the same.

The preceding results rule out constant-factor approximations for MWDS and MWIS in

graphs, even in the unweighted case. However, in various geometric settings it is possible

to obtain substantially improved algorithms including approximation schemes (PTASes and

QPTASes) [12, 20, 11, 2, 32, 1] and constant-factor approximations [12, 11, 20]. In this paper we

are interested in LP-based approximations for MWSC and MWIS that have been established

via techniques relying on the union complexity of the underlying geometric objects. Union

complexity measures the worst-case representation size of the union of a given set of objects of

a particular type or shape. In the setting of planar objects, the typical measure is the number of

vertices in the arrangement that appear on the boundary of the union. It is well known that

many geometric objects such as intervals (on a line), disks, and squares (in the plane) have linear

union complexity. In fact, this holds for an even larger class of sets of geometric objects, namely

collections of pseudodisks [3, 27].

Bounds on union complexity have been used to obtain constant-factor and sublogarithmic

approximations for geometric MWSC and its variants (see [15, 13, 35, 11], and [31] for a survey).

Chan and Har-Peled [12] showed that upper bounds on union complexity can also be used to

obtain improved approximations for the MWIS problem. They give an LP rounding algorithm

with approximation guarantee Ω(=/D(=)) for computing an MWIS of = objects where D(=) is an
upper bound on the worst-case union complexity of = objects under consideration. We use this

result to give an Ω(1/C)-approximation for computing MWIS of C-pseudodisks. This implies

Ω(1/C)-approximation for MWIS of C-intervals, C-disks and C-squares; however, these results

have already been known [8, 26] but these previous results are based on using certain “fatness”

properties of the underlying geometric objects, and hence do not apply to arbitrary pseudodisks.

Shallow-cell complexity (SCC) of a set system provides quantitative bounds on a certain hereditary

sparsity property [11]. A formal definion is given later in the paper. Upper bounds on SCC

have been used to obtain improved approximations for MWSC and MWDS in geometric settings

as well as some combinatorial settings. The general approach here is to round a feasible LP

solution using a framework called quasi-uniform sampling introduced by Varadarajan [35] for

geometric settings. This framework was refined and improved by Chan et al. [11]. We use this

framework, and some known results on SCC for disks and pseudodisks [20, 5], to derive our

results for MWDS and MWSC on C-pseudodisks.

Organization. Section 2 introduces some relevant notation and definitions. Section 3 describes

algorithms for covering problems MWDS and MWSC. Section 4 describes algorithms for MWIS

and a generalization.
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Figure 1: Left: S′ = {�, �, �, �} is a set of closed Jordan domains that intersect nicely, and

hence is a collection of pseudodisks. Right: S = {� ∪ �, � ∪�} is a collection of 2-pseudodisks.

2 Preliminaries

Let C be a family of sets we call “basic objects.” Given C, a C-object is defined as the union of

at most C basic objects, where C is a positive integer. We do not assume that the C basic objects

that define a specific C-object are pairwise non-intersecting; such an assumption may be helpful

in some settings but can be restrictive in others. Without loss of generality, we assume that

each C-object is a union of exactly C basic objects. We are typically interested in the case when

the basic objects come from a specific class of geometric shapes such as intervals, disks, and

pseudodisks (closed Jordan domains).

Definition 2.1 (closed Jordan domain). A subset of the plane is a closed Jordan domain if it is a

compact subset of ℝ2
whose boundary is a simple closed curve.

Definition 2.2 (nice intersection). We say that two closed Jordan domains intersect nicely if their
boundaries are either (i) disjoint or (ii) properly intersect exactly twice or (iii) are tangent exactly

once.

Definition 2.3 (C-pseudodisk). For C ≥ 1, a C-pseudodisk is the union of at most C closed Jordan

domains that pairwise intersect nicely.

Definition 2.4 (collection of pseudodisks and C-pseudodisks). Let S′ be a set of closed Jordan

domains in the plane. We call S′ a collection of pseudodisks [5] if the boundaries of any two

distinct pseudodisks in S′ intersect nicely. Let S′ be a collection of pseudodisks, and let S be a

set of objects where each object in S is the union of at most C objects from S′. We say that S is a

collection of C-pseudodisks.

Remark 2.5. When speaking of a collection S of C-pseudodisks, we understand that there is an

underlying collection S′ of pseudodisks.

The definition allows two different C-pseudodisks in S to share a common pseudodisk from

S′.
Consider a C-object $8 . We use >

(1)
8
, >
(2)
8
, . . . , >

(C)
8

to denote the objects whose union equals

$8 . Slightly abusing the notation, we also denote by $8 the set {>(1)
8
, >
(2)
8
, . . . , >

(C)
8
}. Next, we

formally define the notion of union complexity.
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C

A B
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Figure 2: The vertices, elementary arcs, and faces of dimension two formed by the collection

S′ = {�, �, �, �} of pseudodisks are shown as points (filled squares/circles), arcs, and solid

regions, respectively. For ℛ′ = {�, �, �} the vertices appearing onU(ℛ′) are shown as blue

squares.

2.1 Union complexity

The following definitions are adapted from [3, pp. 13-14]. Let S′ be a collection of pseudodisks.

Let U(S′) = ⋃
(∈S′ ( denote their union and let %U(S′) denote the boundary of the union.

Each face of %U(S′) is a maximal connected (relatively open) subset of %U(S′) that lies on the

boundaries of a fixed subset ℛ′ ⊆ S′, and avoids all other pseudodisks in in S′. The faces of
dimension 0 and 1 are called vertices and elementary arcs, respectively. We say that S′ has union
complexity D(·) for a function D : ℤ+ → ℤ+ if the following condition is true: for any subset

ℛ′ ⊆ S′, the number of vertices on %U(ℛ′) is at most D(|ℛ′ |).
In the rest of the paper we assume that D(=) ≥ = for any = ≥ 1 and that D is non-decreasing.

These are natural assumptions for the settings we consider.

For example, a set of disks—and more generally, a collection of pseudodisks—in the plane

have linear union complexity [3, 27]. The union complexity of = fat triangles is $(= log
∗ =) [4].

The union complexity of = axis-aligned rectangles in the plane can be Ω(=2).

3 Minimum-Weight Dominating Set and Set Cover

As in Butman et al. [10], we consider the following slight generalization of the MWDS that is

called the Red-Blue Dominating Set Problem. The input is an undirected bipartite intersection

graph � = (ℛ t ℬ , �), where ℛ = {'1 , . . . , '# } and ℬ = {�1 , . . . , �"} are sets of red and blue

C-objects, respectively. There is an edge between '8 ∈ ℛ and � 9 ∈ ℬ if '8 ∩ � 9 ≠ ∅. Since

each node corresponds to a (red or blue) C-object, we will use the term ‘node’ and ‘C-object’

interchangeably. Each '8 ∈ ℛ has a non-negative weight F8 . The goal is to find a subset ℛ′ ⊆ ℛ
of minimum weight such that every blue node � 9 has a neighbor in the set ℛ′. Note that the

standard MWDS problem is equivalent to the setting where ℛ = ℬ.
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3.1 LP relaxation and rounding

Letℐ = (ℛ ,ℬ) denote the given instance of the (generalized)MWDS. In an integer programming

formulation we have a {0, 1} variable G8 corresponding to a red C-object '8 which is intended

to be assigned 1 if '8 is selected in the solution, and is assigned 0 otherwise. We relax the

integrality constraints and describe the natural LP relaxation below.

minimize

∑
'8∈ℛ

F8G8

subject to

∑
'8 :�9∩'8≠∅

G8 ≥ 1, ∀� 9 ∈ ℬ (3.1)

G8 ∈ [0, 1], ∀'8 ∈ ℛ (3.2)

The LP-relaxation can be solved in polynomial time assuming that we are given the

intersection graph defined by ℐ. Let G be an optimal LP solution for the given instance

ℐ = (ℛ ,ℬ). Since G is feasible, for every blue C-object � 9 , we have

∑
'8 :�9∩'8≠∅

G8 ≥ 1. For each

� 9 ∈ ℬ, let 1′9 denote an object maximizing the quantity

∑
'8 :1

′
9
∩'8≠∅

G8 , where the ties are broken

arbitrarily. Let ℬ′ B {1′
9
: � 9 ∈ ℬ}. We emphasize that ℬ′ is a set of (1-)objects, whereas ℛ is a

set of C-objects. Note that for any 1′
9
∈ ℬ′,

∑
'8 :1

′
9
∩'8≠∅

G8 ≥ 1/C.

For any '8 ∈ ℛ, let G′8 = min{CG8 , 1}, and let G′ denote the resulting solution. Then, for any

1′
9
∈ ℬ′,

∑
'8 :1

′
9
∩'8≠∅

G′8 ≥ 1. The following observation follows from the definition of G′.

Observation 3.1. The solution G′ is feasible for the instanceℐ′ = (ℛ ,ℬ′), andwe have that∑'8∈ℛ F8G
′
8
≤

C ·∑'8∈ℛ F8G8 .

The preceding step to reduce to ℐ′ is essentially the same as in [10].

3.1.1 Shallow-cell complexity

Definition 3.2 (Shallow-cell complexity). Let � ∈ {0, 1}"×# denote an " × # (0, 1)-matrix. Let

1 ≤ : ≤ = ≤ # . Let ( be any set of = columns and let �( be the matrix restricted to the columns

of (. If the number of distinct rows in �( with at most : ones is bounded by 5 (=, :) for any
choice of =, : and (, then � is said to have the shallow-cell complexity 5 (=, :).

Now, we describe how to round G′ to an integral solution via quasi-uniform sampling

technique. The standard LP relaxation for an MWSC instance (-,S′) is as follows.
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minimize

∑
(8∈S′

F8G8

subject to

∑
(83 9

G8 ≥ 1, ∀9 ∈ - (3.3)

G8 ∈ [0, 1], ∀(8 ∈ S′ (3.4)

Let � ∈ {0, 1}"×# denote the constraint matrix in the LP relaxation above. This is the

incidence matrix of the set system {(8 | 1 ≤ 8 ≤ #} : each row of � corresponds to an element,

and each column corresponds to a set. The entry �8 9 = 1 if the element 9 is contained in (8 ,

otherwise �8 9 = 0.

The following crucial definition is from [11].

Definition 3.3 (Shallow-cell complexity of MWSC instance). Let � be the constraint matrix

of the MWSC instance ℐ. We define the shallow-cell complexity of ℐ to be the shallow-cell

complexity of �.

Using bounds on the shallow-cell complexity of an MWSC instance, it is possible to round a

feasible LP solution using a technique known as quasi-uniform sampling [11, 35].

Theorem 3.4 (Chan et al. [11], Varadarajan [35]). Consider an MWSC instance with shallow-cell
complexity 5 (=, :) = =)(=) · :2 , where )(=) = $(=), and 2 ≥ 0 is a constant. Then, there exists a
polynomial-time algorithm to round a given fractional solution to the LP relaxation for this instance to
an integral solution whose cost is within an $(max{log)(#), 1}) factor of the cost of the fractional
solution, where the constant hidden in the big-Oh notation depends on the exponent 2, and # is the
number of sets in the given instance.

Usually, )(=) is a function of = such that )(=) = $(=). However, the same guarantee holds

even when ) is independent of = . When we apply this theorem, we will set )(=) = $(C4),
which is independent of =.

Now, we consider an instance ℐ′ = (ℛ ,ℬ′) of the MWDS problem obtained in the previous

section. Recall that ℛ is a set of C-objects and ℬ is a set of 1-objects. Now, let ℛ′ = {A(:)
8
∈ '8 :

'8 ∈ ℛ} denote the set of constituent red 1-objects from ℛ. Let ℐ′′ = (ℛ′,ℬ′) denote the MWDS

instance thus obtained. Notice that an MWDS instance can also be thought of as an MWSC

instance. We first prove the following simple lemma.

Lemma 3.5. Let ℐ′,ℐ′′ be MWDS instances as defined above. If the shallow-cell complexity of ℐ′′ is
5 (=, :), then the shallow-cell complexity of the corresponding instance ℐ′ is ,(=, :) ≤ 5 (=C, :C) for any
1 ≤ : ≤ = ≤ # .

Proof. We prove this fact from the definition of the shallow-cell complexity. Let �ℐ
′
denote

the constraint matrix corresponding to the instance ℐ′. Fix some positive integers =, : such

that 1 ≤ : ≤ = ≤ |ℛ|, and fix a set ( ⊆ ℛ of columns (i. e., C-objects), where |( | = =. Let �ℐ
′

(
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denote the constraint matrix restricted to the columns corresponding to (. Let % denote the set

of distinct rows (i. e., blue objects) in �ℐ
′

(
with at most : ones. We seek to bound |% |.

Let (′ = {A(:)
8
∈ '8 : '8 ∈ (} be the corresponding constituent 1-objects. Note that (′ ⊆ ℛ′,

and |(′ | ≤ =C. Let �ℐ′′ denote the constraint matrix corresponding to the instance ℐ′′ and let

�ℐ
′′

(′ denote �ℐ
′′
restricted to the columns of (′. Let %′ denote the set of rows in �ℐ

′′

(′ with at

most :C ones. Note that, if a row has at most : ones in �ℐ
′

(
, then it corresponds to exactly one

row in %′. Therefore, |% | ≤ |%′ | ≤ 5 (=C, :C), where the last inequality follows from the definition

of the shallow-cell complexity of the instance ℐ′′. �

Now, we state the known bounds on the shallow-cell complexity of an MWDS instance

defined by red and blue sets of pseudodisks.

Theorem 3.6 (Aronov et al. [5]). The shallow-cell complexity of an MWDS instance defined by a
collection of pseudodisks is at most 5 (=, :) = $(=:3).

Combining Theorem 3.4, Theorem 3.6, and Lemma 3.5, we obtain the following result.

Theorem 3.7. There exists a polynomial-time $(C log C)-approximation algorithm for the Red-Blue
Dominating Set problem defined by a collection of C-pseudodisks.

Proof. Let ℐ = (ℛ ,ℬ) be the original instance and let G be an optimal LP solution. Define

instance ℐ′ = (ℛ ,ℬ′) and the corresponding LP solution G′ as before. From Observation 3.1,

we have that

∑
'8∈ℛ F8G

′
8
≤ C ·∑'8∈ℛ F8G8 . By Lemma 3.5 the shallow-cell complexity of ℐ′ is

,(=, :) ≤ 5 (=C, :C), where 5 (=, :) = $(=:3) by Theorem 3.6. Therefore, ,(=, :) ≤ $(=C4:3).
Now, using the algorithm from Theorem 3.4 with )(=) = $(C4), we can round G′ to an integral

solution of cost at most $(log C) · ∑'8∈ℛ F8G
′
8
≤ $(C log C) · ∑'8∈ℛ F8G8 , where the inequality

follows from Observation 3.1. �

Remark 3.8. Suppose we have an instance of (ℛ ,ℬ) of generalizedMWDSwhere each red object

is a C'-pseudodisk and each blue object is a C�-pseudodisk. Then the preceding analysis can be

extended to obtain an $(C� log C')-approximation. We note that for the analogous version of

intervals, a (C� · C')-approximation was obtained in [10].

3.1.2 Geometric MWSC with C-objects.

Let S′ denote a set of (1-)objects. Consider a Geometric MWSC instance (-,S), where - is

a set of points, and S is a set of # sets, each of which is obtained by taking the union of at

most C (1-)objects from S′. Each set in S has a non-negative weight. The goal is to find a

minimum-weight set ℛ ⊆ S that covers the set of points -. Furthermore, suppose the set system

(-,S′) has shallow-cell complexity 5 (=, :) = =:2 , for some fixed constant 2. This includes

geometric objects such as intervals on a line and (pseudo-)disks in the plane. Then, using similar

arguments as we did for MWDS, one can obtain a bound of $(=:2C2+1) on the shallow-cell

complexity of the MWSC instance (-,S). Then Theorem 3.4 implies an $(log C)-approximation

for the MWSC instance (-,S).
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When S′ is a set of fat triangles, the shallow-cell complexity of the system (-,S′) can
be bounded by 5 (=, :) = = log

∗ = · :2 , for some fixed constant 2 [4, 11]. We can then bound

the shallow-cell complexity of the MWSC instance (-,S) by 5 (=C, :C) = = log
∗(=C) · C2+1:2 .

Then, Theorem 3.4 implies an $(log(C2+1 · log
∗(#C))) = $(log C + log log

∗(#))-approximation.

Therefore, we obtain the following result.

Theorem 3.9. There is a polynomial-time $(log C)-approximation algorithm for MWSC instances
defined by covering points by C-pseudodisks. For covering points by C-fat-triangles, there is an $(log C +
log log

∗(#))-approximation where # is the number of triangles in the instance.

The preceding result improves the C-approximation for covering points by C-intervals [23].

The approximation ratio of $(log C) is tight up to constant factors; it is NP-hard to obtain an

>(log C)-approximation for covering points by C-intervals. This follows via a reduction from

MWSC [10].

3.2 Integrality of MWDS LP for intervals

Let ℐ = (ℛ ,ℬ) be an MWDS instance where ℛ and ℬ are set of intervals on a line. In this

subsection, we prove that the MWDS LP for intervals is integral. Butman et al. [10] proved this

fact using a primal-dual algorithm that constructs an integral solution of the same cost as the LP.

Here we give a simpler proof via the structure of the constraint matrix.

First, we preprocess blue intervals such that no blue interval is completely contained inside

another blue interval. To understand this, suppose �1 , �2 ∈ ℬ are two intervals such that

�1 ⊂ �2. Then, any feasible integral solution must include a red interval ' that intersects �1,

and thus �2. Furthermore, the LP constraint corresponding to �2 is implied by the constraint

corresponding to �1. Therefore, the feasible regions of the LP’s corresponding to ℐ and the

instance obtained by removing �2 are the same. This justifies removing �2 from ℐ. Repeating
this removal step as along as one blue interval is contained in another blue interval, we obtain

an instance ℐ′.
In the following theorem we show that the constraint matrix of the LP corresponding to ℐ′

satisfies the consecutive ones property, and thus it is totally unimodular. This implies that the

LP corresponding to ℐ′ (and therefore ℐ) is integral (see, e.g., [33]).

Theorem 3.10. Let ℐ = (ℛ ,ℬ) be an MWDS instance, where ℛ and ℬ are sets of (1-)intervals. Then,
the MWDS LP is integral.

Proof. Let us denote the left (resp. right) endpoint of an interval � by Left(�) (resp. Right(�)). Let
� denote the constraint matrix corresponding to the preprocessed instance, where the rows

(i. e., blue intervals) are sorted in the non-decreasing order of their left endpoints. We show that

� has the consecutive ones property for any column.

Consider any column (i. e., a red interval) '. Let � 9 and �: denote the first (leftmost) and

last (rightmost) blue intervals intersecting ' in this order respectively. Note that 9 ≤ :. Now,

suppose for contradiction that there is an interval �ℓ with 9 < ℓ < : that does not intersect '.

Let us consider two cases.
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If Right(�ℓ ) < Left('), then we have that Left(� 9) < Left(�ℓ ) ≤ Right(�ℓ ) < Left(') ≤ Right(� 9).
Here, the third and fourth inequalities follow from the assumptions that ' ∩ �ℓ = ∅ and
' ∩ � 9 ≠ ∅ respectively. However, this implies that �ℓ ⊂ � 9 , which is a contradiction.

On the other hand, if Right(�ℓ ) > Left('), then it must be the case that Left(�ℓ ) > Right(');
otherwise ' ∩ �ℓ ≠ ∅, which is a contradiction. However, this implies that Left(') ≤ Right(') <
Left(�ℓ ) ≤ Left(�:) ≤ Right(�:), where the third inequality follows from the fact that ℓ < :.

However, this contradicts the assumption that �: ∩ ' ≠ ∅.
Thus, the column corresponding to ' satisfies the consecutive ones property. �

3.3 Hardness results for MWDS

We show hardness of approximation for MWDS in C-interval graphs via a simple reduction. We

first consider the Red-Blue Dominating Set problem for C-intervals which illustrates the basic

idea. We then modify it slightly to prove hardness for the MWDS problem.

Let (-,S) be an 5 -uniform instance of MWSC. That is, any element in - is contained in

exactly 5 sets ofS. We reduce this to the Red-Blue Dominating Set problem as follows. For every

set (8 ∈ S, we add a red interval '8 = [H8 , I8] on the line. The red intervals are non-overlapping;

concretely, it suffices to choose H8 = 28 and I8 = 28 + 1 for each 8. We set the weight of '8 to be

that of (8 . For any element 4 9 ∈ -, we add a exactly 5 blue points coinciding with points I8 ,

where 4 9 ∈ (8 . Note that a blue 5 -point is covered iff we select a red interval that covers one of

its constituent 5 points. Thus, there is a one-to-one correspondence between feasible solutions

to the original MWSC instance, and feasible solutions to the Red-Blue dominating set instance

that is created. The following hardness results are known for the 5 -uniform MWSC problem

even when sets have unit weights.

Theorem 3.11.

1. It is NP-hard to obtain a ( 5 − 1 − &)-approximation for 5 -uniform Set Cover, for any fixed 5 ≥ 3

and & > 0 (Dinur et al. [16]).

2. Furthermore, it is UG-hard to obtain an ( 5 − &)-approximation for any fixed 5 ≥ 2 and & > 0

(Khot and Regev [29]).

Therefore, from the preceding reduction, we get the following hardness results for the

Red-Blue Dominating Set problem, even when all weights are unit.

Theorem 3.12. It is NP-hard to obtain a (C − 1 − &)-approximation for the special case of Red-Blue
Dominating Set problem where ℛ is a set of intervals and ℬ is a set of C-points. Moreover, in the same
setting, it is UG-hard to obtain an (C − &)-approximation, for any C ≥ 2 and & > 0.

Corollary 3.13. It is NP-hard to obtain a (C − 1 − &)-approximation for MWDS in C-interval graphs.
Moreover, in the same setting, it is UG-hard to obtain an (C − &)-approximation, for any C ≥ 2 and & > 0.

Proof. We slightly modify the preceding reduction from C-uniform MWSC to the Red-Blue

Dominating Set problem. For each red interval '8 we also add a green point �8 that coincides
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with H8 , the left end point of '8 , and we set its weight to 0. We set the weight of each blue C-point

to be twice the total weight of all the sets in the MWSC instance (conceptually the weight is∞).

The MWDS instance now consits of the red intervals, the blue C-points, and the green points.

The green points have zero weight and hence picking all of them will ensure that all green

points and red intervals are dominated. The green points cannot cover any of the blue points.

Since the blue C-points have very large weight, it is cheaper to pick all the red intervals than pick

any of them. Thus we can restrict attention to dominating sets that include all the green points

and a subset of the red intervals which together cover the blue C-points. Thus, C-uniform MWSC

reduces in an approximation preserving fashion to MWDS in C-interval graphs. �

4 Maximum-Weight Independent Set

We consider MWIS of C-objects. Here, we are given a set S = {(1 , . . . , (=}, where each (8 ∈ S is

a C-object, and has a non-negative weight F8 . In this section, we assume that we are given the

geometric representation of the C-objects in S. The goal is to find maximum-weight independent

set S′ ⊆ S in the intersection graph of S.
We confine attention to the case when the base objects are closed Jordan domains. LetV(S)

denote the set of vertices on %U(S). First, we describe a natural LP relaxation for this problem

(see for instance [12]).

maximize

∑
(8∈S

F8G8

subject to

∑
(83?

G8 ≤ 1, ∀? ∈ V(S) (4.1)

G8 ∈ [0, 1], ∀(8 ∈ S (4.2)

We will assume that the preceding LP relaxation can be solved in polynomial time for

instances of interest. This is easy to see for geometric settings in which the vertices of the

arrangement S can be explicitly computed in polynomial time.

We have a simple observation that relates the union complexities of C-objects and the

corresponding (1-)objects.

Observation 4.1. Let S be a set of C-objects, and suppose the set of underlying (1-)objects has union
complexity D(·). Then, the union complexity of any : objects in S is at most D(:C).

Proof. Let ℛ ⊆ S be any subset of C-objects. Let ℛ′ = {A(:)
8
∈ '8 : '8 ∈ '} denote the underlying

set of (1-)objects. Note that |'′ | ≤ C · |' |. Since the underlying set of (1-)objects has union

complexity D(·), the number of arcs on the boundary of '′ is at most D(|'′ |) ≤ D(C · |' |). �

Chan and Har-Peled [12] describe an algorithm to round a feasible fractional solution to the

LP relaxation which leads to the following guarantee.
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Theorem 4.2 (Chan and Har-Peled [12]). There is a polynomial-time Ω(=/D(=))-approximation
algorithm for MWIS in the intersection graph of a set of = closed Jordan domains with union complexity
D(·).

In particular, this implies an Ω(1)-approximation for MWIS in the intersection graph of

pseudodisks, since pseudodisks have linear union complexity [3, 27]. However, we cannot use

the theorem directly, since a C-pseudodisk is not necessarily a closed Jordan domain. Although

the result in [12] easily extends to our setting via Observation 4.1, for the sake of completeness,

we briefly sketch the main reason. The following following technical lemma from [12] is the

main ingredient in the proof of Theorem 4.2.

Lemma 4.3 (Lemma 4.1 from [12]). Let S be a set of closed Jordan domains, and let {G8 : (8 ∈ S} be a
feasible solution to the MWIS LP relaxation. Furthermore, let ℛ ⊆ S be any subset. Then, there is a
universal constant 2 such that

∑
(?,8, 9)∈V(ℛ) G8G 9 ≤ 2 · D(ℰ(ℛ)), where ℰ(ℛ) =

∑
(8∈ℛ G8 , and (?, 8, 9)

denotes a vertex ? formed by the intersection of closed Jordan domains (8 and ( 9 in the arrangement
V(ℛ).

Lemma 4.3 is the only place in the proof of Theorem 4.2 which uses the assumption that S
is a set of closed Jordan domains. In other words, a bound on

∑
(?,8, 9)∈V(ℛ) G8G 9 in terms of the

union complexity, as in the statement of the lemma, readily implies anΩ(=/D(=))-approximation

for the respective set of objects. We need the generalization of Lemma 4.3 which works when

S is a collection of C-pseudodisks. The proof of the lemma is based on a simple yet clever

random sampling argument and does not rely on the objects being closed Jordan domains.

Thus, the lemma holds when S is a collection of C-pseudodisks; indeed the lemma holds for

C-objects where each object is a closed Jordan domain. We can therefore infer an Ω(=/D(=))
approximation for MWIS in the intersection graph of = C-pseudodisks, where D(·) denotes the
union complexity of C-pseudodisks.

Finally, recall that pseudodisks have linear union complexity [3, 27]. Therefore, Observa-

tion 4.1, implies that a collection of = C-pseudodisks have $(=C) union complexity. Therefore,

we get the following theorem.

Theorem 4.4. There is a polynomial-timeΩ(1/C)-approximation algorithm for MWIS in the intersection
graph of C-pseudodisks.

Packing C-objects. We consider a related problem called Maximum-Weight Region Packing. We

are given a set S of C-objects, and a set of points %. Each C-object (8 has a weight F8 and each

point ? ∈ % has a capacity 2(?), which is a positive integer. The goal is to find amaximum-weight

set S′ of C-objects, such that for each point ? ∈ %, the number of regions of S′ that contain
? is at most 2(?). Note that MWIS is a special case when % = V(() is the set of all points in

arrangement and 2(?) = 1 for each ? ∈ %.
Extending the LP rounding algorithm of Chan andHar-Peled [12] for theMWIS problem, Ene

et al. [17] gave an Ω(( =
D(=) )

1/�)-approximation for Maximum-Weight Region Packing problem,

where � is the minimum capacity of any point. Using similar arguments as in MWIS, we obtain

the following result.

THEORY OF COMPUTING, Volume 18 (18), 2022, pp. 1–19 14

http://dx.doi.org/10.4086/toc


ALGORITHMS FOR INTERSECTION GRAPHS OF C-INTERVALS AND C-PSEUDODISKS

Theorem 4.5. There is a polynomial-time Ω(1/C1/�)-approximation algorithm for Maximum-Weight
Region Packing with C-pseudodisks.

5 Concluding remarks

In geometric settings, quasi-uniform sampling has been used for Set Multicover [7], and other

related ideas have been used for Partial Set Cover [24, 14]. Our results for MWDS and MWSC

for C-objects can be extended to these settings. We briefly sketch the ideas.

The results in [24, 14] establish a generic high-level reduction: an 
-approximation via the

natural LP relaxation for MWSC can be translated into an $(
)-approximation for Partial Set

Cover for hereditary instances. The geometric instances considered here are hereditary, and

hence our results for MWSC extend to Partial Set Cover.

Set Multicover is a generalization of Set Cover. In the geometric setting of interest here,

each point ? has integer demand 3? ≥ 1, and the goal is to choose a minimum-weight subset

of objects so that each point is contained in at least 3? objects. Bansal and Pruhs [7] extended

the shallow-cell complexity based framework from Set Cover to Set Multicover. Since we prove

our results by establishing shallow-cell complexity for C-objects, the results in [7] extend to Set

Multicover with C-pseudodisks.

Finally, we note that even for the special case of MWDS of C-intervals, there is a gap between

the upper and lower bounds on polynomial-time approximation ratios that we established in

this paper: $(C log C) and Ω(C). Resolving this gap is an interesting open question. Obtaining

smaller leading constants in the approximation ratios, and avoiding the somewhat complicated

machinery of union complexity, for special cases such as C-intervals, is also of interest.

Acknowledgements: We thank Laci Babai for several suggestions and comments that improved

the clarity of the paper.

References

[1] Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese: Approximation schemes

for independent set and sparse subsets of polygons. J. ACM, 66(4):29:1–40, 2019.

[doi:10.1145/3326122] 5

[2] Anna Adamaszek and Andreas Wiese: Approximation schemes for maximum weight

independent set of rectangles. In Proc. 54th FOCS, pp. 400–409. IEEE Comp. Soc., 2013.

[doi:10.1109/FOCS.2013.50] 5

[3] Pankaj K. Agarwal, János Pach, and Micha Sharir: State of the union (of geometric

objects): A review. In Jacob E. Goodman, János Pach, and Richard Pollack, editors,

Surveys in Discrete and Computational Geometry: Twenty Years Later, pp. 9–48. Amer. Math.

Soc., 2007. Volume DOI. 5, 7, 14

THEORY OF COMPUTING, Volume 18 (18), 2022, pp. 1–19 15

http://dx.doi.org/10.1145/3326122
http://dx.doi.org/10.1109/FOCS.2013.50
http://dx.doi.org/10.1090/conm/453
http://dx.doi.org/10.4086/toc


CHANDRA CHEKURI AND TANMAY INAMDAR

[4] Boris Aronov, Mark de Berg, Esther Ezra, and Micha Sharir: Improved bounds for

the union of locally fat objects in the plane. SIAM J. Comput., 43(2):543–572, 2014.
[doi:10.1137/120891241] 7, 11

[5] Boris Aronov, Anirudh Donakonda, Esther Ezra, and Rom Pinchasi: On pseudo-disk

hypergraphs. Comput. Geom., 92:101687, 2021. [doi:10.1016/j.comgeo.2020.101687] 5, 6, 10

[6] Nikhil Bansal, Anupam Gupta, and Guru Guruganesh: On the Lovász theta func-

tion for independent sets in sparse graphs. SIAM J. Comput., 47(3):1039–1055, 2018.
[doi:10.1137/15M1051002] 5

[7] Nikhil Bansal and Kirk Pruhs: Weighted geometric set multi-cover via quasi-uniform

sampling. J. Comput. Geom., 7(1):221–236, 2016. [doi:10.20382/jocg.v7i1a11] 15

[8] Reuven Bar-Yehuda, Magnús M. Halldórsson, Joseph Naor, Hadas Shachnai,

and Irina Shapira: Scheduling split intervals. SIAM J. Comput., 36(1):1–15, 2006.

[doi:10.1137/S0097539703437843] 2, 5

[9] Reuven Bar-Yehuda and Dror Rawitz: Using fractional primal-dual to sched-

ule split intervals with demands. Discr. Optimization, 3(4):275–287, 2006.

[doi:10.1016/j.disopt.2006.05.010] 2, 4

[10] Ayelet Butman, Danny Hermelin, Moshe Lewenstein, and Dror Rawitz: Optimiza-

tion problems in multiple-interval graphs. ACM Trans. Algorithms, 6(2):40:1–18, 2010.
[doi:10.1145/1721837.1721856] 2, 3, 4, 7, 8, 10, 11

[11] Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe: Weighted

capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In

Proc. 23rd Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’12), pp. 1576–1585. SIAM,

2012. [doi:10.1137/1.9781611973099.125] 3, 5, 9, 11

[12] Timothy M. Chan and Sariel Har-Peled: Approximation algorithms for Maximum Inde-

pendent Set of pseudo-disks. Discr. Comput. Geom., 48(2):373–392, 2012. [doi:10.1007/s00454-
012-9417-5] 3, 5, 13, 14

[13] Chandra Chekuri, Kenneth L. Clarkson, and Sariel Har-Peled: On the set mul-

ticover problem in geometric settings. ACM Trans. Algorithms, 9(1):9:1–17, 2012.

[doi:10.1145/2390176.2390185] 5

[14] Chandra Chekuri, Kent Quanrud, and Zhao Zhang: On approximating partial set cover

and generalizations, 2019. [arXiv:1907.04413] 15

[15] Kenneth L. Clarkson and Kasturi R. Varadarajan: Improved approximation algorithms

for geometric set cover. Discr. Comput. Geom., 37(1):43–58, 2007. [doi:10.1007/s00454-006-
1273-8] 5

THEORY OF COMPUTING, Volume 18 (18), 2022, pp. 1–19 16

http://dx.doi.org/10.1137/120891241
http://dx.doi.org/10.1016/j.comgeo.2020.101687
http://dx.doi.org/10.1137/15M1051002
http://dx.doi.org/10.20382/jocg.v7i1a11
http://dx.doi.org/10.1137/S0097539703437843
http://dx.doi.org/10.1016/j.disopt.2006.05.010
http://dx.doi.org/10.1145/1721837.1721856
http://dx.doi.org/10.1137/1.9781611973099.125
http://dx.doi.org/10.1007/s00454-012-9417-5
http://dx.doi.org/10.1007/s00454-012-9417-5
http://dx.doi.org/10.1145/2390176.2390185
http://arxiv.org/abs/1907.04413
http://dx.doi.org/10.1007/s00454-006-1273-8
http://dx.doi.org/10.1007/s00454-006-1273-8
http://dx.doi.org/10.4086/toc


ALGORITHMS FOR INTERSECTION GRAPHS OF C-INTERVALS AND C-PSEUDODISKS

[16] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev: A new multilayered

PCP and the hardness of hypergraph vertex cover. SIAM J. Comput., 34(5):1129–1146, 2005.
[doi:10.1137/S0097539704443057] 12

[17] Alina Ene, Sariel Har-Peled, and Benjamin Raichel: Geometric packing under nonuniform

constraints. SIAM J. Comput., 46(6):1745–1784, 2017. [doi:10.1137/120898413] 14

[18] Uriel Feige: A threshold of ln = for approximating set cover. J. ACM, 45(4):634–652, 1998.

[doi:10.1145/285055.285059] 4, 5

[19] Uriel Feige: Approximating maximum clique by removing subgraphs. SIAM J. Discr. Math.,
18(2):219–225, 2004. [doi:10.1137/S089548010240415X] 5

[20] Matt Gibson and Imran A. Pirwani: Algorithms for dominating set in disk graphs: Breaking

the log = barrier. In Proc. 18th Eur. Symp. Algorithms (ESA’10), pp. 243–254. Springer, 2010.
[doi:10.1007/978-3-642-15775-2_21] 5

[21] Jerrold R. Griggs and Douglas B. West: Extremal values of the interval number of a graph.

SIAM J. Algebr. Discr. Methods, 1(1):1–7, 1980. [doi:10.1137/0601001] 2

[22] Johan Håstad: Clique is hard to approximate within =1−�
. Acta Math., 182(1):105–142, 1999.

[doi:10.1007/BF02392825] 5

[23] Dorit S. Hochbaum and Asaf Levin: Cyclical scheduling and multi-shift scheduling:

Complexity and approximation algorithms. Discr. Optimization, 3(4):327–340, 2006.

[doi:10.1016/j.disopt.2006.02.002] 4, 11

[24] Tanmay Inamdar and Kasturi R. Varadarajan: On partial covering for geometric set

systems. In Proc. 34th Internat. Symp. Comput. Geom. (SoCG’18), pp. 47:1–14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. [doi:10.4230/LIPIcs.SoCG.2018.47] 15

[25] Frank Kammer and Torsten Tholey: Approximation algorithms for intersection graphs.

Algorithmica, 68(2):312–336, 2014. Preliminary version in [26]. [doi:10.1007/s00453-012-

9671-1] 2, 4

[26] Frank Kammer, Torsten Tholey, and Heiko Voepel: Approximation algorithms for

intersection graphs. In Proc. 13th Internat. Workshop on Approximation Algorithms for Combinat.
Opt. Probl. (APPROX’10), pp. 260–273. Springer, 2010. [doi:10.1007/978-3-642-15369-3_20]
2, 3, 5, 17

[27] Klara Kedem, Ron Livne, János Pach, and Micha Sharir: On the union of Jordan regions

and collision-free translational motion amidst polygonal obstacles. Discr. Comput. Geom.,
1:59–70, 1986. [doi:10.1007/BF02187683] 5, 7, 14

[28] Subhash Khot: On the power of unique 2-prover 1-round games. In Proc. 34th STOC, pp.
767–775. ACM Press, 2002. [doi:10.1145/509907.510017] 4

THEORY OF COMPUTING, Volume 18 (18), 2022, pp. 1–19 17

http://dx.doi.org/10.1137/S0097539704443057
http://dx.doi.org/10.1137/120898413
http://dx.doi.org/10.1145/285055.285059
http://dx.doi.org/10.1137/S089548010240415X
http://dx.doi.org/10.1007/978-3-642-15775-2_21
http://dx.doi.org/10.1137/0601001
http://dx.doi.org/10.1007/BF02392825
http://dx.doi.org/10.1016/j.disopt.2006.02.002
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.47
http://dx.doi.org/10.1007/s00453-012-9671-1
http://dx.doi.org/10.1007/s00453-012-9671-1
http://dx.doi.org/10.1007/978-3-642-15369-3_20
http://dx.doi.org/10.1007/BF02187683
http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.4086/toc


CHANDRA CHEKURI AND TANMAY INAMDAR

[29] Subhash Khot and Oded Regev: Vertex cover might be hard to approximate to within 2− &.
J. Comput. System Sci., 74(3):335–349, 2008. [doi:10.1016/j.jcss.2007.06.019] 4, 12

[30] Dana Moshkovitz: The Projection Games Conjecture and the NP-hardness

of ln =-approximating set-cover. Theory of Computing, 11(7):221–235, 2015.

[doi:10.4086/toc.2015.v011a007] 4, 5

[31] Nabil H. Mustafa and Kasturi R. Varadarajan: Epsilon-approximations and epsilon-nets.

In Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete
and Computational Geometry. Chapman and Hall/CRC, 3rd edition, 2017. Taylor–Francis.

[arXiv:1702.03676] 5

[32] Aniket Basu Roy, Sathish Govindarajan, Rajiv Raman, and Saurabh Ray: Packing

and covering with non-piercing regions. Discr. Comput. Geom., 60(2):471–492, 2018.

[doi:10.1007/s00454-018-9983-2] 5

[33] Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. 2003. Springer. 3,
11

[34] William P. Thurston: The Geometry and Topology of Three-Manifolds. 1979. Princeton U.

Press. 2

[35] Kasturi R. Varadarajan: Weighted geometric set cover via quasi-uniform sampling. In

Proc. 42nd STOC, pp. 641–648. ACM Press, 2010. [doi:10.1145/1806689.1806777] 3, 5, 9

[36] Vijay V. Vazirani: Approximation Algorithms. Springer, 2013. 5

[37] David P. Williamson and David B. Shmoys: The Design of Approximation Algorithms. Cam-

bridge Univ. Press, 2011. LINK. 5

[38] Yuli Ye and Allan Borodin: Elimination graphs. ACM Trans. Algorithms, 8(2):14:1–23, 2012.
[doi:10.1145/2151171.2151177] 3

[39] David Zuckerman: Linear degree extractors and the inapproximability of Max Clique

and chromatic number. Theory of Computing, 3(6):103–128, 2007. Preliminary version in

STOC’06. [doi:10.4086/toc.2007.v003a006] 5

THEORY OF COMPUTING, Volume 18 (18), 2022, pp. 1–19 18

http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.4086/toc.2015.v011a007
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315119601-47/epsilon-approximations-epsilon-nets-nabil-mustafa-kasturi-varadarajan?context=ubx&refId=a643aadf-361a-4580-994b-dbac49f035ed
http://arxiv.org/abs/1702.03676
http://dx.doi.org/10.1007/s00454-018-9983-2
https://link.springer.com/book/9783540443896
http://library.msri.org/nonmsri/gt3m/index.html
http://library.msri.org/nonmsri/gt3m/index.html
http://dx.doi.org/10.1145/1806689.1806777
https://www.designofapproxalgs.com/
http://dx.doi.org/10.1145/2151171.2151177
https://doi.org/10.1145/1132516.1132612
http://dx.doi.org/10.4086/toc.2007.v003a006
http://dx.doi.org/10.4086/toc


ALGORITHMS FOR INTERSECTION GRAPHS OF C-INTERVALS AND C-PSEUDODISKS

AUTHORS

Chandra Chekuri

Professor

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois, United States

chekuri illinois edu

https://chekuri.cs.illinois.edu/

Tanmay Inamdar5

Researcher

Department of Informatics,

University of Bergen

Bergen, Norway

Tanmay Inamdar uib no

ABOUT THE AUTHORS

Chandra Chekuri received his B. Tech in Computer Science and Engineering from

Indian Institute of Technology, Madras (now Chennai) in 1993 and received

his Ph.D. in Computer Science from Stanford University in 1998 under the

supervision of the late Rajeev Motwani. After finishing his Ph.D. he worked

eight formative years at Lucent Bell Labs before moving to the University of

Illinois. He mainly works in algorithm design, combinatorial optimization,

graphs, and mathematical programming.

Tanmay Inamdar received his Ph.D. in Computer Science from The University of

Iowa in 2020, where he was advised by Kasturi Varadarajan. Currently he is

working as a Researcher at The University of Bergen in Norway. His research

interests include Approximation Algorithms, Computational Geometry, and

Parameterized Algorithms.

5This work was done when the author was a Ph.D. student at The University of Iowa, during a visit to University

of Illinois, Urbana-Champaign.

THEORY OF COMPUTING, Volume 18 (18), 2022, pp. 1–19 19

https://chekuri.cs.illinois.edu/
http://www.cse.iitm.ac.in/
https://www.iitm.ac.in/
https://cs.stanford.edu/
https://www.stanford.edu/
https://en.wikipedia.org/wiki/Rajeev_Motwani
https://www.bell-labs.com/about/history-bell-labs/
https://cs.uiowa.edu
https://uiowa.edu/
https://uiowa.edu/
https://homepage.cs.uiowa.edu/~kvaradar/
https://www.uib.no/
http://dx.doi.org/10.4086/toc

	Introduction
	Motivation and our contribution
	Background from geometric approximation via LP relaxations

	Preliminaries
	Union complexity

	Minimum-Weight Dominating Set and Set Cover
	LP relaxation and rounding
	Shallow-cell complexity
	Geometric MWSC with t-objects.

	Integrality of MWDS LP for intervals
	Hardness results for MWDS

	Maximum-Weight Independent Set
	Concluding remarks
	References

