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1 Introduction

Most of the fundamental questions in complexity theory hinge on the relationship between deterministic
and nondeterministic computation. The intermediate notion of symmetric computation was introduced by
Lewis and Papadimitriou [23]. (Informally, a nondeterministic machine is “symmetric” if the inverse
of every legal move is also a legal move; more careful definitions appear in Section 2.) Lewis and
Papadimitriou introduced symmetry primarily as a tool to characterize the complexity of the graph
accessibility problem for undirected graphs; they showed that this problem is complete for Symmetric
Logspace1 (SL). The question of the relationship between SL and deterministic logspace (L) was finally
answered by Reingold [26], who showed that SL = L.

A preliminary version of this work appeared in Proc. IEEE Conf. on Computational Complexity (CCC’10).
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1Observe that this holds true for the pure reachability problem only. The shortest path problem for undirected graphs is

complete for nondeterministic logspace (NL)! (See, e. g., [31].)
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In contrast to the situation with space-bounded computation, where symmetric computation coincides
with determinism, in the case of time bounded computation symmetry is as powerful as unrestricted
nondeterminism ([23]). Briefly, this is because if there is no space restriction a machine can keep track of
the entire sequence of nondeterministic choices, which makes the computation graph tree-like. Hence,
walking “backwards” along edges in the computation graph does not introduce new (erroneous) paths
from the start configuration to an accepting state.

In this paper, we consider the role of symmetry in another setting that highlights the potential differ-
ence in power between deterministic and nondeterministic computation: Log(CFL) (a nondeterministic
class) and Log(DCFL) (the corresponding deterministic class). Our main result is that symmetry and
nondeterminism coincide in this setting. Let us briefly review some of the most important results that
motivate interest in these classes.

Log(CFL) was defined by Sudborough [30] to be the class of problems logspace-reducible to context-
free languages. Venkateswaran [33] gave a circuit-based characterization of Log(CFL); he showed that
Log(CFL) coincides with SAC1. Here, SAC1 denotes the class of problems computable by polynomial-
sized “semiunbounded” circuits of logarithmic depth, where a circuit is said to be “semiunbounded” if the
AND gates have bounded fan-in and the OR gates have no restriction on the fan-in. Borodin et al. showed
that Log(CFL) is closed under complement [6]. One of the contributions of Sudborough’s original paper
on Log(CFL) was to give an automata-theoretic characterization of Log(CFL), as the class of languages
recognized by logspace-bounded nondeterministic auxiliary pushdown automata that run in polynomial
time.

An auxiliary pushdown automaton is a (deterministic or nondeterministic) logspace-bounded Turing
machine, that also has a pushdown store that is not subject to the space bound. (In this paper, we only
consider auxiliary pushdown automata that are logspace-bounded; thus our notation will not mention the
space bound explicitly.) We mention that some authors use the term “stack machines” to refer to auxiliary
pushdown automata (e. g., [12]). Deterministic and nondeterministic auxiliary pushdown automata were
introduced by Cook [9], who showed that these automata recognize precisely the languages in P, when
no restriction is placed on the running time (equivalently, when the running time is bounded by 2nO(1)

).
We use the following notation to express this equality:

P = DAuxPDA-TIME
(

2nO(1)
)
= NAuxPDA-TIME

(
2nO(1)

)
.

Summarizing, we have:

Proposition 1.1 (Sudborough, Venkateswaran). NAuxPDA-TIME
(
nO(1)

)
= Log(CFL) = SAC1.

The class Log(DCFL) (the class of problems reducible to deterministic context-free languages) was
also defined by Sudborough [30], who showed DAuxPDA-TIME

(
nO(1)

)
= Log(DCFL). Subsequently,

Log(DCFL) was studied by Dymond and Ruzzo, who showed that Log(DCFL) consists precisely of
the problems solvable in logarithmic time on a CROW-PRAM [14]. Cook showed that deterministic
context-free languages can be recognized in polynomial time by machines using O(log2 n) space, and
thus lie in the class SC2 [10]. Summarizing, we have:

Proposition 1.2 (Sudborough, Dymond–Ruzzo, Cook).

DAuxPDA-TIME
(

nO(1)
)
= CROW-TIME(logn) = Log(DCFL)⊆ SC2 .
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Symmetry is just one of several intermediate notions between deterministic and nondeterministic
computation that have received attention. Two other such notions are unambiguity and randomness.
Unambiguous AuxPDAs, by definition, never have more than one accepting computation path on any
input. It is known that, if there is any problem in Dspace(n) that requires circuits of exponential size, then
every problem in Log(CFL) is accepted by an unambiguous AuxPDA running in polynomial time [4]
(and, unconditionally, every problem in Log(CFL) is reducible via nonuniform projections to a language
accepted by an unambiguous AuxPDA running in polynomial time [27]). In contrast, if we require that
an AuxPDA have many accepting paths if it has any at all, then we arrive at the notion of probabilistic
AuxPDAs with one-sided error. Venkateswaran studied such machines (even in the more powerful
two-sided error model) in [34] and is working on a proof of the claim that all languages accepted by
such machines lie in SC2 [32]. Thus, if this claim holds, it would be a significant advance if, say, such
machines could be shown to recognize all problems in NL (since this would imply NL⊆ SC2).

Along similar lines, there has been some speculation that perhaps Reingold’s deterministic simulation
of space-bounded symmetric computation could be extended to the model of auxiliary pushdown au-
tomata [17]. As a consequence of our results, any such extension would constitute a significant advance
in our understanding of the complexity of not only NL, but of Log(CFL) as well.

We also need to make use of some of the properties of reversible computation. Reversibility is a
restriction of deterministic computation that can also be viewed as a restriction of symmetric computation,
in the sense that running “backward” from any configuration will lead only to configurations that are
also reachable by running forward. More precisely: a Turing machine M is reversible if its configuration
graph has indegree and outdegree at most one. The following theorem from [21] will be useful for us:

Theorem 1.3 (Lange, McKenzie, Tapp). Any injective function computable in space equal to the input
size is computable in the same space bound by a reversible machine.

(A version of Theorem 1.3 actually holds even for non-injective functions [21], but for our purposes
it is sufficient to consider the simpler case where only injective functions are considered.)

Thus, when we build an AuxPDA that carries out a particular segment of its computation determinis-
tically without moving its input head or using the pushdown store, in such a way that the configuration at
the end of the segment uniquely determines what configuration the AuxPDA was in when the segment
began (so that this segment corresponds to an injective function on inputs of length m computable in
space m, where m = logn is the size of the worktape), it follows that the AuxPDA can be programmed
so that this segment is actually reversible. Thus if we add “backward” moves to the AuxPDA to make
it symmetric, the only additional computations that arise from the original deterministic segment are
computations that correspond to running the segment backward.

Of course, there will be occasions when our AuxPDA will have to move its input head (or use
its stack), and Theorem 1.3 does not directly allow us to conclude that certain simple deterministic
computations can be carried out reversibly. Thus we appeal to the following simple proposition:

Proposition 1.4. The following computations can be performed deterministically and reversibly:

• Start with the input head on the left endmarker, with the worktape blank, and end with the input
head on the left endmarker, with the length of the input recorded in binary on the worktape.
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• Start with the input head on the left endmarker and a number j on the worktape, and end with
the input head on the left endmarker and the pair ( j,a) on the worktape, where a is the jth input
symbol.

• Start with a string y on a worktape (which we will call the “buffer”), and end with y pushed onto
the stack with the buffer empty.

• Start with a blank section of worktape of length r and a string yz on the stack where |y|= r, and
end with y in that section of the worktape and popped off the stack (so that the stack holds z).

Proof. Note that, by Theorem 1.3, there is a deterministic and reversible computation that starts with a
number j written on the worktape, and increments it. Similarly, there is a deterministic and reversible
computation that starts with a number j and a bit b and decrements j (and flips the bit b if j = 0).

Thus, in order to prove the first item in Proposition 1.4, it suffices to observe that the following routine
can be implemented reversibly:

• Write “0” on the blank worktape, and then repeat the following steps until the input head scans the
right endmarker:

1. Move the input head to the right, and

2. Increment the counter on the worktape.

• When the loop is exited, move the input head back to the left end of the tape.

The second item in the proposition is proved with very similar techniques:

• Insert a “0” before j, so that the worktape holds “0 j”, and then repeat the following steps until the
first bit of the worktape is 1:

1. Move the input head to the right, and

2. Decrement j (and flip the first bit if j = 0). [Thus, as long as the first bit is 0, the machine is
moving its head toward position j of the input tape.]

• Remember the symbol a currently scanned on the input tape, and then repeat the following steps
until the input head is at the left end of the tape:

1. Move the input head to the left, and

2. Increment j (and flip the first bit if j was equal to 0). [Thus, as long as the first bit is 1, we
remember the symbol a at position j on the input tape, and the input head is moving toward
the start of the tape.]

• At this point, the input head is back on the left endmarker and the worktape holds 0 j. Replace 0 j
with ( j,a).
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For the third item, consider a machine with states qpush,qmove,qreturn, and qa for each symbol a. A
sequence of moves that starts the process of pushing the buffer onto the stack starts in state qpush. In state
qpush, if the machine scans a worktape symbol a other than the end-of-buffer marker, it enters state qa and
replaces the a with a blank symbol. (If it scans the end-of-buffer marker, it enters state qreturn.)

In state qa, it replaces a blank on top of the stack with an a, and moves to qmove. (The only “backward”
move from state qa is to change a blank on the worktape to an a and move to state qpush.)

In state qmove, it moves the worktape head to the right, and moves to state qpush. (The only “backward”
move from state qmove is to pop some symbol a off the stack, and move to state qa. There are no other
moves that enter qpush; thus the only “backward” move from qpush is to move the worktape head to the
left, and move to state qmove.)

In state qreturn, the machine moves the worktape head to the left end of the buffer. (The only “backward”
moves take the machine back to the right end of the buffer, where it enters state qpush.)

It is easy to verify that each configuration of this machine has one incoming edge and one outgoing
edge, and that it carries out the transformation of the third item above.

The fourth and final item in this proposition is essentially the inverse of the transformation from item
three, and it is proved with very similar techniques.

In Section 3, we establish our main result: that nondeterminism and symmetry coincide for poly-
nomial-time bounded AuxPDAs. Since, by Theorem 1.3, reversibility coincides with determinism for
space-bounded computation, and since reversibility plays an important role in the proof of Theorem 3.1,
it is natural to wonder about the computational power of reversible AuxPDAs. We are not able to settle
this question, but in Section 4 we summarize what we are able to establish about the power of reversible
AuxPDAs, and present some open questions.

2 Preliminaries and overview

A configuration C of an AuxPDA encodes complete information about the state of the machine at a given
point in a computation (including positions of all heads, contents of all tapes, buffers, and pushdowns), and
as usual we let C ` D denote the relation on configurations where the machine can start in configuration
C and move in one step to configuration D. A subset of the states is labeled as “accepting”, and we say
that the machine accepts an input if there is a computation path starting from the initial configuration and
reaching an accepting state.

Lewis and Papadimitriou ([23]) introduced the concept of symmetric computation. A nondeterministic
Turing machine is symmetric if, for any configurations C and D, we have that C ` D if and only if D `C.

With symmetric machines, it is impossible to require that computations halt, and thus we use the
convention that a symmetric AuxPDA runs in time t(n) if, for every input x of length n, if there is any
accepting computation path at all on input x, then there is an accepting computation path of length at
most t(n).

Definition 2.1. Let SymAuxPDA-TIME
(
nO(1)

)
denote the class of languages accepted by symmetric

logspace-bounded AuxPDAs that run for polynomial time.

We remark that symmetric AuxPDAs were also defined independently by Kintali, in connection with
a study of various graph reachability problems [17].
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In order to describe the symmetric algorithms that we present, we will use the following approach.
First, we will present a nondeterministic (non-symmetric) AuxPDA that clearly accepts a given language.
The AuxPDA will be designed using some conventions that allow us to reason clearly about its behavior.
Then, we will “symmetrize” the AuxPDA, by introducing new moves, so that if C ` D we ensure that
also D `C, and we will argue that this will not change the language that is accepted.

Here are some conventions that we will follow, in our AuxPDA algorithms. The logspace-bounded
worktape will have two sections: a storage area, and a buffer. The buffer is used to push and pop items to
and from the pushdown store; data will be pushed and popped in units of length m = O(logn), pops will
only be initiated when the buffer is empty, and pushes will have the effect of emptying the buffer. Since
pushes and pops are done deterministically (and reversibly, by Theorem 1.3 and Proposition 1.4), it is no
loss of generality to treat these multi-step operations as basic operations (since, once begun, either the
entire push (pop) is completed, or else the operation is run back to the start, as if it had never been begun).
In order to simplify the definitions, we assume that the computation begins with logn space marked off
on the worktape and the buffer (with endmarkers) and we assume that the read-only input tape also has
endmarkers, and the bottom of the stack is marked.

3 Main result

In this section we show that every language in SAC1 is accepted by some symmetric auxiliary pushdown
automaton in polynomial time. Thus, by Proposition 1.1, this establishes our main theorem:

Theorem 3.1. NAuxPDA-TIME
(
nO(1)

)
= SymAuxPDA-TIME

(
nO(1)

)
.

Proof. Let L be a language in Log(CFL) = SAC1. Thus L is accepted by a logspace-uniform family of
circuits {Cn}, where without loss of generality we may assume the following:

• The gates of the circuit Cn are partitioned into levels `0, `1, . . . , `d(n), where the depth of the circuit
is d(n) = O(logn).

• The input level `0 of the circuit Cn consists of input gates that are connected either to input symbols
xi or to negated input symbols xi,1 ≤ i ≤ n. The wires that lead out of the input gates feed into
AND gates at level 1.

• If i > 0 is even, then all of the gates in level `i are OR gates. If i is odd, then all of the gates in level
`i are AND gates.

• Each AND gate h has fan-in exactly two.

• Wires from any level `i are directed toward gates in level `i+1, and a logspace computation can tell,
given g and h, if there is an edge from g to h.

• For each n, the output gate gout of Cn is an OR gate at level d(n), and the function that maps n to
(gout,d(n)) is computable in logspace.
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We now describe a nondeterministic (non-symmetric) AuxPDA M accepting L. We will then create a
symmetric AuxPDA M′ from M, and argue that it also accepts L in polynomial time. We will use the
“symbol” [g, i] to denote the contents of the worktape when our AuxPDA M is attempting to determine if
the gate g in level `i evaluates to 1. We use the “symbol” [g, i] to denote the contents of the worktape
when our AuxPDA has successfully verified that g evaluates to 1. (The symbols [g, i] and [g, i] will only
be used when g is an OR gate, and i is even.) In addition, we will use a “protocol symbol” 〈g,h〉 to denote
the fact that our AuxPDA is trying to verify that the OR gate g evaluates to 1, by verifying that the AND
gate h that feeds into g evaluates to 1. Observe that each of these “symbols” require O(logn) bits to write
down.

We first create a nondeterministic (non-symmetric) AuxPDA M operating as follows: On input x,
with the stack empty, our AuxPDA M uses a deterministic and reversible computation to record the input
length n on the worktape, and then (by appealing to logspace-uniformity) places the symbol [gout,d(n)]
on the worktape. This computation is deterministic and injective, and can be done via a reversible
computation by Theorem 1.3 and Proposition 1.4.

For any configuration where the worktape holds [g, i], our AuxPDA M checks first to see if i = 0.
If i = 0, then g is an input gate. Hence by logspace-uniformity, M can use deterministic, reversible
computation to compute an index j such that gate g is an input gate in level `0 that depends on bit j of the
input. Then, by Proposition 1.4, M can record the jth bit of the input on the worktape (via a deterministic
and reversible computation). M then checks (via a deterministic, reversible computation) if g evaluates to
1 and if so, it replaces [g, i] with [g, i]. (If the gate g evaluates to 0, then M halts and rejects.)

If i > 0, then via nondeterministic and symmetric moves, M guesses a string h, so that the worktape
holds ([g, i],h). (Using the “backward” moves of these nondeterministic steps corresponds to merely
erasing some of the guess “h” and thus involves revisiting an earlier configuration. This cannot happen
in any accepting computation path of minimal length.) After the worktape holds ([g, i],h), M uses
deterministic, reversible computation to verify that h is an AND gate in level `i−1 that feeds in to g, and
then computes the names g1 and g2 (g1 < g2) of the two OR gates that feed in to h, and then writes
[g1, i−2] on the worktape, and writes the string [g1, i−2]/ [g2, i−2]〈g,h〉 onto the buffer, before pushing
this string onto the pushdown. (Note that the initial part of this deterministic computation is independent
of the input, and thus can be done reversibly via direct appeal to Theorem 1.3. Pushing information onto
the pushdown can be done reversibly by Proposition 1.4)

For any configuration where the worktape holds [g, i], M first checks if g = gout and i = d(n), in which
case it will halt and accept.

Otherwise, M pops a string (of length equal to the buffer) off the stack and stores it in the buffer (via
a deterministic, reversible computation). There are two valid cases that allow the computation to proceed:

• If the buffer is equal to [g, i] / [g′, i]〈g′′,h〉, then M will put [g′, i] on the worktape, and push the
string [g, i][g′, i]/ 〈g′′,h〉, onto the stack (via a deterministic, reversible computation).

• If the buffer is equal to [g′, i][g, i]/ 〈g′′,h〉, where g′ < g are the two OR gates that feed into h, then
M will write the tuple ([g′′, i+2],h) on the worktape and erase the buffer, via a deterministic and
reversible computation (note that no information is lost here, since h determines the pair (g,g′)),
and then it will erase h, leaving only [g′′, i+2] on the worktape. Clearly, this last segment is not
reversible, since it destroys all information about h (and with it, all information about g′ and g).
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1 worktape [g,0] → [g,0]
stack

2 worktape [g, i] ⇔ [g, i],h → [g1, i−2]
stack [g1, i−2]/ [g2, i−2]〈g,h〉

3 worktape [g, i] → [g′, i]
stack [g, i]/ [g′, i]〈g′′,h〉 [g, i][g′, i]/ 〈g′′,h〉

4 worktape [g, i] → [g′′, i+2],h 7→ [g′′, i+2]
stack [g′, i][g, i]/ 〈g′′,h〉

Table 1: Forward moves of M. There are four types of moves (not counting the moves that do the initial
set-up, and the moves that determine if conditions have been satisfied to move to an accepting state).
Only moves of type one consult the input tape.

Transitions marked⇔ are symmetric.
Transitions marked→ are deterministic and reversible.
Transitions marked 7→ are deterministic and non-reversible.

Note that, if we add backward transitions to make M symmetric, the new transitions that are added
for this segment correspond to guessing arbitrary values of h. Thus these moves are dual, in some
sense, to the nondeterministic and symmetric moves of M that guess h.)

The moves of M are summarized in Table 1.
When we create a symmetric AuxPDA M′ from M by adding the required “backward” moves (as

described in Table 2), we need to argue that the new machine M′ does not accept any strings that were not
already accepted by M. We express this as the following claim:

Claim 3.2. For every even number i, gate g is a gate in level `i that evaluates to 1 if and only if there
is a computation path of M′ that starts with [g, i] on the worktape, with an empty stack and buffer, and
reaches [g, i], with an empty stack and buffer.

Proof. The forward direction is obvious, and it is also obvious that in this case there is a computation
path of polynomial length. To prove the backward direction, if there is a computation path of M′ from
[g, i] to [g, i], we work with a shortest such path. The proof proceeds by induction on i.

If i = 0, let us assume that there is a computation path of M′ that starts with [g,0] on the worktape,
with an empty stack and buffer, and reaches [g,0]. If this path consists of only forward moves of M,
then this clearly implies that g evaluates to 1 (by construction). We need to show that (without loss
of generality) no backward moves of M appear on this path. The only forward moves of M that lead
into any configuration of M with [g,0] on the worktape, are moves that perform a push. Such moves
can not be executed in a backward direction by M′ when the stack is empty. The only other backward
moves that can occur along the computation from [g,0] to [g,0] correspond to undoing (and re-doing)
part of the deterministic, reversible computation between these two configurations, and hence will not
occur along any accepting path of minimal length. (Throughout the rest of the proof, we assume that any
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1 worktape [g,0] ↔ [g,0]
stack

2 worktape [g, i] ⇔ [g, i],h ↔ [g1, i−2]
stack [g1, i−2]/ [g2, i−2]〈g,h〉

3 worktape [g, i] ↔ [g′, i]
stack [g, i]/ [g′, i]〈g′′,h〉 [g, i][g′, i]/ 〈g′′,h〉

4 worktape [g, i] ↔ [g′′, i+2],h ⇔ [g′′, i+2]
stack [g′, i][g, i]/ 〈g′′,h〉

Table 2: Moves of M′. Transitions marked↔ originated from deterministic and reversible steps of M,
and hence constitute a subgraph of the configuration graph having degree two.
Transitions marked⇔ are symmetric, and configurations in these segments typically have degree larger
than two.

deterministic, reversible computation segment that is begun is run to completion, since the only other
way the computation can exit the segment is by revisiting the configuration where it began the segment.)
This completes the proof of the basis step.

If i > 0, then as in the basis step, the computation of M′ starting from [g, i] cannot begin using
backward moves of M, because it would involve undoing a push, and the stack is currently empty. Thus
the only way to start is using symmetric moves of M to guess some value h, and then to use deterministic
(reversible) moves of M that cause us to push the string [g1, i−2]/ [g2, i−2]〈g,h〉 onto the stack, leaving
[g1, i−2] on the worktape. Let us say that this configuration of M′ is reached at time t1.

Similarly, the segment of the computation of M′ that ends with [g, i] on the worktape, cannot end
using backward moves of M, since this would involve undoing a push while the pushdown is empty, and
thus this segment must consist of forward deterministic (reversible) moves of M, starting at some time
tm with some symbol [g′, i−2] on the worktape, and a string of the form [g′′, i−2][g′, i−2]/ 〈g,h′〉 on
top of the stack, for some h′,g′′,g′, and proceeding to a configuration where the stack is empty and the
worktape contains the tuple ([g, i],h′), and ending with some nonreversible moves that erase h′. (There
may actually be some alternation between forward and backward moves in this segment where some of h′

is erased and re-guessed, but in a shortest accepting computation there will be only forward moves in this
segment.)

Let us now analyze the portion of the computation of M′ that takes place between times t1 and tm. We
assume without loss of generality that this computation is of minimal length, and thus does not revisit any
configuration of M′ that occurs at any other time during its computation.

Since some of the O(logn) symbols on top of the stack at times t1 and tm differ, these symbols must
have been popped off at some intermediate stage. Since, by construction, M′ always completely fills the
buffer when it performs a pop, we conclude that there is a first time after t1 (call this time t3), when M′

pops the string [g1, i−2]/ [g2, i−2]〈g,h〉 from the stack. Since all pushes and pops involve moving data
between the stack and the buffer via deterministic (reversible) steps, we can see that the pop that takes
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place at time t3 must correspond to forward moves of M (since backward moves of M would correspond
to forward moves that push [g1, i−2]/ [g2, i−2]〈g,h〉 onto the stack, which only happens if the worktape
holds [g1, i− 2] – which in turn means that the computation is retracing its steps back to the start of
this segment, contrary to our assumption). Since the pop of [g1, i−2]/ [g2, i−2]〈g,h〉 corresponds to a
forward move of M, we see that this takes place in a deterministic (reversible) segment that can only take
place if the worktape of M′ holds [g1, i−2]. Let us denote by t2 the time when this pop begins. Since
time t2 is the first time that these symbols have been popped off the stack, we can conclude that the
computation of M′ from time t1 to t2 begins with [g1, i−2] on the worktape, ends with [g1, i−2] on the
worktape, and can be accomplished with an empty stack. Thus, by induction, we conclude that gate g1
evaluates to 1.

Recall that, between times t2 and t3, M′ is executing forward moves of M corresponding to a pop
of [g1, i−2]/ [g2, i−2]〈g,h〉 from the stack, with [g1, i−2] on the worktape. This only happens in the
middle of a deterministic (reversible) segment (corresponding to moves of type 3 in Table 1). There
can be no switch to backward moves of M during the middle of this segment without revisiting earlier
configurations, contrary to assumption. Thus this segment executes to completion in a forward direction,
resulting in a configuration at some time t4 with [g1, i−2][g2, i−2]/ 〈g,h〉 on the stack, and [g2, i−2] on
the worktape.

There are now two cases:
If there is no intermediate stage between t4 and tm where the stack is popped, then we have that

h = h′, and hence g1 = g′′ and g2 = g′ and there is a computation of M′ that begins with [g2, i− 2] on
the worktape, ends with [g2, i−2] on the worktape, and can be accomplished with empty stack. In this
case, by induction, we have that gate g2 evaluates to 1. Since h is the AND of g1 and g2, we have that h
evaluates to 1. Also, since the protocol symbol π = 〈g,h〉 is only written onto the stack if the AND gate h
feeds into the OR gate g, we conclude that g evaluates to 1, as desired.

Otherwise, there is some first time t5, t4 < t5 < tm, where the string [g1, i−2][g2, i− 2] / 〈g,h〉 is
popped from the stack. If these symbols are popped via forward moves of M, it must be the case that the
worktape contains [g2, i−2], and once again we can conclude that g evaluates to 1, as desired. But in fact,
this is the only possibility, since if this pop is accomplished via backward moves, it would correspond to
moves of M that, if executed in a forward direction, would push [g1, i−2][g2, i−2]/ 〈g,h〉 on the stack,
and this only happens from the configuration that M′ is in at time t4. That is, if this pop is accomplished
via backward moves, it means that M′ is revisiting the configuration it was in at time t4, contrary to our
assumption.

This completes the proof of the inductive step of the claim, and also completes the proof of the
theorem. ��

We remark that the stack height on the symmetric AuxPDA M′ is O(log2 n) on any accepting
computation (since the value i is bounded by O(logn)). Thus we conclude:

Corollary 3.3. Any language that is accepted by an AuxPDA in polynomial time is accepted by a
symmetric AuxPDA running in polynomial time whose pushdown never contains more than log2 n
symbols.

We remark that this implies that languages in NL are accepted by symmetric machines using space
log2 n and running in polynomial time.
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This generalizes to other space and time bounds as well. The following definitions and Corollary 3.5
make this precise.

Definition 3.4. Let S and T be functions defined on the natural numbers.

• NSpaceTime(S(n),T (n)) is the class of languages accepted by nondeterministic machines operat-
ing simultaneously in space S(n) and time T (n).

• SymSpaceTime(S(n),T (n)) is the class of languages accepted by symmetric machines operating
simultaneously in space S(n) and time T (n).

• NSC =
⋃

k NSpaceTime(logk n,nk).

• SymSC =
⋃

k SymSpaceTime(logk n,nk).

The classes NSC and SymSC are the nondeterministic and symmetric analogs of Steve’s Class SC,
respectively.

Corollary 3.5. Let S(n) ≥ logn and T (n) ≥ n be constructible functions in the sense that they are
computable simultaneously in space O(S(n) logT (n)) and time polynomial in T (n), given input 1n. Then

NSpaceTime(S(n),T (n))⊆ SymSpaceTime(S(n) logT (n),T (n)O(1)) .

Proof. A straightforward implementation of the construction from the proof of Savitch’s theorem [29]
shows that any language accepted by a nondeterministic Turing machine in time T (n) and space S(n) is
also accepted by uniform semi-unbounded circuits of size 2O(S(n)) and depth O(logT (n)). The argument
from the proof of Theorem 3.1 shows that such circuits can be simulated by symmetric AuxPDAs that
have a worktape bound of S(n) and never have more than S(n) logT (n) symbols on the pushdown. The
time required is 2O(logT (n)) (to explore a witness of acceptance, corresponding to a subtree of the circuit,
of depth O(logn)). �

The case when T is polynomial and S(n) = logk n is of interest; in this case, nondeterministic
polynomial time and logk n space can be simulated by a symmetric polynomial-time machine in space
logk+1 n. It is natural to wonder whether logk n space would be sufficient for this simulation, instead of
logk+1 n space. At least for the case k = 0 (i. e., for finite automata), it is known that this is not possible.
For a discussion of this, see [19]. For k = 1 (i. e., for logarithmic space), such a simulation would imply
NL = L by Reingold’s result ([26]).

Note that Corollary 3.5 implies that NSC = SymSC. (For more results on NSC, see [1].)

Remark 3.6. Theorem 10 of [23] states the inclusion

NSpaceTime(S,T )⊆ SymSpaceTime(S log(1+T/S),T ) ,

where S = S(n) and T = T (n) are as above. This is clearly stronger than our Corollary 3.5. However,
it appears that there may be a problem with the proof of Theorem 10 in [23]; see the discussion of this
point in [3].
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The space bound S log(1+T/S) can be achieved even with a deterministic simulation (although with
a time bound exponential in the space bound), as was first shown by Denenberg [13]. By comparison,
Corollary 3.5 incurs a polynomial slowdown, although the space bound is the same, unless S is rather
close to T . Quoting from Denenberg [13]: “Unfortunately, this improvement is significant only when
the time bound is at most slightly greater than the space bound. . . . There is real improvement when the
time bound is small; for example, if T = S(logS)d for some d then the [naïve] simulation runs in space
O(S logS) and the improved one uses space O(S log logS).” Although it is plausible that the stronger
inclusion claimed in [23, Theorem 10] does hold, we have not been able to verify this.

4 Remarks on reversibility

The concept of reversibility is related to determinism in a way that is analogous to the relationship of
symmetry to nondeterminism. The theoretical study of reversibility in computation was initiated in
different contexts by Lecerf ([22]) and Bennett ([5]).

Let us now consider this relationship for auxiliary pushdown automata and thus for languages
reducible to context-free languages.

Definition 4.1. We call a deterministic auxiliary pushdown automaton reversible if it is also backde-
terministic. That is: for each configuration C, there is at most one possible configuration D such that
D `C.

By RevAuxPDA-TIME
(
nO(1)

)
we denote the class of languages acceptable by reversible auxiliary

pushdown automata in polynomial time.
Since deterministic and reversible computation have equivalent computational power both in the

setting of space complexity [21] and time complexity [5]), one might be tempted to expect that this would
hold for time-bounded auxiliary push-down automata as well. Note however, that there is an oracle
relative to which deterministic computation is strictly more powerful than reversible computation, for
machines with simultaneous time and space bounds [15].

In the following paragraphs, we investigate how RevAuxPDA-TIME
(
nO(1)

)
relates to nearby com-

plexity classes.
The complexity class RUL = RUspace(logn) was defined by Buntrock et al. [7] and has been studied

subsequently by the authors [2, 20]. A language L is in RUL if there is an NL machine accepting L
with the property that, on every input, the graph of reachable configurations is a tree, and there is a
unique accepting configuration. It was shown by Buntrock et al. that RUL and a related class known as
ReachFewL are contained in Log(DCFL). Analysis of their algorithm (which simply searches through the
configuration graph of a ReachFewL machine) shows that it is a reversible algorithm. Hence we obtain
the following inclusion:

Proposition 4.2. ReachFewL⊆ RevAuxPDA-TIME
(
nO(1)

)
.

(It was shown recently that ReachFewL coincides with RUL [16].)
We close this section with a list of open questions regarding reversible AuxPDAs. In particular,

there are a number of “nearby” complexity classes which one might hope to relate in some way to
RevAuxPDA-TIME

(
nO(1)

)
:
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L= RevSPACE(log n) = SL

OROW-Time(log n)

RUL

PPM-Time(log n)RevAuxPDA-TIME
(

nO(1)
)

UL

Log(DCFL)= CROW-TIME(log n) = DAuxPDA-TIME
(

nO(1)
)

SC2

NAuxPDA-TIME
(

nO(1)
)

=

SymAuxPDA-TIME
(

nO(1)
)
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Figure 1: Inclusion relations among various subclasses of Log(CFL).

• The class DAuxPDA-TIME
(
nO(1)

)
was shown by Dymond and Ruzzo to coincide with the class

CROW-TIME(logn) consisting of those languages accepted by PRAMs obeying the owner-write
restriction working in logarithmic time with a polynomial number of processors ([14]). Rossmanith
showed that the subclass OROW-TIME(logn) that results by replacing “concurrent read” by
“owner read” contains L ([28]). Is there a relationship between RevAuxPDA-TIME

(
nO(1)

)
and

OROW-TIME(logn)?

• Another way to limit CROW-PRAMs is to restrict the set of arithmetic operations that the PRAMs
have in their instruction set. By imposing this restriction, Cook and Dymond [11] introduced
parallel pointer machines. (See also [18].) The class PPM-Time(logn) consisting of languages
accepted by parallel pointer machines in logarithmic time contains not only L, but also RUL [2]. Is
there a relationship between RevAuxPDA-TIME

(
nO(1)

)
and PPM-Time(logn)?

• We were able to show that symmetric AuxPDAs running for polynomial time are able to compute
with a pushdown of polylogarithmic height. Is this possible for reversible machines as well? It
might be that the answer to this question is connected to our questions about the relation between
RevAuxPDA-TIME

(
nO(1)

)
and the PRAM classes mentioned above.

• There are natural variants of the Monotone Planar Circuit Value Problem that are hard for L and lie
in Log(DCFL) [24, 8]. Related techniques were used, in order to show that the “One-Dimensional
Sandpile” problem also lies in Log(DCFL) [25]. It is not at all clear to us that the Log(DCFL)
algorithms for these problems can be implemented on reversible AuxPDAs. Nor is it clear to us
that either of these problems is reducible to the other, or that either one lies in any of the other
classes between L and Log(DCFL) discussed in this section.

The known relations among these classes are summarized in Figure 1.
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Acknowledgment

Some of this work was performed while the first author was a visiting scholar at the University of Cape
Town. We gratefully acknowledge helpful discussions with Nutan Limaye, Luke Friedman, Shiva Kintali,
and Fengming Wang.

References

[1] MANINDRA AGRAWAL, ERIC ALLENDER, SAMIR DATTA, HERIBERT VOLLMER, AND KLAUS W.
WAGNER: Characterizing small depth and small space classes by operators of higher type. Chicago
J. Theor. Comput. Sci., 2000(2), 2000. See also at ECCC. [doi:10.4086/cjtcs.2000.002] 209

[2] ERIC ALLENDER AND KLAUS-JÖRN LANGE: RUSPACE(logn) ⊆ DSPACE(log2 n/ log logn).
Theory of Comput. Syst., 31(5):539–550, 1998. Preliminary version in ISAAC’96. See also at ECCC.
[doi:10.1007/s002240000102] 210, 211

[3] ERIC ALLENDER AND KLAUS-JÖRN LANGE: Symmetry coincides with nondeterminism for time-
bounded auxiliary pushdown automata. In Proc. 25th IEEE Conf. on Computational Complexity
(CCC’10), pp. 172–180. IEEE Comp. Soc. Press, 2010. [doi:10.1109/CCC.2010.24] 209

[4] ERIC ALLENDER, KLAUS REINHARDT, AND SHIYU ZHOU: Isolation, matching, and counting:
Uniform and nonuniform upper bounds. J. Comput. System Sci., 59(2):164–181, 1999. Preliminary
versions in CCC’98 (also available at ECCC) and an MFCS’98 workshop (available at ECCC).
[doi:10.1006/jcss.1999.1646] 201

[5] CHARLES H. BENNETT: Logical reversibility of computation. IBM J. Res. Develop., 17(6):525–532,
1973. [doi:10.1147/rd.176.0525] 210

[6] ALLAN BORODIN, STEPHEN A. COOK, PATRICK W. DYMOND, WALTER L. RUZZO, AND

MARTIN TOMPA: Two applications of inductive counting for complementation problems. SIAM J.
Comput., 18(3):559–578, 1989. Preliminary version in SCT’88. See erratum. [doi:10.1137/0218038]
200

[7] GERHARD BUNTROCK, BIRGIT JENNER, KLAUS-JÖRN LANGE, AND PETER ROSSMANITH:
Unambiguity and fewness for logarithmic space. In Proc. 8th Internat. Conf. Fundamentals of
Computation Theory (FCT’91), volume 529, pp. 168–179. Springer, 1991. [doi:10.1007/3-540-
54458-5_61] 210

[8] TANMOY CHAKRABORTY AND SAMIR DATTA: One-input-face MPCVP is hard for L, but
in LogDCFL. In Proc. Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS’06), volume 4337 of LNCS, pp. 57–68. Springer, 2006. See also at ECCC.
[doi:10.1007/11944836_8] 211

[9] STEPHEN A. COOK: Characterizations of pushdown machines in terms of time-bounded computers.
J. ACM, 18(1):4–18, 1971. Preliminary version in STOC’69. [doi:10.1145/321623.321625] 200

THEORY OF COMPUTING, Volume 10 (8), 2014, pp. 199–215 212

http://eccc.hpi-web.de/report/1998/057/
http://dx.doi.org/10.4086/cjtcs.2000.002
http://dx.doi.org/10.1007/BFb0009495
http://eccc.hpi-web.de/report/1996/048/
http://dx.doi.org/10.1007/s002240000102
http://dx.doi.org/10.1109/CCC.2010.24
http://dx.doi.org/10.1109/CCC.1998.694594
http://eccc.hpi-web.de/report/1998/019/
http://eccc.hpi-web.de/report/1998/023/
http://dx.doi.org/10.1006/jcss.1999.1646
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1109/SCT.1988.5271
http://epubs.siam.org/doi/abs/10.1137/0218084
http://dx.doi.org/10.1137/0218038
http://dx.doi.org/10.1007/3-540-54458-5_61
http://dx.doi.org/10.1007/3-540-54458-5_61
http://eccc.hpi-web.de/report/2006/130/
http://dx.doi.org/10.1007/11944836_8
http://dx.doi.org/10.1145/800169.805437
http://dx.doi.org/10.1145/321623.321625
http://dx.doi.org/10.4086/toc


SYMMETRY VS. NONDETERMINISM FOR TIME-BOUNDED AUXILIARY PUSHDOWN AUTOMATA

[10] STEPHEN A. COOK: Deterministic CFL’s are accepted simultaneously in polynomial time and log
squared space. In Proc. 11th STOC, pp. 338–345. ACM Press, 1979. [doi:10.1145/800135.804426]
200

[11] STEPHEN A. COOK AND PATRICK W. DYMOND: Parallel pointer machines. Comput. Complexity,
3(1):19–30, 1993. [doi:10.1007/BF01200405] 211

[12] MATEI DAVID AND PERIKLIS A. PAPAKONSTANTINOU: Tradeoff lower lounds for stack machines.
Comput. Complexity, 23(1):99–146, 2014. Preliminary version in CCC’10. [doi:10.1007/s00037-
012-0057-1] 200

[13] LARRY DENENBERG: A note on Savitch’s theorem. Technical Report 25-81, Harvard University,
1981. 210

[14] PATRICK W. DYMOND AND WALTER L. RUZZO: Parallel RAMs with owned global memory and
deterministic context-free language recognition. J. ACM, 47(1):16–45, 2000. Preliminary version in
ICALP’86. [doi:10.1145/331605.331607] 200, 211

[15] MICHAEL P. FRANK AND M. JOSEPHINE AMMER: Relativized separation of reversible and
irreversible space-time complexity classes. Available at CiteSeerX. 210

[16] BRADY GARVIN, DERRICK STOLEE, RAGHUNATH TEWARI, AND N. VARIYAM VINODCHAN-
DRAN: ReachFewL = ReachUL. Comput. Complexity, 23(1):85–98, 2014. Preliminary version in
COCOON’11. See also at ECCC. [doi:10.1007/s00037-012-0050-8] 210

[17] SHIVA PRASAD KINTALI: Realizable paths and the NL vs L problem. Electron. Colloq. on Comput.
Complexity (ECCC), 17:158, 2010. ECCC. See also preprint at arXiv and doctoral thesis at OATD.
201, 203

[18] TAK WAH LAM AND WALTER L. RUZZO: The power of parallel pointer manipulation. In Proc.
1st Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA’89), pp. 92–102. ACM Press,
1989. [doi:10.1145/72935.72946] 211

[19] KLAUS-JÖRN LANGE: Are there formal languages complete for SymSPACE(logn)? In Founda-
tions of Computer Science: Potential - Theory - Cognition, to Wilfried Brauer on the occasion of his
sixtieth birthday., pp. 125–134. Springer, 1997. [doi:10.1007/BFb0052081] 209

[20] KLAUS-JÖRN LANGE: An unambiguous class possessing a complete set. In Proc. 14th Symp.
Theoretical Aspects of Comp. Sci. (STACS’97), volume 1200 of LNCS, pp. 339–350. Springer, 1997.
[doi:10.1007/BFb0023471] 210

[21] KLAUS-JÖRN LANGE, PIERRE MCKENZIE, AND ALAIN TAPP: Reversible space equals deter-
ministic space. J. Comput. System Sci., 60(2):354–367, 2000. Preliminary version in CCC’97.
[doi:10.1006/jcss.1999.1672] 201, 210

[22] YVES LECERF: Machines de Turing réversibles. Récursive insolubilité en n ∈ N de l’équation
u = θ nu, où θ est un ‘isomorphism de codes’. Comptes Rendus, 257:2597–2600, 1963. Available
at Gallica. 210

THEORY OF COMPUTING, Volume 10 (8), 2014, pp. 199–215 213

http://dx.doi.org/10.1145/800135.804426
http://dx.doi.org/10.1007/BF01200405
http://dx.doi.org/10.1109/CCC.2010.23
http://dx.doi.org/10.1007/s00037-012-0057-1
http://dx.doi.org/10.1007/s00037-012-0057-1
http://dx.doi.org/10.1007/3-540-16761-7_59
http://dx.doi.org/10.1145/331605.331607
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.494
http://dx.doi.org/10.1007/978-3-642-22685-4_23
http://eccc.hpi-web.de/report/2011/060/
http://dx.doi.org/10.1007/s00037-012-0050-8
http://eccc.hpi-web.de/report/2010/158/
http://arxiv.org/abs/1011.3840
http://oatd.org/oatd/record?record=handle%5C:1853%5C%2F42770
http://dx.doi.org/10.1145/72935.72946
http://dx.doi.org/10.1007/BFb0052081
http://dx.doi.org/10.1007/BFb0023471
http://dx.doi.org/10.1109/CCC.1997.612299
http://dx.doi.org/10.1006/jcss.1999.1672
http://gallica.bnf.fr/ark:/12148/bpt6k40088/f965.image.r=lecerf.langEN
http://dx.doi.org/10.4086/toc


ERIC ALLENDER AND KLAUS-JÖRN LANGE
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