
THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25
www.theoryofcomputing.org

A new quantum lower bound method, with
an application to a strong direct product

theorem for quantum search
Andris Ambainis∗

Received: July 6, 2007; revised: July 24, 2009; published: January 12, 2010.

Abstract: We present a new method for proving lower bounds on quantum query al-
gorithms. The new method is an extension of the adversary method, by analyzing the
eigenspace structure of the problem.

Using the new method, we prove a strong direct product theorem for quantum search.
This result was previously proved by Klauck, Špalek, and de Wolf (FOCS’04) using the
polynomials method. No proof using the adversary method was known before.

ACM Classification: F1.2, F2.2

AMS Classification: 81P68, 68Q17

Key words and phrases: quantum computing, quantum algorithms, quantum lower bounds

1 Introduction

Many quantum algorithms (for example, Grover’s algorithm [13] and quantum counting [11]) can be
analyzed in the query model where the input is accessed via a black box that answers queries about the
values of input bits.

There are two main methods for proving lower bounds on quantum query algorithms: the adversary
method [3] and the polynomials method [9]. Both of them have been studied in detail. The limits of
the adversary method are particularly well understood. The original adversary method [3] has been

∗Supported by University of Latvia grant ZP01-100, a Marie Curie International Reintegration Grant (IRG), and ESF project
1DP/1.1.1.2.0/09/APIA/VIAA/044. Most of this work was done at the University of Waterloo and supported by NSERC,
CIFAR, ARO, MITACS, and an IQC University Professorship.

2010 Andris Ambainis
Licensed under a Creative Commons Attribution License DOI: 10.4086/toc.2010.v006a001

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2010.v006a001

ANDRIS AMBAINIS

generalized in several different ways [4, 18, 8]. Špalek and Szegedy [23] then showed that all the
generalizations are equivalent and, for certain problems, cannot improve the best known lower bounds.
For example, it was shown in [23, 24] that the adversary methods of [4, 18, 8] cannot prove a lower bound
for a total Boolean function that exceeds O(

√
C0(f)C1(f)), where C0(f) and C1(f) are the certificate

complexities of f on 0-inputs and 1-inputs, resp. This implies that the adversary methods of [4, 18, 8]
cannot prove a tight lower bound for element distinctness or improve the best known lower bound for
triangle finding. (The complexity of element distinctness is Θ(N2/3) [2, 5] but the adversary method
cannot prove a bound better than Ω(

√
N). For triangle finding [19], the best known lower bound is

Ω(N) and it is known that it cannot be improved using the adversary method. It is, however, possible
that the bound is not tight, because the best algorithm uses O(N1.3) queries.)

In this paper we describe a new version of the quantum adversary method which may not be subject
to those limitations. We then use the new method to prove a strong direct product theorem for the K-fold
search problem.

In the K-fold search problem, a black box contains x1, . . . ,xN such that |{i : xi = 1}| = K and we
have to find all the K values of i such that xi = 1. This problem can be solved with O(

√
NK) queries.

It can be easily shown, using any of the previously known methods, that Ω(
√

NK) quantum queries are
required. A more difficult problem is to show that Ω(

√
NK) queries are required, even if the algorithm

only has to be correct with an exponentially small probability c−K , c > 1. This result is known as the
strong direct product theorem for k-fold search. Besides being interesting on its own, the strong direct
product theorem is useful for proving time-space tradeoffs for quantum sorting [16] and lower bounds
on quantum computations that use advice [1].

The strong direct product theorem for quantum search was first shown by Klauck, Špalek, and de
Wolf [16], using the polynomials method. No proof using the adversary method has been known and, as
we show in Section 3, the previously known adversary methods are insufficient to prove a strong direct
product theorem for K-fold search.

Recent developments After the author completed the research presented in this paper, several devel-
opments occurred.

1. Together with Špalek and de Wolf [7], we have used the methods from this paper to prove a direct
product theorem for t-threshold functions. This implies time-space tradeoffs for the problem of
deciding systems of linear inequalities.

This paper and [7] were merged for publication at STOC’06 [6]. We have decided to publish the
journal versions separately.

The relation between the two papers is as follows. A direct product theorem for k-threshold
functions implies a direct product theorem for search. Thus, the result of [7] implies the result in
this paper. The proof of our result is, however, substantially simpler than the proof of the more
general result in [7]. Because of that, we think that our proof continues to be of interest even
though the result in this paper has been generalized by [7].

2. Špalek [22] generalized the results of the current paper and [7], obtaining a multiplicative adver-
sary method. This is a general framework for proving lower bounds which includes the results of
the current paper and [7] as particular cases.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 2

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

3. Høyer, Lee, and Špalek [14] generalized the usual adversary method in a different way, by extend-
ing the usual weighted adversary method of [4] to negative weights. Reichardt [21] has shown
that this method is optimal: if Adv±(f) is the best adversary lower bound that can be proven for
a function f , then f can be evaluated using

O
(

Adv±(f)
logAdv±(f)

log logAdv±(f)

)
queries. Although the negative weight adversary method is guaranteed to provide nearly optimal
results, the other lower bound methods also remain interesting because particular lower bounds
may follow more easily using different tools.

2 Preliminaries

We consider the following problem.

Search for K marked elements, SEARCHK(N): Given a black box containing x1, . . . ,xN ∈ {0,1} such
that xi = 1 for exactly K values i ∈ {1,2, . . . ,N}, find all K values i1, . . . , iK satisfying xi j = 1.

This problem can be viewed as computing an
(N

K

)
-valued function f (x1, . . . ,xN) in the variables

x1, . . . ,xN ∈ {0,1}, with values of the function being indices for the
(N

K

)
sets S ⊆ [N] of size K, in some

canonical ordering of those sets.
We study this problem in the quantum query model. (For a survey on the quantum query model,

see [12]). In this model, the input bits can be accessed by queries to an oracle X and the complexity of f
is the number of quantum queries needed to compute f . A quantum computation with T queries is just
a sequence of unitary transformations

U0 → O →U1 → O → ··· →UT−1 → O →UT .

The U j can be arbitrary unitary transformations that do not depend on the input bits x1, . . . ,xN . The
transformations O are query (oracle) transformations which depend on x1, . . . ,xN . To define O, we
represent basis states as |i,z〉 where i consists of dlog(N +1)e bits and z consists of all other bits. Then,
Ox maps |0,z〉 to itself and |i,z〉 to (−1)xi |i,z〉 for i ∈ {1, ...,N} (i. e., we change phase depending on xi,
unless i = 0 in which case we do nothing).

The computation starts with a state |0〉. Then we apply U0,Ox, . . . ,Ox,UT and measure the final
state. The result of the computation is the string of dlog2

(N
K

)
e rightmost bits of the state obtained by the

measurement, which is interpreted as a description of one of the
(N

K

)
subsets S ⊆ {1, . . . ,N}, |S|= K.

3 Overview of the adversary method

We describe the adversary method of [3].
Let X be a subset of the set of possible inputs {0,1}N . We run the algorithm on a superposition of

inputs in X . More formally, let HA be the workspace of the algorithm. We consider a bipartite system

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 3

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

H = HA ⊗HI where HI is an “input subspace” spanned by basis vectors |x〉 corresponding to inputs
x ∈ X .

Let UT OUT−1 · · ·U0 be the sequence of unitary transformations on HA performed by the algorithm
A, where U0, . . . ,UT denote the transformations that do not depend on the input and O stands for the
query transformations. We transform this sequence into a sequence of unitary transformations on H. A
unitary transformation Ui on HA corresponds to the transformation U ′

i = Ui ⊗ I on the whole H. The
query transformation O corresponds to a transformation O′ that is equal to Ox on the subspace HA⊗|x〉.

We perform the sequence of transformations U ′
T O′U ′

T−1 · · ·U ′
0 on the starting state

|ψstart〉= |0〉⊗∑
x∈S

αx|x〉 .

Then, the final state is
|ψend〉= ∑

x∈X
αx|ψx〉⊗ |x〉 ,

where |ψx〉 is the final state of A = UT OUT−1 . . .U0 on input x. This follows from the fact that the
restrictions of U ′

T ,O′,U ′
T−1, . . . ,U

′
0 to HA⊗|x〉 are UT ,Ox,UT−1, . . . ,U0 and these are exactly the trans-

formations of the algorithm A on input x.
Let ρend be the reduced density matrix of the HI register of the state |ψend〉. The adversary method

of [3, 4] works by showing the following two statements.

• Let x ∈ X and y ∈ X be such that f (x) 6= f (y) (where f is the function that is being computed). If
the algorithm outputs the correct answer with probability 1− ε on both x and y then

|(ρend)x,y| ≤ 2
√

ε(1− ε)|αx||αy| .

• For any algorithm that uses T queries, there exist inputs x,y ∈ S such that f (x) 6= f (y) and

(ρend)x,y > 2
√

ε(1− ε)|αx||αy| .

These two statements together imply that any algorithm computing f must use more than T queries.
An equivalent approach [15, 4] is to consider the inner products 〈ψx|ψy〉 between the final states

|ψx〉 and |ψy〉 of the algorithm on inputs x and y. Then, |(ρend)x,y| ≤ 2
√

ε(1− ε)|αx||αy| is equivalent to
|〈ψx|ψy〉| ≤ 2

√
ε(1− ε).

As a result, both of the above statements can be described in terms of inner products 〈ψx|ψy〉, without
explicitly introducing the register HI . The first statement says that, for the algorithm to succeed on inputs
x,y such that f (x) 6= f (y), the states |ψx〉 and |ψy〉must be sufficiently far apart from one another (so that
the inner product |〈ψx|ψy〉| is at most 2

√
ε(1− ε)). The second statement says that this is impossible if

the algorithm only uses T queries.
This approach breaks down if we consider computing a function f with success probability p < 1/2.

(f has to have more than 2 values for this task to be nontrivial.) Then, |ψx〉 and |ψy〉 could be the
same and the algorithm may still succeed on both inputs, if it outputs x with probability 1/2 and y with
probability 1/2. In the case of strong direct product theorems, the situation is even more difficult. Since
the algorithm only has to be correct with probability c−K , the algorithm could have almost the same final
state on cK different inputs and still “succeed” on every one of them.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 4

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

In this paper, we present a new method that does not suffer from this problem. Our method, described
in the next section, uses the idea of augmenting the algorithm with an input register HI , together with
two new ingredients:

1. Symmetrization. We symmetrize the algorithm by applying a random permutation π ∈ SN to the
input x1, . . . ,xN .

2. Eigenspace analysis. We study the eigenspaces of ρstart, ρend and density matrices describing the
state of HI at intermediate steps and use them to bound the progress of the algorithm.

The eigenspace analysis is the main new technique. Symmetrization is necessary to simplify the structure
of the eigenspaces, to make the eigenspace analysis possible.

4 Our result

Theorem 4.1. There exist ε and c satisfying ε > 0, 0 < c < 1 such that, for any K ≤ N/2, solving
SEARCHK(N) with probability at least cK requires (ε −o(1))

√
NK queries.

4.1 General framework

We first give a high-level overview of the new method, in a form that may be applicable to a variety of
problems. After that, in Section 4.2, we will describe how to adapt this general method to the K-fold
search problem.

As before, let X ⊆ {0,1}N be a subset of the set of inputs for the function f (x1, . . . ,xN). Let G be
the group of all permutations π on {1, . . . ,N} that fix X :

{(xπ(1), . . . ,xπ(N)) : (x1, . . . ,xN) ∈ X}= X .

Additionally we assume for all π ∈ G that f (xπ(1), . . . ,xπ(N)) and π uniquely determine f (x1, . . . ,xN).
We choose X so that X consists of “hard” inputs (inputs on which f is difficult to evaluate with few

queries) and the symmetry group G is as large as possible. For example, in the case of K-fold search, X
is the set of all x ∈ {0,1}N , |x|= K and G consists of all permutations on {1, . . . ,N}.

Let A be an algorithm for f (x1, . . . ,xN) and let HA be the workspace on which A operates.
We first “symmetrize” A by adding an extra register HS holding a permutation π ∈ G. Initially, HS

holds a uniform superposition of all permutations π:

1√
|G| ∑

π∈G
|π〉 .

Before each query O, we insert a transformation |i〉|π〉 7→ |π−1(i)〉|π〉 on the part of the state containing
the index i to be queried and HS. After the query, we insert a transformation |i〉|π〉 7→ |π(i)〉|π〉. The
effect of the symmetrization is that, on the subspace |s〉⊗ |π〉, the algorithm is effectively running on
the input xπ(1), . . . ,xπ(N). At the end of algorithm, we apply a unitary transformation that replaces the
answer for f (xπ(1), . . . ,xπ(N)) with the corresponding answer for f (x1, . . . ,xN). (This is possible because
of our requirement that f (xπ(1), . . . ,xπ(N)) and π uniquely determine f (x1, . . . ,xN).)

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 5

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

If the original algorithm A succeeds on every input (x1, . . . ,xN) with probability at least ε , the sym-
metrized algorithm also succeeds with probability at least ε , since its success probability is just the
average of the success probabilities of A over all (xπ(1), . . . ,xπ(N)), π ∈ G. Next, we recast A into a
different form, using a register that stores the input x1, . . . ,xN , as in Section 3.

Let HI be an |X |-dimensional Hilbert space whose basis states correspond to inputs (x1, . . . ,xN)∈ X .
We transform the symmetrized version of A into a sequence of transformations on a Hilbert space
H = HA ⊗HS ⊗HI . As before, a non-query transformation U on HA ⊗HS is replaced by U ⊗ I on
H. A query is replaced by a transformation O that is equal to Ox1,...,xN ⊗ I on the subspace consisting
of states of the form |s〉A,S ⊗ |x1 . . .xN〉I . The starting state of the algorithm on Hilbert space H is
|ϕ0〉 = |ψstart〉A,S ⊗|ψ0〉I where |ψstart〉A,S is the starting state of A as an algorithm acting on HA ⊗HS

and |ψ0〉I is some fixed superposition of states |x1 . . .xN〉, (x1, . . . ,xN) ∈ X .
Let |ψt〉 be the state of the algorithm A, as a sequence of transformations on H, after the t th query.

Let ρt be the mixed state obtained from |ψt〉 by tracing out the HA ⊗HS register and let λ1,λ2, . . . be
all the distinct eigenvalues of ρt . Let Si be the subspace of HI consisting of all eigenvectors with the
eigenvalue λi and let Pi be the projector to the subspace Si. Then,

ρt = ∑
i

λiPi .

For a permutation π ∈ G, let Uπ be the unitary transformation on the register HI defined by

Uπ |x1 . . .xN〉= |xπ(1) . . .xπ(N)〉 .

Then, because of the symmetrization step, ρt is invariant under Uπ : ρt = UπρtU−1
π . This means that

every eigenspace Si is fixed by Uπ , for every π ∈ G.
Let V be the collection of all invariant subspaces S ≤HA (subspaces S that are fixed by all π ∈ G).

Then, we can always express ρt as
ρt = ∑

S∈V

λSPS

where PS is a projector to the subspace S. This means that the state of the algorithm can be fully
described by the vector (λS)S∈V. (For some symmetry groups G, there could be infinitely many invariant
subspaces. Then V will be infinite but only finitely many of the λS will be nonzero.)

We divide V into a set Vgood of “good” subspaces and a set Vbad of “bad” subspaces so that, if the
algorithm A succeeds, a non-negligible part of the final state ρT must consist of PS, S ∈ Vgood.

To prove a lower bound on the number of queries, we show that the initial state of HI is in Vbad and
then prove that T0 queries are not enough to move a non-negligible part of the state to S ∈ Vgood. That is
done by bounding the change in (λS)S∈V in one query, as follows. Let ρt be the state of HI before the
(t +1)st query. We decompose

ρt =
N

∑
i=0

ρt,i ,

with ρt,i being the part of the state in which the query register of A contains i. Let G(i) consist of all
π ∈ S with π(i) = i. Then ρt,i is fixed by Uπ for all π ∈ G(i). Let V(i) consist of all subspaces S that are
fixed by all Uπ ,π ∈ G(i). Then

ρt,i = ∑
S∈V(i)

λSPS .

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 6

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

We use this decomposition to describe the effect of a query on ρt,i. Then we relate subspaces S ∈ V(i) to
subspaces S ∈ V. This allows us to bound the change in (λS)S∈V.

Specialization to k-fold search In the case of k-fold search (described in the next section), there are
just K + 1 invariant subspaces S0, . . . ,SK with Si intuitively corresponding to the algorithm knowing
locations of i out of K items j with x j = 1. The state of the algorithm can then be described by a vector
(λ0, . . . ,λK) of length K + 1, where λi describes the probability that the algorithm knows locations of i
out of the K items.

The bad subspaces that make up Vbad are S0, . . . ,SK/2 which correspond to A knowing at most K/2
of the K locations j with x j = 1. The good subspaces that make up Vgood are SK/2+1, . . . ,SK which
correspond to A knowing more than K/2 of the K locations j with x j = 1.

4.2 K-fold search

We now prove Theorem 4.1. Let A be an algorithm for SEARCHK(N) that uses T ≤ ε
√

NK queries.
As described in the previous subsection, we first “symmetrize” A by adding an extra register HS

holding a permutation π ∈ SN . Initially, HS holds a uniform superposition of all permutations π:

1√
N! ∑

π∈SN

|π〉 .

The result of this step is that, on the subspace consisting of all states |s〉⊗ |π〉, the algorithm runs on the
input xπ(1), . . . ,xπ(N). At the end of the algorithm, we apply the transformation

|i1〉 . . . |iK〉|π〉 7→ |π−1(i1)〉 . . . |π−1(iK〉|π〉

on the part of HA that holds the output of the algorithm and HS. This converts the answer for the input
xπ(1), . . . ,xπ(N) into the answer for the actual input x1, . . . ,xN .

We then add an input register HI which initially, holds the starting state

|ψ0〉=
1√(N

K

) ∑
x1,...,xN :

x1+···+xN=K

|x1 . . .xN〉 .

Let |ψt〉 be the state of the algorithm A, as a sequence of transformations on H = HA⊗HS⊗HI , after
the t th query. Then,

|ψt〉=
1√(N
K

)
N!

∑
x1,...,xN :

x1+···+xN=K

∑
π∈SN

|ψxπ(1),...,xπ(N)
t 〉A|π〉S|x1, . . . ,xN〉I

where |ψxπ(1),...,xπ(N)
t 〉 denotes the state of HA after t steps, on the input xπ(1), . . . ,xπ(N).

Let ρt be the mixed state obtained from |ψt〉 by tracing out the HA register. We claim that the states
ρt have a special form, due to our symmetrization step.

Lemma 4.2. The entries (ρt)x,y are the same for all x = (x1, . . . ,xN), y = (y1, . . . ,yN) with the same
cardinality of the set {` : x` = y` = 1}.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 7

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

Proof. Since ρt is independent of the way how the HA⊗HS is traced out, we first measure HS (in the
|π〉 basis) and then measure HA (arbitrarily). When measuring HS, every π is obtained with an equal
probability. Let ρt,π be the reduced density matrix of HI , conditioned on the measurement of HS giving
π . Then

ρt = ∑
π

1
N!

ρt,π .

The entry (ρt,π)x,y is the same as the entry (ρt,id)π−1(x),π−1(y) because the symmetrization by π maps
π−1(x),π−1(y) to x,y. Let x,y, x′,y′ be such that |{i : xi = yi = 1}|= |{i : x′i = y′i = 1}|. Then there is a
permutation τ ∈ SN such that τ(x) = x′, τ(y) = y′. Therefore,

(ρt)x,y =
1

N! ∑
π∈SN

(ρt,π)x,y =
1

N! ∑
π∈SN

(ρt,id)π−1(x),π−1(y)

=
1

N! ∑
π∈SN

(ρt,id)π−1τ(x),π−1τ(y) = (ρt)τ(x),τ(y) = (ρt)x′,y′ .

This means that (ρt)x,y only depends on |{` : x` = y` = 1}|.

Any
(N

K

)
×
(N

K

)
matrix with this property shares the same eigenspaces. Namely, we have

Lemma 4.3 (Knuth [17]). Let A be an
(N

K

)
×
(N

K

)
matrix whose rows and columns are indexed by 0-1

sequences x1, . . . ,xN with x1 + · · ·+xN = K. Assume that A is such that Ax,y only depends on the number
of bits {i : xi = yi = 1}. Then, the eigenspaces of A are S0,S1, . . . ,SK where T0 = S0 consists of multiples
of |ψ0〉 and, for j > 0, S j = Tj ∩ (Tj−1)⊥, with Tj being the space spanned by all states

|ψi1,...,i j〉=
1√(N
K− j

) ∑
x1,...,xN :

x1+···+xN=K,
xi1=···=xi j =1

|x1, . . . ,xN〉 .

Let τ j be the completely mixed state over the subspace S j.

Lemma 4.4. There exist pt,0 ≥ 0, . . . , pt,K ≥ 0 such that ρt = ∑
K
j=0 pt, jτ j.

Proof. By Lemma 4.3, S0, . . . ,SK are the eigenspaces of ρt . Therefore, ρt is a linear combination of the
projectors to S0, . . . ,SK . Since τ j is a multiple of the projector to S j, we have

ρt =
K

∑
j=0

pt, jτ j .

Since ρt is a density matrix, it must be positive semidefinite. This means that pt,0 ≥ 0, . . . , pt,K ≥ 0.

Informally, we can interpret pt, j as the probability that, after t queries, the algorithm HA knows the
locations for t out of the K items j with x j = 1. Let qt, j = pt, j + pt, j+1 + · · ·+ pt,K . The theorem now
follows from the following lemmas.

Lemma 4.5. p0,0 = 1, p0, j = 0 for j > 0.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 8

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

Proof. In the starting state, HI contains the state |ϕ0〉, independent of HA and HP. Therefore, tracing
out HA⊗HP leaves the state ρ0 = |ψ0〉〈ψ0|.

Lemma 4.6. For all j ∈ {1, . . . ,K} and all t we have qt+1, j+1 ≤ qt, j+1 + 4
√

K√
N

qt, j.

Proof. In Section 5.

Lemma 4.7. qt, j ≤
(t

j

)(4
√

K√
N

) j
.

Proof. By induction on t. The base case, t = 0 follows immediately from p0,0 = 1 and

p0,1 = · · ·= p0,K = 0 .

For the induction step, we have

qt+1, j ≤ qt, j +
4
√

K√
N

qt, j−1 ≤
(

t
j

)(
4
√

K√
N

) j

+
4
√

K√
N

(
t

j−1

)(
4
√

K√
N

) j−1

=
((

t
j

)
+
(

t
j−1

))(
4
√

K√
N

) j

=
(

t +1
j

)(
4
√

K√
N

) j

,

where the first inequality follows from Lemma 4.6 and the second inequality follows from the inductive
assumption.

Lemma 4.8. If t ≤ 0.03
√

NK then qt, j < 0.66 j for all j > K/2.

Proof. By the well known inequality
(t

j

)
< (et/ j) j for j ≥ 1, we have

qt, j ≤
(

t
j

)(
4
√

K√
N

) j

≤

(
4
√

Ket√
N j

) j

.

Let j > K/2 and t ≤ 0.03
√

NK. Then

4
√

Ket√
N j

≤ 0.12e
√

K
√

NK√
NK/2

< 0.66 ,

implying the lemma.

Lemma 4.9. The success probability of A is at most(N
K/2

)(N
K

) +4
√

qt,K/2+1 .

Proof. In Section 6.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 9

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

To complete the proof, given the two Lemmas, we choose a constant c > 4
√

0.66 = 0.90133 . . . and
set ε = 0.03. Then, by Lemma 4.9, the success probability of A is at most(N

K/2

)(N
K

) +4
√

0.66K/2 .

The first term is equal to(N
K/2

)(N
K

) =
K!(N−K)!

(K/2)!(N−K/2)!
=

K(K−1) . . .(K/2+1)
(N−K/2)(N−K/2−1) . . .(N−K +1)

≤
(

K
N−K/2

)K/2

≤
(

N/2
3N/4

)K/2

=
(

2
3

)K/2

= o(cK) ,

where the last two inequalities follow from K < N/2. The second term is 4
√

0.66K/2 = o(cK).

5 Proof of Lemma 4.6

Let |ψt〉 be the state before (t +1)st query. We decompose |ψt〉 as ∑
N
i=0 ai|ψt,i〉, where |ψt,i〉 is the part in

which the query register contains |i〉. Because of symmetrization, we must have |a1|= |a2|= · · ·= |aN |.
Also, we can choose the relative phases so that a1, · · · ,aN are all positive reals and, thus, a1 = a2 = · · ·=
aN . Let ρt,i = |ψt,i〉〈ψt,i|. Then

ρt =
N

∑
i=0

a2
i ρt,i . (5.1)

Claim 5.1. Let i ∈ {1, . . . ,N}. The entry (ρt,i)x,y only depends on xi,yi, and the cardinality of {` : ` 6=
i,x` = y` = 1}.

Proof. The main idea is similar to Lemma 4.2.
This time, we trace out all registers, except for HI and the query register. This gives us a density

matrix ρ whose rows and columns are indexed by pairs (x, j) where x is an input and j ∈ {1, . . . ,N}. Let
x ∈ {0,1}N , y ∈ {0,1}N , j ∈ [N], k ∈ [N] and x′ ∈ {0,1}N , y′ ∈ {0,1}N , j′ ∈ [N], k′ ∈ [N] be such that
there is a permutation π ∈ SN with x′ = π(x), y′ = π(y), i′ = π(i) and j′ = π(j). By an argument similar
to the proof of Lemma 4.2, we have

ρ(x,i),(y, j) = ρ(x′,i′),(y′, j′) . (5.2)

We now observe that ρt,i is the submatrix of ρ consisting of rows and columns indexed by pairs (x, i),
with all possible x ∈ {0,1}N , |{i : xi = 1}|= K.

If we have inputs x,y,x′,y′ with xi = x′i, yi = y′i and |{` : ` 6= i,x` = y` = 1}|= |{` : ` 6= i,x′` = y′` = 1}|,
then we can construct a permutation π with π(i) = i, π(x) = x′ and π(y) = y′. Equation (5.2) then implies
(ρt,i)x,y = (ρt,i)x′,y′ .

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 10

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

We now describe the eigenspaces of matrices ρt,i. The proofs of some claims are postponed to
Section 7.

We define the following subspaces of states. Let i ∈ [N] and j ∈ {0,1, . . . ,K}. We define T i,0
j to be

the subspace spanned by all states

|ψ i,0
i1,...,i j

〉=
1√(N− j−1
K− j

) ∑
x:|x|=K

xi1=···=xi j =1,xi=0

|x1 . . .xN〉 ,

with (i1, . . . , i j) ranging over all tuples of j distinct elements of [N]−{i}. Similarly, we define T i,1
j to be

the subspace spanned by all states

|ψ i,1
i1,...,i j

〉=
1√(N− j−1

K− j−1

) ∑
x:|x|=K

xi1=···=xi j =1,xi=1

|x1 . . .xN〉 .

Let Si,0
j = T i,0

j ∩ (T i,0
j−1)

⊥ and Si,1
j = T i,1

j ∩ (T i,1
j−1)

⊥. Equivalently, we can define Si,0
j and Si,1

j as the

subspaces spanned by the states |ψ̃ i,0
i1,...,i j

〉 and |ψ̃ i,1
i1,...,i j

〉, respectively, with

|ψ̃ i,`
i1,...,i j

〉= P(T i,`
j−1)⊥

|ψ i,`
i1,...,i j

〉 .

Let Si
α,β , j be the subspace spanned by all states

α
|ψ̃ i,0

i1,...,i j
〉

‖|ψ̃ i,0
i1,...,i j

〉‖
+β

|ψ̃ i,1
i1,...,i j

〉

‖|ψ̃ i,1
i1,...,i j

〉‖
. (5.3)

where (i1, . . . , i j) again ranges over all tuples of j distinct elements of [N]−{i}.

Claim 5.2. Every eigenspace of ρt,i is a direct sum of subspaces Si
α,β , j for some α , β , j.

Proof. In Section 7.

Let τ i
α,β , j be the completely mixed state over Si

α,β , j. Similarly to Lemma 4.4, we can write ρt,i as

ρt,i = ∑
(α,β , j)∈At,i

pi
α,β , jτ

i
α,β , j , (5.4)

where (α,β , j) range over some finite set At,i. (This set is finite because the HI register holding |x1 . . .xN〉
is finite dimensional and, therefore, decomposes into a direct sum of finitely many eigenspaces.) For
every pair (α,β , j)∈At,i, we normalize α,β by multiplying them by the same constant so that α2 +β 2 =
1. Querying xi transforms this state to

ρ
′
t,i = ∑

(α,β , j)∈At,i

pi
α,β , jτ

i
α,−β , j ,

because |ψ̃ i,`
i1,...,i j

〉 is a superposition of |x〉 with xi = ` and, therefore, a query leaves |ψ̃ i,0
i1,...,i j

〉 unchanged

and flips a phase on |ψ̃ i,1
i1,...,i j

〉. If i = 0, we have ρ ′
t,0 = ρt,0, because, if the query register contains |0〉,

the query maps any state to itself, thus leaving ρt,0 unchanged.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 11

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

Claim 5.3. Let α0 =
√

N−K
N− j

∥∥ψ̃
i,0
i1,...,i j

∥∥ and β0 =
√

K− j
N− j

∥∥ψ̃
i,1
i1,...,i j

∥∥.

(i) Si
α0,β0, j ⊆ S j;

(ii) Si
β0,−α0, j ⊆ S j+1.

Proof. In Section 7.

Corollary 5.4. For any α , β we have Si
α,β , j ⊆ S j ⊕S j+1.

Proof. We have Sα,β , j ⊆ Si,0
j ⊕ Si,1

j , since Sα,β , j is spanned by linear combinations of states |ψ̃ i,0
i1,...,i j

〉
(which belong to Si,0

j) and states |ψ̃ i,1
i1,...,i j

〉 (which belong to Si,1
j). As shown in the proof of Claim 5.3

above,
Si,0

j ⊕Si,1
j ⊆ Sα0,β0, j ⊕S−β0,α0, j ⊆ S j ⊕S j+1 .

The next claim quantifies the overlap between Si
α,β , j and S j+1.

Claim 5.5.

TrPS j+1τ
i
α,β , j =

|αβ0−βα0|2

α2
0 +β 2

0
.

Proof. In Section 7.

To be able to use this bound, we also need to bound α0 and β0.

Claim 5.6. β0√
α2

0 +β 2
0
≤
√

4(K− j)
N+3K−4 j .

Proof. In Section 7.

We can now complete the proof of Lemma 4.6. By projecting both sides of ρt = ∑i pt,iτi to (Tj)⊥ =
S j+1⊕·· ·⊕SK and taking trace, we get

TrP(Tj)⊥ρt =
K

∑
j′=0

pt, j′ TrP(T j)⊥τ j′ =
K

∑
j′= j+1

pt, j′ = qt, j , (5.5)

with the second equality following because the states τ j′ are uniform mixtures over subspaces S j′ and
S0, . . . ,S j are contained in Tj while S j+1, . . . ,SK are contained in (Tj)⊥. Because of equations (5.1) and
(5.4), this means that

qt, j+1 = a2
0 TrP(Tj)⊥ρt,0 +

N

∑
i=1

a2
i ∑

(α,β , j′)∈At,i

pi
α,β , j′ TrP(Tj)⊥τ

i
α,β , j′ . (5.6)

Decomposing the state after the query in a similar way, we get

qt+1, j+1 = a2
0 TrP(Tj)⊥ρ

′
t,0 +

N

∑
i=1

a2
i ∑

(α,β , j′)∈At,i

pi
α,β , j′ TrP(Tj)⊥τ

i
α,−β , j′ .

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 12

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

By substracting the two sums and using ρ ′
t,0 = ρt,0, we get

qt+1, j+1−qt, j+1 =
N

∑
i=1

a2
i ∑

(α,β , j′)∈At,i

pi
α,β , j′ TrP(Tj)⊥(τ i

α,−β , j′− τ
i
α,β , j′) . (5.7)

We now claim that all the terms in this sum with j′ 6= j are 0. For j′ < j, Sα,β , j′ ⊆ Tj′+1 ⊆ Tj, implying
that TrP(Tj)⊥τ i

α,β , j′ = 0 and, similarly, TrP(Tj)⊥τ i
α,−β , j′ = 0. For j′ > j, Sα,β , j′ ⊆ S j′ ⊕ S j′+1 ⊆ (Tj)⊥,

implying that
TrP(Tj)⊥τ

i
α,β , j′ = 1, TrP(Tj)⊥τ

i
α,−β , j′ = 1 ,

and the difference of the two is 0. By removing those terms from (5.7), we get

qt+1, j+1−qt, j+1 =
N

∑
i=1

a2
i ∑

(α,β , j)∈At,i

pi
α,β , j TrP(Tj)⊥(τ i

α,−β , j − τ
i
α,β , j) . (5.8)

We have

TrP(Tj)⊥(τ i
α,−β , j − τ

i
α,β , j) = TrPS j+1(τ

i
α,−β , j − τ

i
α,β , j) =

|αβ0 +βα0|2

α2
0 +β 2

0
− |αβ0−βα0|2

α2
0 +β 2

0
,

where the first equality follows from Corollary 5.4, S j ⊆ Tj, and S j+1 ⊆ (Tj)⊥, and the second equality
follows from Claim 5.5. This is at most

4
|αβα0β0|
α2

0 +β 2
0
≤ 2

α0β0

α2
0 +β 2

0
= 2

α0√
α2

0 +β 2
0

β0√
α2

0 +β 2
0

≤ 2

√
4(K− j)

N +3K−4 j
≤ 2

√
4K
N

,

where the first inequality follows from

|αβ | ≤ |α|2 + |β |2

2
=

1
2

and the second inequality follows from Claim 5.6 and α0√
α2

0 +β 2
0
≤ 1. Together with equation (5.7), this

means

qt+1, j+1−qt, j+1 ≤
4
√

K√
N

N

∑
i=1

a2
i ∑

(α,β , j)∈At,i

pi
α,β , j . (5.9)

Similarly to equation (5.5) we have

pt, j+1 + pt, j = TrP(S j⊕S j+1)ρt .

We can then express the right hand side, similarly to equation (5.6), as a sum of terms p0
j′ TrP(S j⊕S j+1)τ j′

and pi
α,β , j′ TrP(S j⊕S j+1)τ

i
α,β , j′ . Since Si

α,β , j ⊆ S j ⊕S j+1 (by Corollary 5.4), we have

TrP(S j⊕S j+1)τ
i
α,β , j = 1 .

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 13

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

This means that

pt, j+1 + pt, j ≥
N

∑
i=1

a2
i ∑

(α,β , j)∈At,i

pi
α,β , j .

Together with equation (5.9), this implies

qt+1, j+1−qt, j+1 ≤
4
√

K√
N

(pt, j + pt, j+1)≤
4
√

K√
N

K

∑
j′= j

pt, j′ =
4
√

K√
N

qt, j .

6 Proof of Lemma 4.9

We start with the case when pT,K/2+1 = · · ·= pT,K = 0.

Lemma 6.1. If pT,K/2+1 = · · ·= pT,K = 0, the success probability of A is at most
(N

K/2)
(N

K)
.

Proof. Let |ψ〉 be the final state. The state of register HI lies in TK/2, which is an
(N

K/2

)
-dimensional

space. Therefore, there is a Schmidt decomposition for |ψ〉 with at most
(N

K/2

)
terms. This means that

the state of HA lies in an
(N

K/2

)
-dimensional subspace of HA⊗HS.

We express the final state as

|ψ〉= ∑
x:|x|=K

1√(N
K

) |ψx〉|x〉 .

We can think of |ψx〉 as a quantum encoding for x and the final measurement as a decoding procedure
that takes |ψx〉 and produces a guess for x. The probability that algorithm A succeeds is then equal to
the average success probability of the encoding. We now use

Theorem 6.2. [20] For any encoding |ψx〉 of M classical values by quantum states in d dimensions, the
probability of success is at most d/M.

In our case, M =
(N

K

)
and d =

(N
K/2

)
because the states |ψ〉 all lie in a

(N
K/2

)
-dimensional subspace

of HA⊗HS. Therefore, Theorem 6.2 implies Lemma 6.1.
We decompose the state |ψT 〉 as

√
1−δ |ψ ′

T 〉+
√

δ |ψ ′′
T 〉 where |ψ ′

T 〉 is in the subspace HA ⊗TK/2

and |ψ ′′
T 〉 is in HA⊗ (TK/2)⊥. We have

δ =
K

∑
j=K/2+1

pT, j .

The success probability of A is the probability that, if we measure both the register of HA containing
the result of the computation and HI then we get i1, . . . , iK and x1, . . . ,xN such that xi1 = · · ·= xiK = 1.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 14

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

Consider the probability of getting i1, . . . , iK and x1, . . . ,xN such that xi1 = · · ·= xiK = 1, when mea-
suring |ψ ′

T 〉 (instead of |ψT 〉). By Lemma 6.1, this probability is at most
(N

K/2

)
/
(N

K

)
. We have

‖ψT −ψ
′
T‖ ≤ (1−

√
1−δ 2)‖ψ

′
T‖+

√
δ‖ψ

′′
T‖= (1−

√
1−δ 2)+

√
δ ≤ 2

√
δ .

We now apply

Lemma 6.3. [10] For any states |ψ〉 and |ψ ′〉 and any measurement, the total variation distance between
the probability distributions obtained by applying M to |ψ〉 and to |ψ ′〉 is at most 2‖ψ −ψ ′‖.

By Lemma 6.3, the probabilities of getting i1, . . . , iK and x1, . . . ,xN such that xi1 = · · · = xiK = 1,
when measuring |ψT 〉 and |ψ ′

T 〉 differ by at most 4
√

δ = 4√qT,K/2+1. Therefore, the success probability
of A is at most (N

K/2

)(N
K

) +4
√

qT,K/2+1 .

7 Structure of the eigenspaces of ρt,i

In this section, we prove Claims 5.2, 5.3, 5.5, and 5.6 describing the structure of the eigenspaces of ρt,i.
Before giving the proofs, we briefly summarize the results in this section.

1. Let ρt,i be a matrix whose rows and columns are indexed by (x1, . . . ,xN), xi ∈ {0,1} with x1 +
. . .+ xN = K. By Claim 5.2, if ρt,i is symmetric w. r. t. any permutation π ∈ SN that fixes i, then
its eigenspaces are of the form Si

α,β , j, which is the subspace spanned by the states of the form

α
|ψ̃ i,0

i1,...,i j
〉

‖|ψ̃ i,0
i1,...,i j

〉‖
+β

|ψ̃ i,1
i1,...,i j

〉

‖|ψ̃ i,1
i1,...,i j

〉‖

where |ψ̃ i,0
i1,...,i j

〉 and |ψ̃ i,1
i1,...,i j

〉 are the states defined at the beginning of Section 5.

2. We then relate the eigenspaces Si
α,β , j to the subspaces S0, . . . ,SK defined in Section 4.2. In

Claim 5.3 we show that, for certain α0 and β0, we have

• Si
α0,β0, j ⊆ S j;

• Si
−β0,α0, j ⊆ S j+1;

A corollary of this is that, for any α,β , we have

Si
α,β , j ⊆ Si

α0,β0, j ⊕Si
−β0,α0, j ⊆ S j ⊕S j+1 .

This is shown in Corollary 5.4.

3. Next, in Claim 5.5, we quantify how close Si
α,β , j is to S j and S j+1. The result is an expression for

TrPS j+1τ i
α,β , j (where τ i

α,β , j is the maximally mixed state over Si
α,β , j) that involves α,β and α0,β0.

To use that expression, we also need a bound on the ratio of α0 and β0 (Claim 5.6).

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 15

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

Proof of Claim 5.2. We rearrange the rows and the columns of ρt,i so that all rows and columns corre-
sponding to |x1 . . .xN〉 with xi = 0 are before the rows and the columns corresponding to |x1 . . .xN〉 with
xi = 1. We then express ρt,i as

ρt,i =
(

A B
C D

)
,

where A is an
(N−1

K

)
×
(N−1

K

)
square matrix indexed by |x1 . . .xN〉 with xi = 0, D is an

(N−1
K−1

)
×
(N−1

K−1

)
square matrix indexed by |x1 . . .xN〉 with xi = 1, and B and C are rectangular matrices with rows
(columns) indexed by |x1 . . .xN〉 with xi = 0 and columns (rows) indexed by |x1 . . .xN〉 with xi = 1.

We claim that

ρt,i|ψ̃ i,0
i1,...,i j

〉= a11|ψ̃ i,0
i1,...,i j

〉+a12|ψ̃ i,1
i1,...,i j

〉 and

ρt,i|ψ̃ i,1
i1,...,i j

〉= a21|ψ̃ i,0
i1,...,i j

〉+a22|ψ̃ i,1
i1,...,i j

〉 , (7.1)

where a11, a12, a21, a22 are independent of i1, . . . , i j. To prove that, we first note that A and D are matrices
where Axy and Dxy only depend on |{t : xt = yt}|. Therefore Lemma 4.3 applies. This means that Si,0

j

and Si,1
j are eigenspaces for A and D, respectively, and

A|ψ̃ i,0
i1,...,i j

〉= a11|ψ̃ i,0
i1,...,i j

〉 and

D|ψ̃ i,1
i1,...,i j

〉= a22|ψ̃ i,1
i1,...,i j

〉 ,

where a11 and a22 are the eigenvalues of A and D for the eigenspaces Si,0
j and Si,1

j . It remains to prove
that

B|ψ̃ i,0
i1,...,i j

〉= a12|ψ̃ i,1
i1,...,i j

〉 and (7.2)

C|ψ̃ i,1
i1,...,i j

〉= a21|ψ̃ i,0
i1,...,i j

〉 . (7.3)

Let M be a rectangular matrix, with entries indexed by x,y, with |x|= |y|= K and xi = 1 and yi = 0. The
entries of M are Mxy = 1 if x and y differ in two places, with xi = 1, yi = 0 and xl = 0, yl = 1 for some
l 6= i and Mxy = 0 otherwise. We claim

M|ψ̃ i,0
i1,...,i j

〉= c|ψ̃ i,1
i1,...,i j

〉 (7.4)

for some c that may depend on N,k, and j but not on i1, . . . , i j. To prove that, we need to prove two
things. First,

M|ψ i,0
i1,...,i j

〉= c|ψ i,1
i1,...,i j

〉 . (7.5)

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 16

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

This follows by

M|ψ i,0
i1,...,i j

〉=
1√(N− j−1
k− j

) ∑
x:xi1=···=xi j =1,

xi=0

M|x〉

=
1√(N− j−1
K− j

) ∑
x:xi1=···=xi j =1

xi=0

∑
`:x`=1

|x1 . . .x`−10x`+1 . . .xi−11xi+1 . . .xN〉

=
1√(N− j−1
K− j

)(N−K) ∑
y:yi1=···=yi j =1

yi=1

|y〉=
√

(K− j)(N−K)|ψ i,1
i1,...,i j

〉 .

Second, M(T i,0
j) ⊆ T i,1

j and M(T i,0
j)⊥ ⊆ (T i,1

j)⊥. The first statement immediately follows from equa-

tion (7.5), because the subspaces T i,0
j and T i,1

j are spanned by the states |ψ i,0
i1,...,i j

〉 and |ψ i,1
i1,...,i j

〉, respec-

tively. To prove the second statement, let |ψ〉 ∈ (T i,0
j)⊥ and |ψ〉 = ∑x ax|x〉. We would like to prove

M|ψ〉 ∈ (T i,1
j)⊥. This is equivalent to 〈ψ i,1

i1,...,i j
|M|ψ〉= 0 for all i1, . . . , i j. We have

〈ψ i,1
i1,··· ,i j

|M|ψ〉=
1√(N− j−1

K− j−1

) ∑
y:yi1=···=yi j =1

〈y|M|ψ〉

=
1√(N− j−1

K− j−1

) ∑
x:xi1=···=xi j =1,

xi=0

∑
l:xl=1,

l /∈{i1,...,i j}

ax

=
1√(N− j−1

K− j−1

)(K− j) ∑
x:xi1=···=xi j =1

ax = 0 .

The first equality follows by writing out 〈ψ i,1
i1,...,i j

|, the second equality follows by writing out M. The
third equality follows because, for every x with |x|= K and xi1 = · · ·= xi j = 1, there are K− j more l ∈ [N]
satisfying xl = 1. The fourth equality follows because ∑x:xi1=···=xi j =1 ax is a constant times 〈ψ i,0

i1,...,i j
|ψ〉

and 〈ψ i,0
i1,...,i j

|ψ〉= 0, because |ψ〉 ∈ (T i,0
j)⊥.

Furthermore, BM is an
(N−1

K

)
×
(N−1

K

)
matrix, with (BM)x,y only depending on |{` : x` = y` = 1}|.

Therefore, Si,1
j is an eigenspace of BM and, since |ψ̃ i,1

i1,...,i j
〉 ∈ Si,1

j , we have

BM|ψ̃ i,1
i1,...,i j

〉= λ |ψ̃ i,1
i1,...,i j

〉

for an eigenvalue λ independent of i1, . . . , i j. Together with equation (7.4), this implies equation (7.2)
with a12 = λ/c.

Equation (7.3) follows by proving

MT |ψ̃ i,1
i1,...,i j

〉= c|ψ̃ i,0
i1,...,i j

〉 and CMT |ψ̃ i,0
i1,...,i j

〉= λ |ψ̃ i,0
i1,...,i j

〉 ,

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 17

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

in a similar way.
We now diagonalize the matrix

M′ =
(

a11 a12
a21 a22

)
.

It has two eigenvectors:
(

α1
β1

)
and

(
α2
β2

)
. Equation (7.1) implies that, for any i1, . . . , i j,

α1|ψ̃ i,0
i1,...,i j

〉+β1|ψ̃ i,1
i1,...,i j

〉

is an eigenvector of ρt,i with the same eigenvalue λ . Therefore, Si
α1,β1, j is an eigenspace of ρt,i. Similarly,

Si
α2,β2, j is an eigenspace of ρt,i. Vectors α1|ψ̃ i,0

i1,...,i j
〉+β1|ψ̃ i,1

i1,...,i j
〉 and α2|ψ̃ i,0

i1,...,i j
〉+β2|ψ̃ i,1

i1,...,i j
〉 together

span the same space as vectors |ψ̃ i,0
i1,...,i j

〉 and |ψ̃ i,1
i1,...,i j

〉. Since the vectors |ψ̃ i,`
i1,...,i j

〉 span Si,`
j , this means

that
Si,0

j ⊕Si,1
j ⊆ Sα1,β1,i⊕Sα2,β2,i .

Therefore, repeating this argument for every j gives a collection of eigenspaces that span the entire state
space for HI . This means that any eigenspace of ρt,i is a direct sum of some of eigenspaces Si

α,β , j.

Proof of Claim 5.3. For part (i), consider the states |ψi1,...,i j〉 spanning Tj. We have

|ψi1,...,i j〉=

√
N− k
N− j

|ψ i,0
i1,...,i j

〉+

√
K− j
N− j

|ψ i,1
i1,...,i j

〉 (7.6)

because an (N−K)/(N− j) fraction of the states |x1 . . .xN〉 with |x| = K and xi1 = · · · = xi j = 1 have
xi = 0 and the rest have xi = 1. The projection of these states to (T i,0

j−1⊕T i,1
j−1)

⊥ are√
N−K
N− j

|ψ̃ i,0
i1,...,i j

〉+

√
K− j
N− j

|ψ̃ i,1
i1,...,i j

〉

which, by equation (5.3) are exactly the states spanning Si
α0,β0, j. Furthermore, we claim that

Tj−1 ⊆ T i,0
j−1⊕T i,1

j−1 ⊆ Tj . (7.7)

The first containment is true because Tj−1 is spanned by the states |ψi1,...,i j−1〉 which either belong to
T i,1

j−2 ⊆ T i,1
j−1 (if one of i1, . . . , i j−1 is equal to i) or are a linear combination of states |ψ i,0

i1,...,i j−1
〉 and

|ψ i,1
i1,...,i j−1

〉which belong to T i,0
j−1 and T i,1

j−1. The second containment follows because the states |ψ i,1
i1,...,i j−1

〉
spanning T i,1

j−1 are the same as the states |ψi,i1,...,i j−1〉which belong to Tj and the states |ψ i,0
i1,...,i j−1

〉 spanning

T i,0
j−1 can be expressed as linear combinations of |ψi1,...,i j−1〉 and |ψi,i1,...,i j−1〉 which both belong to Tj.

The first part of (7.7) now implies

Si
α0,β0, j ⊆ (T i,0

j−1⊕T i,1
j−1)

⊥ ⊆ (Tj−1)⊥ .

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 18

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

We also have Si
α0,β0, j ⊆ Tj, because, Si

α0,β0, j is spanned by the states

P(T i,0
j−1⊕T i,1

j−1)⊥
|ψi1,...,i j〉= |ψi1,...,i j〉−PT i,0

j−1⊕T i,1
j−1
|ψi1,...,i j〉

and |ψi1,...,i j〉 belongs to Tj by the definition of Tj and PT i,0
j−1⊕T i,1

j−1
|ψi1,...,i j〉 belongs to Tj because of the

second part of (7.7). Therefore, Si
α0,β0, j ⊆ Tj ∩ (Tj−1)⊥ = S j.

For the part (ii), we have

Si
α0,β0, j ⊆ Si,0

j ⊕Si,1
j ⊆ T i,0

j ⊕T i,1
j ⊆ Tj+1 ,

where the first containment is true because Si
α0,β0, j is spanned by linear combinations of vectors |ψ̃ i,0

i1,...,i j
〉

(which belong to Si,0
j) and vectors |ψ̃ i,1

i1,...,i j
〉 (which belong to Si,1

j) and the last containment is true because
of the second part of equation (7.7).

Let

|ψ〉= β0
|ψ̃ i,0

i1,...,i j
〉

‖|ψ̃ i,0
i1,...,i j

〉‖
−α0

|ψ̃ i,1
i1,...,i j

〉

‖|ψ̃ i,1
i1,...,i j

〉‖
(7.8)

be one of the vectors spanning Si
β0,−α0, j. To prove that |ψ〉 is in S j+1 = Tj+1 −Tj, it remains to prove

that |ψ〉 is orthogonal to Tj. This is equivalent to proving that |ψ〉 is orthogonal to every vector |ψi′1,...,i
′
j
〉

spanning Tj.

Case 1 {i′1, . . . , i
′
j} = {i1, . . . , i j}: Since |ψ〉 belongs to (T i,0

j−1 ⊕ T i,1
j−1)

⊥, it suffices to prove that |ψ〉
is orthogonal to the projection of |ψi1,...,i j〉 to (T i,0

j−1 ⊕T i,1
j−1)

⊥ which, by the discussion after the equa-
tion (7.6), is equal to

α0
|ψ̃ i,0

i1,...,i j
〉

‖|ψ̃ i,0
i1,...,i j

〉‖
+β0

|ψ̃ i,1
i1,...,i j

〉

‖|ψ̃ i,1
i1,...,i j

〉‖
. (7.9)

¿From equations (7.8) and (7.9) we see that the inner product of the two states is α0β0−β0α0 = 0.

Case 2 {i′1, . . . , i
′
j} 6= {i1, . . . , i j} but one of i′1, . . . , i

′
j is equal to i: For simplicity, assume i = i′j. Then

|ψi′1,...,i
′
j
〉 is the same as |ψ i,1

i′1,...,i
′
j−1
〉 which belongs to T i,1

j−1. By the definition of Si
α,β , j, the vector |ψ〉

belongs to (T i,0
j−1⊕T i,1

j−1)
⊥ and is therefore orthogonal to |ψ i,1

i′1,...,i
′
j−1
〉.

Case 3 {i′1, . . . , i
′
j} 6= {i1, . . . , i j} and none of i′1, . . . , i

′
j is equal to i: One of i′1, . . . , i

′
j must be not in

{i1, . . . , i j}. For simplicity, assume it is i′j. We have

|ψi′1,...,i
′
j−1
〉= ∑

i′ /∈{i′1,...,i
′
j−1}

|ψi′1,...,i
′
j−1,i

′〉 .

Also, 〈ψi′1,...,i
′
j−1
|ψ〉= 0, because |ψi′1,...,i

′
j−1
〉 is in T i,0

j−1⊕T i,1
j−1. As proved in the previous case,

〈ψi′1,...,i
′
j−1,i

|ψ〉= 0 .

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 19

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

We therefore have
∑

i′ /∈{i′1,...,i
′
j−1,i}

〈ψi′1,...,i
′
j−1,i

′ |ψ〉= 0 . (7.10)

By symmetry, the inner product 〈ψi′1,...,i
′
j−1,i

′ |ψ〉 is the same for every i′ /∈ {i′1, . . . , i
′
j−1, i}. Therefore,

equation (7.10) means 〈ψi′1,...,i
′
j−1,i

′ |ψ〉= 0 for every i′ /∈ {i′1, . . . , i
′
j−1, i}.

Proof of Claim 5.5. τ i
α,β , j is a mixture of states |ψ〉 from the subspace Si

α,β , j. We prove the claim by
showing that, for any of those states |ψ〉, the squared norm of its projection to S j+1 is equal to the right
hand side of Claim 5.5. Since |ψ〉 ∈ Si

α,β , j we can write it as

|ψ〉= ∑
i1,...,i j

ai1,...,i j(α|ψ̃
i,0
i1,...,i j

〉+β |ψ̃ i,1
i1,...,i j

〉)

for some ai1,...,i j . Let

|ψ+〉= ∑
i1,...,i j

ai1,...,i j(β0|ψ̃ i,0
i1,...,i j

〉−α0|ψ̃ i,1
i1,...,i j

〉) and

|ψ−〉= ∑
i1,...,i j

ai1,...,i j(α0|ψ̃ i,0
i1,...,i j

〉+β0|ψ̃ i,1
i1,...,i j

〉) .

Then, |ψ〉 is a linear combination of |ψ+〉 which belongs to Si
β0,−α0, j ⊂ S j+1 (by Claim 5.3) and |ψ−〉

which belongs to Si
α0,β0, j ⊆ S j. Moreover, all three states are linear combinations of |ψ0〉, |ψ1〉 defined

by
|ψ`〉= ∑

i1,...,i j

ai1,...,i j |ψ̃
i,`
i1,...,i j

〉 .

We have

|ψ〉= α|ψ0〉+β |ψ1〉 , |ψ+〉= β0|ψ0〉−α0|ψ1〉 and |ψ−〉= α0|ψ0〉+β0|ψ1〉 .

Since |ψ+〉 and |ψ−〉 belong to subspaces S j+1 and S j which are orthogonal, we must have 〈ψ+|ψ−〉= 0.
This means

α0β0‖ψ
0‖2−β0α0‖ψ

1‖2 = 0 .

By dividing the equation by α0β0, we get ‖ψ0‖2 = ‖ψ1‖2 and ‖ψ0‖= ‖ψ1‖. Since ‖ψ‖= 1, this means
that

‖ψ
0‖= ‖ψ

1‖=
1√

α2 +β 2
= 1 .

Since |ψ〉 lies in the subspace spanned by |ψ+〉 which belongs to S j+1 and |ψ−〉 which belongs to
S j, the norm of the projection of |ψ〉 to S j+1 is equal to |〈ψ|ψ+〉|/‖ψ+‖. By expressing |ψ〉 and |ψ+〉
in terms of |ψ0〉 and |ψ1〉, we get

|〈ψ|ψ+〉|
‖ψ+‖

=
αβ0‖ψ0‖2−α0β‖ψ1‖2√

β 2
0 ‖ψ0‖2 +α2

0‖ψ0‖2
=
|αβ0−α0β |√

α2
0 +β 2

0

,

proving the claim.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 20

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

Proof of Claim 5.6. We will prove ‖ψ̃
i,0
i1,...,i j

‖ ≥ 1
2‖ψ̃

i,1
i1,...,i j

‖, because that means

α0 =
√

N−K√
N− j

‖ψ̃
i,0
i1,...,i j

‖ ≥ 1
2

√
N−K√
K− j

√
K− j√
N− j

‖ψ̃
i,1
i1,...,i j

‖=
√

N−K
2
√

K− j
β0

and
β0√

α2
0 +β 2

0

≤ β0√
N−K

4(K− j)β 2
0 +β 2

0

=
1√

1+ N−K
4(K− j)

=

√
4(K− j)√

N +3K−4 j
.

To prove ‖ψ̃
i,0
i1,...,i j

‖ ≥ ‖ψ̃
i,1
i1,...,i j

‖, we calculate the vector

|ψ̃ i,0
i1,...,i j

〉= P(T i,0
j−1)⊥

|ψ i,0
i1,...,i j

〉 .

Both the vector |ψ i,0
i1,...,i j

〉 and the subspace T i,0
j−1 are fixed by

Uπ |x〉= |xπ(1) . . .xπ(N)〉

for any permutation π that fixes i and maps {i1, . . . , i j} to itself. This means that |ψ̃ i,0
i1,...,i j

〉 is fixed by

any such Uπ as well. Therefore, the amplitude of |x〉, |x| = K, xi = 0 in |ψ̃ i,0
i1,...,i j

〉 only depends on

|{i1, . . . , i j}∩{t : xt = 1}|. This means |ψ̃ i,0
i1,...,i j

〉 is of the form

|ψ0〉=
j

∑
m=0

αm ∑
x:|x|=K,xi=0

|{i1,...,i j}∩{t:xt=1}|=m

|x〉 .

To simplify the following calculations, we multiply α0, . . . ,α j by the same constant so that

α j =
1√(N− j−1
K− j

) .

Then, |ψ̃ i,0
i1,...,i j

〉 remains a multiple of |ψ0〉 but may no longer be equal to |ψ0〉.
The coefficients α0, . . . ,α j−1 should be such that the state is orthogonal to Tj−1 and, in particular,

orthogonal to states |ψ i,0
i1,...,i`〉 for ` ∈ {0, . . . , j−1}. By writing out 〈ψ0|ψ i,0

i1,...,i`〉= 0, we get

j

∑
m=`

αm

(
N− j−1

K−m

)(
j− `

m− `

)
= 0 . (7.11)

To show that, we first note that |ψ i,0
i1,...,i`〉 is a uniform superposition of all |x〉, |x|= K, xi = 0, xi1 = · · ·=

xil = 1. If we want to choose x subject to those constraints and also satisfying |{i1, . . . , i j}∩{t : xt = 1}|=
m, we have to set xt = 1 for m− ` different t ∈ {i`+1, . . . , i j} and for K−m different t /∈ {i, i1, . . . , i j}.
This can be done in

(j−`
m−`

)
and

(N− j−1
K−m

)
different ways, respectively.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 21

http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

By solving the system of equations (7.11), we get that the only solution is

αm = (−1) j−m

(N− j−1
K− j

)(N− j−1
K−m

)α j . (7.12)

Let |ψ ′
0〉= |ψ0〉/‖ψ0‖ be the normalized version of |ψ0〉. Then

|ψ̃ i,0
i1,...,i j

〉= 〈ψ ′
0|ψ

i,0
i1,...,i j

〉|ψ ′
0〉 and

‖ψ̃
i,0
i1,...,i j

‖= 〈ψ ′
0|ψ

i,0
i1,...,i j

〉=
〈ψ0|ψ i,0

i1,...,i j
〉

‖ψ0‖
. (7.13)

First, we have

〈ψ0|ψ i,0
i1,...,i j

〉= 1 ,

because |ψ i,0
i1,...,i j

〉 consists of
(N− j−1

K− j

)
basis states |x〉, xi = 0, xi1 = · · · = xi j = 1, each of which has

amplitude 1/
√(N− j−1

K− j

)
in both |ψ0〉 and |ψ i,0

i1,...,i j
〉. Second,

‖ψ0‖2 =
j

∑
m=0

(
j

m

)(
N− j−1

K−m

)
α

2
m =

j

∑
m=0

(
j

m

)(N− j−1
K− j

)2(N− j−1
K−m

) α
2
j

=
j

∑
m=0

(
j

m

)(N− j−1
K− j

)(N− j−1
K−m

) =
j

∑
m=0

(
j

m

)
(K−m)!(N−K +m− j−1)!

(K− j)!(N−K−1)!

=
j

∑
m=0

(
j

m

)
(K−m) · · ·(K− j +1)

(N−K−1) · · ·(N−K +m− j)
(7.14)

with the first equality following because there are
(j

m

)(N− j−1
K−m

)
vectors x such that |x|= K, xi = 0, xt = 1

for m different t ∈ {i1, . . . , i j} and K−m different t /∈ {i, i1, . . . , i j}, the second equality following from

equation (7.12) and the third equality following from our choice α j = 1/
√(N− j−1

K− j

)
.

We can similarly calculate ‖ψ̃
i,1
i1,...,i j

‖. We omit the details and just state the result. The counterpart
of equation (7.13) is

‖ψ̃
i,1
i1,...,i j

‖=
〈ψ1|ψ i,1

i1,...,i j
〉

‖ψ1‖
,

with |ψ1〉 being the counterpart of |ψ0〉:

|ψ1〉=
j

∑
m=0

αm ∑
x:|x|=K,xi=1

|{i1,...,i j}∩{`:x`=1}|=m

|x〉 ,

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 22

http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

with α0 = 1/
√(N− j−1

K− j−1

)
. Similarly as before, we get 〈ψ1|ψ i,1

i1,...,i j
〉= 1 and

‖ψ1‖2 =
j

∑
m=0

(
j

m

) (N− j−1
K− j−1

)(N− j−1
K−m−1

)
=

j

∑
m=0

(
j

m

)
(K−m−1) . . .(K− j)

(N−K) . . .(N−K +m− j +1)
. (7.15)

Each term in (7.14) is
(K−m)(N−K +m− j)

(K− j)(N−K)

times the corresponding term in equation (7.15). We have

K−m
K− j

N−K +m− j
N−K

≤ K
K/2

·2 = 4 ,

because j ≤ K/2 and N−K + m− j ≤ N−K (because of m ≤ j). Therefore, ‖ψ0‖2 ≤ 4‖ψ1‖2 which
implies

‖ψ̃
i,0
i1,...,i j

‖=
1

‖ψ0‖
≥ 1√

4‖ψ1‖
=

1
2
‖ψ̃

i,1
i1,...,i j

‖ .

Acknowledgment. I would like to thank Frederic Magniez, Robert Špalek, Ronald de Wolf, and
several anonymous referees for very helpful comments on a draft of this paper.

References

[1] S. AARONSON: Limitations of quantum advice and one-way communication. Theory of Comput-
ing, 1:1–28, 2005. Conference version in CCC’2004. [ToC:v001/a001, arXiv:quant-ph/0402095].
2

[2] S. AARONSON AND Y. SHI: Quantum lower bounds for the collision and the element distinctness
problems. J. ACM, 51(4):595–605, 2004. [JACM:1008731.1008735]. 2

[3] A. AMBAINIS: Quantum lower bounds by quantum arguments. J. Comput. System Sci.,
64(4):750–767, 2002. Conference version in STOC’00. [JCSS:10.1006/jcss.2002.1826,
STOC:335305.335394, arXiv:quant-ph/0002066]. 1, 3, 4

[4] A. AMBAINIS: Polynomial degree vs. quantum query complexity. J. Comput. System Sci.,
72(2):220–238, 2006. Conference version in FOCS’03. [JCSS:10.1016/j.jcss.2005.06.006,
FOCS:10.1109/SFCS.2003.1238197, arXiv:quant-ph/0305028]. 2, 3, 4

[5] A. AMBAINIS: Quantum walk algorithm for element distinctness. SIAM J. Comput.,
37(1):210–239, 2007. Conference version in FOCS’04. [SICOMP:10.1137/S0097539705447311,
arXiv:quant-ph/0311001]. 2

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 23

http://theoryofcomputing.org/articles/main/v001/a001
http://arxiv.org/abs/quant-ph/0402095
http://portal.acm.org/citation.cfm?id=1008731.1008735
http://dx.doi.org/10.1006/jcss.2002.1826
http://portal.acm.org/citation.cfm?id=335305.335394
http://arxiv.org/abs/quant-ph/0002066
http://dx.doi.org/10.1016/j.jcss.2005.06.006
http://doi.ieeecomputersociety.org//10.1109/SFCS.2003.1238197
http://arxiv.org/abs/quant-ph/0305028
http://dx.doi.org/10.1137/S0097539705447311
http://arxiv.org/abs/quant-ph/0311001
http://dx.doi.org/10.4086/toc

ANDRIS AMBAINIS

[6] A. AMBAINIS, R. ŠPALEK, AND R. DE WOLF: A new quantum lower bound method, with ap-
plications to direct product theorems and time-space tradeoffs. In Proc. 38th STOC, pp. 618–633.
ACM Press, 2006. [STOC:10.1145/1132516.1132604]. 2

[7] A. AMBAINIS, R. ŠPALEK, AND R. DE WOLF: Quantum direct product theorems for symmetric
functions and time-space tradeoffs. Algorithmica, 55(3):422–461, 2009. 2

[8] H. BARNUM, M. SAKS, AND M. SZEGEDY: Quantum decision trees and semidefinite program-
ming. In Proc. 18th IEEE Conf. on Comput. Complex. (CCC’03), pp. 179–193. IEEE Press, 2003.
[CCC:10.1109/CCC.2003.1214419]. 2

[9] R. BEALS, H. BUHRMAN, R. CLEVE, M. MOSCA, AND R. DE WOLF: Quantum lower
bounds by polynomials. J. ACM, 48(4):778–797, 2001. Conference version in FOCS’98.
[JACM:502090.502097, FOCS:10.1109/SFCS.1998.743485, arXiv:quant-ph/9802049]. 1

[10] E. BERNSTEIN AND U. VAZIRANI: Quantum complexity theory. SIAM J. Comput., 26(5):1411–
1473, 1997. [SICOMP:10.1137/S0097539796300921]. 15

[11] G. BRASSARD, P. HØYER, AND A. TAPP: Quantum counting. In Proc. 25th Intern. Conf. Au-
tomata, Languages and Programming (ICALP’98), volume 1443 of LNCS, pp. 820–831. Springer,
1998. [ICALP:ap2mrf08d8gcqppe, arXiv:quant-ph/9805082]. 1

[12] H. BUHRMAN AND R. DE WOLF: Complexity measures and decision tree complexity: A survey.
Theoret. Comput. Sci., 288:21–43, 2002. [TCS:10.1016/S0304-3975(01)00144-X]. 3

[13] L. GROVER: A fast quantum mechanical algorithm for database search. In Proc. 28th STOC, pp.
212–219. ACM Press, 1996. [STOC:237814.237866, arXiv:quant-ph/9605043]. 1

[14] P. HØYER, T. LEE, AND R. ŠPALEK: Negative weights make adversaries stronger. In Proc. 39th
STOC, pp. 526–535. ACM Press, 2007. [STOC:10.1145/1250790.1250867]. 3

[15] P. HOYER, J. NEERBEK, AND Y. SHI: Quantum lower bounds of ordered searching, sorting
and element distinctness. Algorithmica, 34:429–448, 2002. Conference version at ICALP’01.
[Algorithmica:25gl9elr5rxr3q6a, arXiv:quant-ph/0102078]. 4

[16] H. KLAUCK, R. ŠPALEK, AND R. DE WOLF: Quantum and classical strong direct product theo-
rems and optimal time-space tradeoffs. SIAM J. Comput., 36(5):1472–1493, 2007. Conference ver-
sion at FOCS’04. [SICOMP:10.1137/05063235X, FOCS:10.1109/FOCS.2004.52, arXiv:quant-
ph/0402123]. 2

[17] D. KNUTH: Combinatorial matrices. In Selected Papers on Discrete Mathematics, CSLI Lecture
Notes, no. 106. University of Chicago Press, 2003. 8

[18] S. LAPLANTE AND F. MAGNIEZ: Lower bounds for randomized and quantum query com-
plexity using Kolmogorov arguments. SIAM J. Comput., 38(1):46–62, 2008. Conference ver-
sion at CCC’04. [SICOMP:10.1137/050639090, CCC:10.1109/CCC.2004.1313852, arXiv:quant-
ph/0311189]. 2

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 24

http://doi.acm.org/10.1145/1132516.1132604
http://doi.ieeecomputersociety.org//10.1109/CCC.2003.1214419
http://portal.acm.org/citation.cfm?id=502090.502097
http://doi.ieeecomputersociety.org//10.1109/SFCS.1998.743485
http://arxiv.org/abs/quant-ph/9802049
http://dx.doi.org/10.1137/S0097539796300921
http://springerlink.metapress.com/link.asp?id=ap2mrf08d8gcqppe
http://arxiv.org/abs/quant-ph/9805082
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://portal.acm.org/citation.cfm?id=237814.237866
http://arxiv.org/abs/quant-ph/9605043
http://doi.acm.org/10.1145/1250790.1250867
http://springerlink.metapress.com/link.asp?id=25gl9elr5rxr3q6a
http://arxiv.org/abs/quant-ph/0102078
http://dx.doi.org/10.1137/05063235X
http://doi.ieeecomputersociety.org//10.1109/FOCS.2004.52
http://arxiv.org/abs/quant-ph/0402123
http://arxiv.org/abs/quant-ph/0402123
http://dx.doi.org/10.1137/050639090
http://doi.ieeecomputersociety.org//10.1109/CCC.2004.1313852
http://arxiv.org/abs/quant-ph/0311189
http://arxiv.org/abs/quant-ph/0311189
http://dx.doi.org/10.4086/toc

NEW QUANTUM LOWER BOUND METHOD

[19] F. MAGNIEZ, M. SANTHA, AND M. SZEGEDY: Quantum algorithms for the triangle
problem. SIAM J. Comput., 37(2):413–424, 2007. Conference version at SODA’05.
[SICOMP:10.1137/050643684, arXiv:quant-ph/0310134]. 2

[20] A. NAYAK: Optimal lower bounds for quantum automata and random access codes. In Proc.
40th FOCS, pp. 369–377. IEEE Press, 1999. [FOCS:10.1109/SFFCS.1999.814608, arXiv:quant-
ph/9904093]. 14

[21] B. REICHARDT: Span programs and quantum query complexity: The general adversary bound is
nearly tight for every Boolean functionnote. Quant-ph, arXiv:0904.2759, 2009. [arXiv:0904.2759].
3

[22] R. ŠPALEK: The multiplicative quantum adversary. In Proc. 23rd IEEE Conf. on Comput. Com-
plex., pp. 237–248. IEEE Press, 2008. [CCC:10.1109/CCC.2008.9]. 2

[23] R. ŠPALEK AND M. SZEGEDY: All quantum adversary methods are equivalent. Theory of
Computing, 2(1):1–18, 2006. Conference version at ICALP’05. [ToC:v002/a001, arXiv:quant-
ph/0409116]. 2

[24] S. ZHANG: On the power of Ambainis’s lower bounds. Theoret. Comput. Sci., 339(2–
3):241–256, 2005. Conference version in ICALP’04. [TCS:10.1016/j.tcs.2005.01.019,
ICALP:gm2ff6wpc0q39v3x, arXiv:quant-ph/0311060]. 2

AUTHOR

Andris Ambainis
professor
University of Latvia
Raina bulv. 19, Riga, LV-1586, Latvia
andris ambainis lu lv
http://home.lanet.lv/∼ambainis

ABOUT THE AUTHOR

ANDRIS AMBAINIS received his Ph. D. from the University of California, Berkeley in 2001,
supervised by Umesh Vazirani. After that, he was a postdoc at the Institute for Advanced
Study, Princeton and at the University of California, Berkeley, and a faculty member at
the University of Waterloo, Canada. In 2007, Andris returned to his native Latvia and
became Professor at the University of Latvia. His research interests include many areas
of quantum computing and quantum information theory (quantum algorithms, quantum
complexity theory, quantum cryptography, pseudorandom quantum states, etc.), as well
as the classical theory of computation.

THEORY OF COMPUTING, Volume 6 (2010), pp. 1–25 25

http://dx.doi.org/10.1137/050643684
http://arxiv.org/abs/quant-ph/0310134
http://doi.ieeecomputersociety.org//10.1109/SFFCS.1999.814608
http://arxiv.org/abs/quant-ph/9904093
http://arxiv.org/abs/quant-ph/9904093
http://arxiv.org/abs/0904.2759
http://doi.ieeecomputersociety.org//10.1109/CCC.2008.9
http://theoryofcomputing.org/articles/main/v002/a001
http://arxiv.org/abs/quant-ph/0409116
http://arxiv.org/abs/quant-ph/0409116
http://dx.doi.org/10.1016/j.tcs.2005.01.019
http://springerlink.metapress.com/link.asp?id=gm2ff6wpc0q39v3x
http://arxiv.org/abs/quant-ph/0311060
http://home.lanet.lv/~ambainis
http://www.berkeley.edu
http://www.eecs.berkeley.edu/~vazirani
http://www.ias.edu
http://www.ias.edu
http://www.uwaterloo.ca
http://www.lu.lv
http://dx.doi.org/10.4086/toc

	Introduction
	Preliminaries
	Overview of the adversary method
	Our result
	General framework
	K-fold search

	Proof of Lemma 4.6
	Proof of Lemma 4.9
	Structure of the eigenspaces
	References

