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SUBHASH KHOT, DOR MINZER, AND MULI SAFRA

2-to-2 Games Conjecture (albeit with imperfect completeness), which in particular
implies the NP-hardness results for independent set and vertex cover mentioned
above.

1 Introduction

This paper focuses on hardness-of-approximation results for the Vertex Cover and the Inde-
pendent Set problems, which are closely related to the hardness of approximating the 2-to-2
Games problem with a certain non-standard notion of soundness. This article represents the
starting point of a successful line of attack on the 2-to-2 Games Conjecture [31, 12, 11, 32] (with
additional contributions from [34, 30, 4]), which culminated in a proof of the conjecture (albeit
with imperfect completeness) and its implications. These implications in particular include
the improved hardness results for independent set and vertex cover claimed in this paper. We
elaborate on these subsequent developments in Section 1.5.

1.1 Vertex Cover and Independent Set

Given an n-vertex graph G = (V,E), the Vertex Cover problem asks for a vertex cover of
minimum size, namely, a subset C C V of minimum size that includes at least one endpoint of
each edge e € E. This is a classic NP-hard problem and has a greedy 2-approximation algorithm.
The algorithm starts with the graph G, initializes C = 0, and until the graph has at least one edge
remaining, picks an edge, adds both its endpoints to C, removes all edges incident on either of
these two endpoints, and repeats. It is easily seen that the final set C is a vertex cover of G and
has size at most twice that of the minimum vertex cover. A somewhat better approximation

algorithm achieving factor 2 — Q) ( \/kl)?) is known via SDP relaxation [20, 24]. However it is a
major open question whether there is a 2 — 0 approximation algorithm for some fixed positive
constant 6. Surprisingly, as discussed below, there is some evidence to the contrary: Vertex
Cover might actually be hard to approximate within a factor 2 — ¢ for every positive constant ¢.

The complement V' \ C of a vertex-cover C is an independent set, namely, a set of vertices
I € V that has no edge inside it. For constants 0 < f < a < 1, let GaplS(«, ) denote the
promise gap-problem where the task is to distinguish whether a given n-vertex graph has an
independent set of size at least an or whether every independent set is of size at most fn.
Clearly, if GaplS(«, B) is hard,! then it would be hard to approximate Vertex Cover within a
factor strictly less than }_i

Let ¢ denote a positive and arbitrarily small constant. We summarize the known NP-hardness
results for approximating the Vertex Cover problem, obtained in a sequence of highly influential
papers. Building on the PCP Theorem [16, 3, 2], the Parallel Repetition Theorem [37], and the
Long Code based PCP framework in [5], Hastad [21] showed that GapIS(% -, % + ¢) is NP-hard,

1The statement that GaplS(«, p) is NP-hard is equivalent to the statement that NP has a Probabilistically Checkable
Proof (PCP) that has zero-free bit complexity, has completeness at least @ and has soundness at most f, see [5,
Proposition 5.6, Theorem 8.2]. We avoid the terminology of free bit complexity in this paper.
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implying % — ¢ ~ 1.16 hardness factor for Vertex Cover. Dinur and Safra [14] showed that
GaplS(p — ¢,4p® — 3p* + ¢) is NP-hard for p = 3_2—\/5_’, implying 10V5 — 21 — ¢ ~ 1.36 hardness
factor for Vertex Cover. Their paper introduced several techniques, e. g., the Biased Long Code,
application of Fourier analytic theorems on Boolean hypercube, and implicitly, the notion of
2-to-2 Games, all of which are indispensable in the authors’ opinion, for further progress on
Vertex Cover.

1.2 d-to-d games

In this section, we discuss the d-to-d Games and their connection to the Independent Set and
Vertex Cover problems.

Definition 1.1. A 2-Prover-1-Round Game G = (V, E, ¥, ®) consists of a set of variables V, a set
of directed edges E C V XV, a set of colors I, and a constraint (1, v) C XX L for every (directed)
edge (u,v) € E. The goal is to assign colors to variables, say A : V. — L, so as to satisfy the
maximum number of the constraints. A constraint ®(u, v) is satisfied if (A(u), A(v)) € ®(u, v),
where by abuse of notation, ®(u, v) € £ X X denotes the subset of color-pairs that are deemed
satisfactory. The subset ®(u, v) C L X X may in general depend on the edge (u, v).

Let d > 1 be an integer. A constraint ®(u,v) C X X L is said to be a d-to-d constraint if there
are partitions Ay, ..., A, and By, ..., B, of X into sets of size d such that (|Z| = rd)

;
©(u,0) = _J(AixB)).
i=1
A 2-Prover-1-Round Game G = (V, E, @, L) is said to be a d-to-d Game if every constraint ®(u, v)
is a d-to-d constraint. A 1-to-1 Game is also called a Unique Game. In this case, ®(u, v) is simply
a perfect matching on X X .

In the above definitions, the number of colors |Z| is thought of as a constant, possibly large,
and the size of the constraint graph as the growing input size. Motivated by a hardness-of-
approximation result for the 2-SAT problem, Khot [26] formulated the following conjecture.

Conjecture 1.2 (Unique Games Conjecture). For every 0 > 0, for sufficiently large |Z|, given an
instance G = (V, E, ®, X) of a Unique Game, it is NP-hard to distinguish between

e YES case: there is a coloring satisfying a 1 — 6 fraction of the constraints of G.
e NO case: no coloring satisfies more than a ¢ fraction of the constraints of G.

The reduction in [14] implicitly suggests the idea of 2-to-2 Games (though therein, the
game is a a-game in the sense of [13] instead of a 2-to-2 game and the notion of soundness is
non-standard). Motivated by hardness-of-approximation result for the Vertex Cover problem,
Khot [26] also formulated the d-to-d Conjecture.?

2Note that the Unique Games Conjecture is, necessarily, made with imperfect completeness whereas the d-to-d
Conjecture is made with perfect completeness. Strictly speaking, the conjecture in [26] is a d-to-1 Conjecture. It
implies (and in the authors’ opinion, is morally equivalent to) the d-to-d Conjecture stated here.
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Conjecture 1.3 (d-to-d Conjecture). Fix any integer d > 2. For every 6 > 0, for sufficiently large
|Z|, given an instance G = (V, E, @, X) of a d-to-d Game, it is NP-hard to distinguish between

e YES case: there is a coloring satisfying all of the constraints of G.

e NO case: no coloring satisfies more than a 0 fraction of the constraints of G.

Let ¢ denote a positive and arbitrarily small constant. It was shown that the d-to-d Conjecture
implies that GaplS (1 L —¢, z—:) is NP-hard for d > 2 [26]. The result did not apply in case of

174

Unique Games, because the imperfect completeness of Unique Games presented a difficulty.
This difficulty was circumvented in [33] where the authors showed that the Unique Games
Conjecture implies that GaplS(3 — ¢, ¢) is NP-hard and therefore, implies that Vertex Cover is
NP-hard to approximate within a factor 2 — ¢. The Unique Games Conjecture, and to a lesser
extent the d-to-d Conjecture, is now a prominent open question in theoretical computer science.
It implies hardness-of-approximation results, often optimal results, for numerous problems and
has connections to several areas in algorithms, computational complexity, and geometry, see
[42, 29, 28] for surveys on the topic. It is thus worthwhile to investigate possible lines of attack
towards proving (or disproving) the Unique Games Conjecture, the d-to-d Conjectures, and
their variants. In this paper, we present a line of attack towards proving a variant of the 2-to-2
Conjecture with a certain non-standard notion of soundness, and towards making progress on
the Independent Set and Vertex Cover problems.

Unfortunately we have to consider games where the constraints are a mix of 2-to-2 constraints
and 1-to-1 constraints and the game satisfies an additional transitivity property. This feature
might not be necessary, but we are unable to circumvent it for now (see Remark 4.2).

Definition 1.4. A Transitive 2-to-2 Game is a game G = (V, E, @, X) where
e Each constraint ®(u, v) is a 2-to-2 constraint or a 1-to-1 constraint.

e Transitivity: If there is a 1-to-1 constraint ®(u, v) and a constraint ®(v, w), then there is
also a constraint ®(u, w). The constraint ®(u, w) is either 1-to-1 or 2-to-2 depending on
whether ®(v, w) is 1-to-1 or 2-to-2.

Moreover, the constraint ®(u, w) is a composition of constraints ®(u, v) and ®(v, w), i.e.,
foreverya,b,c € L,

(a,b) € ®(u,v), (b,c) € ®(v,w) = (a,c) € D(u,w).

The notion of soundness (NO case) in Conjectures 1.2 and 1.3 states that no coloring satisfies
more than a tiny fraction of the constraints. This notion will be referred to as the standard
notion of soundness. It has been a folklore among the experts (see [33, Theorem 3.1], where
this is stated for the 1-to-1 case) that as far as the Independent Set and Vertex Cover hardness
results are concerned, a non-standard notion of soundness for the d-to-d Games suffices. The
non-standard notion concerns “(j, 6)-colorings” that we define next. 3

30ur definition has to take into account the transitivity feature that we unfortunately have to deal with. Also, we
restrict ourselves to the case d = 2 which is our primary concern.
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Definition 1.5. Let G(V, E, @, I) be a Transitive 2-to-2 Game, 6 > 0, j be a positive integer, and
X CV.Acoloring A: X — (?) is called a (j, 6)-coloring if the following holds (note that one
is allowed to assign a set of j colors to every variable in X and the rest of the variables are
unassigned):

o |X| >0V

e For every u,v € X such that ®(u,v) is a 2-to-2 constraint, there are colors a € A(u),
b € A(v) such that (a,b) € (u, v).

e For every u,v € X such that ®(u, v) is a 1-to-1 constraint, the color sets A(u) and A(v) are
identical up to the matching ®(u, v). More precisely, for every (a,b) € ®(u,v), a € A(u) if
and only if b € A(v).

Now we state a variant of Conjecture 1.3 (for d = 2) with a non-standard notion of soundness,
imperfect completeness, and for transitive 2-to-2 games. This variant is to be thought of as
weaker than Conjecture 1.3 in the sense that Conjecture 1.3 (for d = 2) implies it (up to an
insignificant caveat). *

Conjecture 1.6. For every 0 > 0 and every positive integer j, for all sufficiently large |Z|, given
an instance G = (V, E, @, ) of a Transitive 2-to-2 Game, it is NP-hard to distinguish between

e YES case: thereis a (1,1 — 0)-coloring to the graph G.
e NO case: there is no (j, 0)-coloring to the graph G.

Finally, we note that the result below follows directly from prior work [14, 26, 33]. A proof is
presented in Section A for the sake of completeness. The ingredients include the Biased Long
Code and analytic theorems of Russo, Margulis and Friedgut on the Boolean hypercube. Some
care is required to handle the transitivity feature.

Theorem 1.7. If Conjecture 1.6 holds, then GaplS(1— % — ¢, €) is NP-hard for every positive constant ¢.

1.3 Our results

Roughly speaking, we give a reduction from an NP-hard problem known as 3-Lin to (Transitive)
2-to-2 Game such that the reduction is sound in the sense of Conjecture 1.6 assuming a
combinatorial hypothesis. Therefore, correctness of the combinatorial hypothesis would imply
Conjecture 1.6 and the corresponding results for GaplS and Vertex Cover via Theorem 1.7.

We now state the results more formally. Let 3-Lin be the following problem. The instance
of the problem is (X, Eq) where X is a set of variables taking values over [, and Eq is a set of

4The insignificant caveats are twofold. First, the “YES case” in Conjecture 1.6 is a bit stronger than the yes case
in Conjecture 1.3 with imperfect completeness, since it requires G to have a subgraph of density 1 — 6 wherein all
constraints can be satisfied. Second, in the “NO case” we would need the graph G to satisfy mild connectivity
properties, in the sense that a set of density 6 would contain at least Q(62) fraction of edges. In that case if an instance
G has a (j, 0)-coloring, then there is an assignment satisfying at least an Q(&%/ j2) fraction of constraints which is the
result of choosing a color randomly for each vertex from its j-list.
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linear equations over [, such that every equation depends on three variables in X. The goal
is to find an assignment to the variables so as to maximize the number of equations satisfied.
Let Gap3Lin(c, s) denote the promise gap-problem where the task is to distinguish whether a
given 3-Lin instance has an assignment satisfying at least c fraction of the equations or whether
every assignment satisfies at most s fraction of the equations. A celebrated result of Hastad [22]
shows that for every ¢ > 0, Gap3Lin(1 - ¢, % + ¢) is NP-hard. For our purposes, it is convenient to
work with a 3-Lin instance that is regular, i. e., every equation contains three distinct variables,
every variable appears in exactly, say 5, equations, and two distinct equations share at most one
variable. Starting with Héstad’s result, it is a routine exercise to show that Gap3Lin(1 — ¢, s*)
is NP-hard on regular instances for every positive constant ¢ and for some absolute constant
s* < 1. Our main result is this.

Theorem 1.8. For every s* € (1/2,1), every positive integer j and every 6 > 0, for sufficiently small
€ > 0, there is a polynomial time reduction mapping a regular instance (X, Eq) of Gap3Lin(1 — ¢, s*) to
an instance G = (V, E, ®, X) of Transitive 2-to-2 Game such that:

o YES case: If there is an assignment satisfying at least a 1 — ¢ fraction of the equations in (X, Eq),
then there is a (1,1 — 6)-coloring to G.

e NO case: Assuming the combinatorial Hypothesis 2.5, if no assignment satisfies more than s*
fraction of the equations in (X, Eq), then there is no (j, 6)-coloring to G.

We present the combinatorial hypothesis later, after discussing the Grassmann graph and
the motivation behind the hypothesis. The following corollary follows via Theorem 1.7.

Corollary 1.9. Assuming the combinatorial Hypothesis 2.5,

e Conjecture 1.6 is correct.

e GaplS (1 - % —-¢, e) is NP-hard for every ¢ > 0.

o Vertex Cover is NP-hard to approximate to within a factor N2 — ¢ for every & > 0.

Remark 1.10. Our reduction, depending on the correctness of the combinatorial hypothesis,
would give V2 — o(1) hardness for Vertex Cover, improving on the 1.36 hardness of Dinur and
Safra. While the numerical improvement would be interesting, in the authors” opinion, a much
more interesting feature would be the “gap-location” for the Independent Set problem. Our
reduction would show that GapIS(a*, §) is NP-hard where a” is a fixed, absolute constant and
p — 01is an arbitrarily small constant. Such a result would be remarkable, in authors’ opinion,
irrespective of whether it gives an improvement in the Vertex Cover hardness factor. The best
known result in this direction is that GaplS(2~* —o(1), 2-2+1 4 0(1)) is NP-hard for every integer
k > 2, by Siu On Chan [8]. Hardness of GaplS(«, ) corresponds to Vertex Cover hardness
of }_;i An improvement in Vertex Cover hardness would not necessarily yield § — 0 while
keeping « fixed, which in authors’ opinion, is a more fundamental and challenging question.
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Remark 1.11. 3-Lin is known to have a Lasserre integrality gap on random instances with perfect
completeness [18, 41, 43]. Our reduction from 3-Lin to 2-to-2 Games and then the reduction from
2-to-2 Games to the Independent Set and Vertex Cover problems could yield similar Lasserre
integrality gap for the latter problems.

1.4 Overview of the reduction

The vast majority of hardness-of-approximation results are proved by constructing special
purpose Probabilistically Checkable Proof Systems (PCPs) (e. g.,[2, 5,21,22,19,27,8]). Sometimes
it is more convenient, and certainly helpful to a reader not familiar with PCP terminology, to
take a combinatorial view and present a PCP construction, equivalently, as a combinatorial
reduction (e. g., [14, 10]). In this paper, we adopt the latter view as far as possible, using PCP
terminology wherever helpful or necessary.

A generic and extremely successful framework to construct PCPs, developed in[1,5,37,21,22],
is as follows. It consists of two modules, known as an Inner PCP and an Outer PCP, which are
then composed together.

e The Inner PCP is best thought of as a combinatorial gadget combined with an analysis of
its structural properties. The gadget is often coding-theoretic and amounts to a specific
encoding scheme and a probabilistic procedure to test whether a given word is (close
to) a codeword and if so, to decode (or “list-decode”) that codeword. The choice of
the encoding scheme as well as the nature of the tester (e.g., number of queries and
the acceptance predicate) are dictated by the target problem for which one desires a
hardness-of-approximation result.

e The Outer PCP is a canonical NP-hard problem known variously as 2-Prover-1-Round
Game, 2-CSP, or Label Cover. The problem is known to be very hard to approximate
[1, 37], via Raz’s Parallel Repetition Theorem.

e The composition amounts to taking several (local) copies of the Inner PCP gadget and
combining them via the (global) Outer PCP.>

With this framework in mind, we give a short and informal overview of our reduction, leaving
out several intricate details. We recall that the reduction is intended to construct a 2-to-2 Game,
where the goal is to assign “colors” to vertices of a graph and once a color has been assigned
to a vertex, each one of its neighbors has exactly 2 colors that are deemed acceptable. This
consideration dictates our choice of Inner PCP and specifically, what we might call Grassmann
encoding, wherein the encoded object is a linear function on an [F-vector space. As such,
linearity is inherent to our reduction which dictates, in turn, our choice of Outer PCP as a
2-Prover-1-Round Game arising from 3-Lin instances, making Gap3Lin a natural starting point
for the reduction.

SPerhaps a useful analogy here is the text-book reduction from 3SAT to the Traveling Salesperson. Therein, for
every variable of the 3SAT instance, there is a copy of a fixed graph (= TSP-gadget) and then edges are added between
these copies using the clauses of the 3SAT instance.
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1.4.1 Inner PCP: Grassmann graph, Grassmann encoding, and our hypotheses

Let 1 < ¢ < n be integers. The vertex set £, |£| = N of the Grassmann graph G({0,1}", ¢)
consists of all {-dimensional subspaces L of {0,1}", the n-dimensional vector space over [,.
A pair of vertices, L,L" € L, are adjacent if and only if dim(L N L") = ¢ — 1. Given a linear
function f : {0,1}" — {0, 1} (or equivalently an n-bit string s that defines the linear function
X - (s fr x)), the Grassmann graph leads to a natural encoding of f by a string of length N over
the alphabet = = {1,2, ..., 2f}. The encoding writes down, for every ¢-dimensional subspace L,
the linear function f|;, namely, the restriction of f to the subspace L. There are exactly 2 distinct
linear functions on an ¢{-dimensional space which can be numbered with £ = {1,2, ..., 2t 1.

Now suppose that the (global) linear function f is unknown, but for an edge (L, L’) in the
Grassmann graph, f|;, = ¢ € L is known. What do we know about f|;; = ¢’? We note that
dim(L N L") = £ — 1 and since ¢, ¢’ are (supposed to be) restrictions of the same global function,
it must be the case that they are consistenton LN L', i.e., o|nrr = 0’|1qr. Clearly, for a given
o, there are exactly two possible choices for ¢’. In fact, the consistent pairs of functions (o, 0”)
on (L, L) are in 2-to-2 correspondence with each other. Let (L, L") C ¥ X X denote this set of
consistent pairs.

We are naturally led to the following 2-to-2 Game: assign “colors” from X (interpreted as
linear functions on {-spaces) to the vertices of the Grassmann graph, and be consistent on a
significant fraction of the constraints ®(L, L’). Of course, one option is to pick a global linear
function f and assign L — f|;; such strategy yields consistency on all edges. Is this essentially
the only strategy? Before proceeding, let us mention that there are two notions of consistency
that are natural and relevant:

e (Standard Consistency): An assignment A : £ — X is said to be 0-consistent if it
is consistent on a 0 fraction of the edges, i.e., for a 0 fraction of the edges (L,L’),
(A[L], A[L"]) € (L, L").

e (Non-Standard Consistency): An assignment F : L — (?) U {0} (i. e., every vertex either
gets j colors or does not get any color) is said to be (j, §)-consistent if there is a subset
S c L, |S] > 6|L|such that (a) forall L € S, F[L] # 0 (b) for all edges (L, L’) inside S,
there are colors 0 € F[L], ¢’ € F[L'] with (o,0’) € ®(L,L’).

One is tempted to speculate as follows. (The parameters ¢, n are thought of as arbitrarily
large with ¢ < n.) Speculation (1): For every 0, there is 6’ such that given any 0-consistent (in

the standard sense) assignment A, there is a global linear function f : {0,1}" — {0, 1} such that
for ¢’ fraction of the vertices L, it holds that A[L] = f]r.

Speculation (2): For every j > 1,0 > 0, there is 0’ = 6’(0,j) > 0, such that given any
(j, 0)-consistent (in the non-standard sense) assignment F, there is a global linear function
f:{0,1}" — {0, 1} such that for &’ fraction of the vertices L, it holds that f| € F[L].

In coding-theoretic terms, in both the speculations, the assignments A or F are regarded as
“received words.” If the desired global linear function f exists, it then serves as a “decoding”
of the received word. We however know that Speculation (2) is false in the case j > 3. A
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counterexample appears in Section 2. Since Speculation (1) implies Speculation (2),° Speculation
(1) is also false. We believe that Speculation (2) is correct in the case j = 1 and seems to present
interesting challenges. We show, in Section 6, that it follows from our Hypothesis 2.7, via an
“{-space vs b-space” linearity test.” The linearity test and its analysis using Fourier-analytic
methods are presented in Section B. Hypothesis 2.7 states that in the Grassmann graph, a set of
constant density contains a connected component of constant density inside it. In addition, we
propose Hypothesis 2.10 stating that the Grassmann graph is a small-set vertex expander (see
Def. 2.9).%8 These hypotheses might be a good starting point for further investigation.

We now state our main hypothesis informally. We would like to somehow salvage Speculation
(2) for j > 1. We hypothesize that (see Hypothesis 2.5 for a formal statement) given a (j, 0)-
assignment to the Grassmann graph G({0,1}", ¢), there exists a g-dimensional subspace Q such
that if one “zooms into” the subgraph induced on ¢-spaces L that contain Q (this subgraph is
isomorphic to G({0, 1}79,4 - q)), then indeed there is a global linear function that is consistent
with the given assignment on ¢ fraction of vertices in the induced subgraph. Here g, ' depend
on j, 6. We in fact hypothesize that the zoom-in is successful in this sense for « fraction of
g-dimensional subspaces Q where a depends on j, 6, £. This hypothesis is sufficient to prove
Conjecture 1.6. The “zoom-in” is a new feature in the context of Inner PCPs and our Outer PCP
needs to have an appropriate mechanism to handle it.

1.4.2 Outer PCP: 2-Prover-1-Round Game

We present the Outer PCP as a 2-Prover-1-Round Game. Usually, this game is constructed
from a hard instance of 3SAT, e. g., [22, 21], in which case it is compatible with a Long Code
based Inner PCP. However in our case, to be compatible with the Grassmann Code based Inner
PCP, the game needs to be constructed from a hard instance of a linear constraint satisfaction
problem, Gap3Lin being the natural choice (this has been done previously, e. g., [25, 34], with a
Hadamard Code based Inner PCP).

Let (X, Eq) be an instance of Gap3Lin(1 — ¢,s*) where ¢ can be chosen to be arbitrarily small
and s* < 1 is an absolute constant. The 2-Prover-1-Round Game is a game between a verifier
and two non-communicating provers, where the provers wish to convince the verifier that the
instance (X, Eq) has a (1 — ¢)-satisfying assignment. Fix a parameter k, thought of as a large

integer, and a “smoothness” parameter f8, say = k=1 for the sake of concreteness. The game
proceeds as follows.

The Grassmann graph is dense in the sense that a set consisting of a delta fraction of the vertices contains at least
a 62 fraction of the edges. Given a (j, 6)-assignment, one can pick a random assignment from its j-list for every vertex

2 . .
that has been assigned and satisfy 67 fraction of the edges in expectation. Hence the existence of a (j, 6)-consistent

assignment implies the existence of a %?—consistent assignment.

"This test is in the spirit of “line vs point” and “plane vs plane” low-degree test in [39, 3, 38]. However our
analysis is Fourier-based instead of algebraic and combinatorial.

8We remark that the Grassmann graph G({0,1}", ) is not a small-set edge expander. Indeed, it has sets of
subconstant size with edge expansion < % For example, one can fix a non-zero point x € {0, 1}" and take the set of
all ¢-spaces containing x.
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o The verifier picks at random k equations {ey, ..., ex}, lets U be the set of 3k variables that
appear in these equations, and sends U to the first prover as a question.

e The verifier picks a subset V' C U of variables by including in V, independently for
1 <i <k, (a) all three variables from the equation e; with probability 1 —  and (b) one of
the three variables chosen at random from the equation e; with probability 5. Note that
the size of V' is, w.h.p., close to its expected size 3k — 2k, so V is nearly the same as U.
The verifier sends V' to the second prover as a question.

e The first and the second prover answer with bit-strings sy, |si| = |U| and sy, [sy| = |V],
respectively, supposedly giving the assignment to the set of variables they received.

e The verifier accepts if and only if sy|y = sy (i. e., if the two provers agree on the shared
variables V') and sy; satisfies the k equations (this is known as a side condition).

The parameter k is a constant, so the size of the game is polynomial in the size of the Gap3Lin
instance. Instead of viewing the game as “active” verification, one can write down the description
of the game as a graph, with possible questions as its vertices and possible question-pairs asked to
the provers as its edges. The game is then viewed as a “passive” optimization problem: assigning
colors (= bit-strings of appropriate length) to the vertices, so as to satisfy constraints on the
edges. The following statements show that approximating the provers” optimal strategy (which,
in the passive view, is same as a coloring that maximizes the fraction of the edge-constraints
satisfied) is a very hard problem, and hence can be used as a canonical hard problem for further
reduction.

(Completeness): It is clear that if the instance (X, Eq) has a (1 — ¢)-satisfying assignment, the
provers can answer according to this (global) assignment. The k equations chosen by the verifier
are all satisfied with probability > 1 — k¢, in which case the verifier accepts.

(Soundness): On the other hand, it follows from the Parallel Repetition Theorem [37, 23, 36, 15]
that if every assignment to the instance (X, Eq) is at most s*-satisfying, then any strategy of the
provers can make the verifier accept with probability at most 27265,

1.4.3 Composition of Inner and Outer PCP

We compose the Inner PCP and the Outer PCP, constructing an instance Gy.» of a Transitive
2-to-2 Game as in Definition 1.4 and Theorem 1.8. Only the questions U to the first prover in the
Outer PCP appear explicitly in the construction whereas the questions V' to the second prover
are only implicitly used. The composition, at a high level, is rather straightforward. However,
incorporating the side conditions from the Outer PCP and ensuring the transitivity of the 2-to-2
Game G, present serious difficulties. Both of these issues are skipped altogether from this
overview. Also, in the actual reduction, there are more constraints in G,., than described here.

In the 2-to-2 Game Gy, for every question U to the first prover, there is a copy of the
Grassmann graph G({0,1}", £). A vertex L in this graph is to be assigned a color (or a j-list of
colors) from the alphabet X, |Z| = 2¢ the colors being interpreted as linear functions on L. The
intention is as follows. Suppose that in the Outer PCP, the prover intends to answer with a bit

THEORY OF COMPUTING, Volume 21 (10), 2025, pp. 1-55 10


http://dx.doi.org/10.4086/toc

ON INDEPENDENT SETS, 2-TO-2 GAMES AND GRASSMANN GRAPHS

string s, |s| = |U| = 3k, a supposed assignment to the variables in U. The string s is thought
of as the linear “inner product” function f; : {0, Y - {o,1}, fs(x) = (s, x). The assignment
of colors to the vertices of the Grassmann graph is then precisely the encoding of the linear
function f;, i.e., a vertex L is assigned the color f;|;.. We add the 2-to-2 constraints for all edges
(L, L) of this Grassmann graph as in the Inner PCP.

To summarize, the 2-to-2 Game Gz, has a block of vertices for every question U to the first
prover and along with the edge-constraints inside it, the block is exactly a copy of the Grassmann
graph/encoding/game. Now we describe the edges across two different blocks. Let U, U’ be
two distinct questions to the first prover and V be a question to the second prover such that
V cUaswellas V C U, i.e., the verifier can potentially ask the question-pair (U, V) as well as
the question-pair (U’, V). Obviously the space {0,1}" is contained in both {0, 1}"/ and {0, 1Y
There are two types of edges? between the block of U and the block of U’.

e Forany L C {0, 1}V,dim(L) = ¢, L is contained in both U and U’, and hence there are
vertices u, u” in their blocks corresponding to L. We add a 1-to-1 constraint between u, u’.
Note that (a) the colorings to the blocks of U, U’ are supposed to be the encodings of the
functions fs, and f;,,, respectively (b) the assignments s; and sy are supposed to be
restrictions of some global assignment to U and U’, respectively and hence are supposed
to agree with an assignment sy on V. Therefore, the linear function f; |1, i. e., the intended
color of u, and the linear function f;, |, i. e., the intended color of u”, must be the same,
i.e., foulL = fsyIL = fs,o |- This defines the 1-to-1 constraint between u, u’.

e Similarly, for any L, L” C {0, 1}V,dim(L) =dim(L’) = ¢,dim(LN L") = £ —1, L is contained
in {0, 1}u and L’ is contained in {0, 1}11’, and hence there are vertices u, u’ in the blocks of
U, U’ corresponding to L, L, respectively. We add a 2-to-2 constraint between u, u’. As
before, the intended color of u is f;, |1 = fs, |1 and the intended color of u” is fs , |1 = fs, |1
Since dim(L N L") = { — 1, there is a 2-to-2 correspondence between the functions f, |} and
fsy |17, which defines the 2-to-2 constraint between u, u’.

This completes the informal description of the reduction. The actual reduction, with several
additional details, is presented in Section 4. The transitivity of the game Gj, is proved
in Section 7.

1.4.4 Advice, Covering Property, and soundness analysis

Let us attempt the soundness analysis at a high level, showing the need for an additional
teature in the Outer PCP, which we call advice, as well as a certain covering property. Given a
(j, 0)-coloring to the game G»., the soundness analysis derives prover strategies in the Outer
PCP with a good success probability. This implies conversely that if the Outer PCP is chosen
beforehand to have low enough soundness (= 27Q(F0), then the game Gy has no (j, 0)-coloring,
completing the proof of Theorem 1.8.

°In the actual reduction, potentially, there are edges between blocks of U, U’, even when there is no question V
that appears along with both U, U’.
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Accordingly, suppose there is a (j, 0)-coloring to the game G,., and assume for simplicity
that a 0 fraction of vertices in every block have been (j-list-)colored. Fix a question U to the
first prover. Towards deriving her answer, she looks at the (j, 6)-coloring of her copy of the
Grassmann graph G({0, 1}, ¢). Our main hypothesis (Hypothesis 2.5) implies that for a good
fraction of g-dimensional subspaces Q < {0,1}", after zooming into the subgraph induced on
vertices (= {-spaces) that contain Q, there is a global linear function f = f; : {0, 1}u — {0, 1}
that has good agreement with the given coloring. The prover returns the string s as her answer.
Though she does not know which zoom-in space Q works, she can choose Q randomly, and it is
hypothesized to work with a good probability. We emphasize that the decoded global linear
function f;, and hence her answer, in general depends on the choice of the zoom-in space Q.

Now let V be the question to the second prover. Since {0, 1}V is contained in {0, 1}u, the
Grassmann graph G({0,1}", ¢) is an induced subgraph of the Grassmann graph G({0,1}", ).
The second prover wishes to derive his answer from the coloring to his graph G({0, 1}V, 0). Let
S be the subset of vertices in the graph G({0,1}", ¢) that are colored, with density of S being
5. The prover can only use the coloring to the set S N G({0,1}", ¢), which might potentially
have negligible density in G({0, 1}V, 0). If so, he has no information to derive his answer from,
and in the worst case, this could happen for almost every question V asked to him, for a fixed
question U to the first prover. The purpose of the smoothness parameter in the Outer PCP is
to precisely avoid this issue. Provided that fVk - 2¢ — 0 (which happens with § = k™% and k
large enough), V has expected size |U| — 2k that is close enough to |U| = 3k that one has the
following guarantee: for a fixed question U to the first prover and for any subset S of density 6
in G({0, 1}u, ?), for almost every question V to the second prover, the density of S N G({0, 1}V, ?)
in G({0, 1}V, ?) is = 0. This guarantee is referred to as the covering property, a special case of
which is defined and used in [34]. The property is stated formally as Lemmas 4.6 and 4.7 and
proved in Section 8.

We assume therefore that for the question V to the second prover, a 6 fraction of vertices
of his Grassmann graph G({0,1}", ) are colored. In a similar manner as the first prover, he
wishes to zoom into a g-dimensional subspace Q’ € {0, 1}V, decode a global linear function
fsr {0, 1}V — {0, 1}, return s’ as the answer, and hope that s’ = s|y, i.e., that his answer is
consistent with the first prover’s answer. Strictly speaking, he outputs a short list of all f,- that
have agreement with coloring to his Grassmann graph and hopes that one of them is consistent
with the first prover’s function f;. It is reasonable to expect this consistency because both
provers are using the same coloring: if f; is consistent with coloring to S € G({0,1}", £), then
its restriction f;|y is consistent with S N G({0, 1}V, {) for a good fraction of questions V' to the
second prover, and then f;|y = f;» appears in the decoded list of the second prover. There is
one catch however. The decoded global functions depend in general on the zoom-in space, so
the two provers must “agree” on the zoom-in space, i. e., manage to choose Q = Q’, without
communication. We resolve this issue by letting the verifier in the Outer PCP choose a random
g-dimensional subspace Q C {0,1}" and send it to both provers as extra advice along with their

questions. We make sure that this advice does not compromise or hurt the soundness of the
Outer PCP.
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1.5 Subsequent work

Following the conference publication of our work [31], much progress has been made in
understanding the NP-hardness of 2-to-2 Games and Unique Games. In [12], together with
Dinur and Kindler, we propose a candidate NP-hardness reduction for 2-to-2 Games under the
standard notion of soundness. The reduction therein builds on the ideas presented in the current
paper, and its soundness was only proved under a combinatorial hypothesis (in the spirit of
Hypothesis 2.5). In a subsequent article [11], this combinatorial question is linked to the study
of edge expansion in the Grassmann graph; more concretely, to the structure of small sets of
vertices whose edge expansion is bounded away from 1. The authors of [11] pose a concrete
hypothesis for the structure of such sets, validate it in a special regime of parameters, and argue
that it is necessary in order to resolve the combinatorial hypothesis of [11] (and thus prove that
2-to-2 Games Conjecture holds). Barak, Kothari and Steurer [4] have subsequently shown that
the edge-expansion hypothesis also implies, in a black-box manner, the combinatorial hypothesis
of [11]. Finally, the edge-expansion hypothesis is proved in its full generality in [32] (with an
additional insight gained from [30]), thus completing the line of research initiated by the current

paper.

2 The Grassmann graph and related hypotheses

In this section we introduce the Grassmann graph and related hypotheses that are relevant
towards the soundness analysis of our PCP construction (at the Inner PCP level). The Grassmann
graph leads to an encoding of a linear function on a high-dimensional F,-vector space and a
2-to-2 test to check the encoding. The linear function is encoded by writing down its restriction to
all -dimensional subspaces, the restrictions themselves being linear functions on the respective
subspaces. Given a supposed encoding, i.e., an assignment of a linear function to every
{-dimensional subspace, one can test that the given linear functions on a pair of £-dimensional
subspaces are consistent on their intersection. For the test to have the 2-to-2 property, the test is
performed only on a pair of {-dimensional subspaces that intersect on a (¢ — 1)-dimensional
subspace. Naturally, the following decoding question arises: Given an assignment to the
{-spaces that demonstrates some consistency, is there a global linear function that explains
some (or almost all) of the consistency? We hypothesize that the answer is affirmative, but
subtle. Also, towards the analysis of our reduction, we have to deal with more general notion of
(j, 0)-assignments, where a 6 fraction of the {-spaces are each assigned a list of j linear functions
on it.

2.1 The Grassmann graph

Let [ be a field of size p, V a linear space of dimension n over F and 1 < ¢ < n — 1 a positive
integer. The Grassmann graph G(V, {), is defined as follows.

e The vertices are all {-dimensional subspaces of V.

o The edges are pairs of vertices L, L’ such thatdim(LN L") = { - 1.
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The Grassmann graph has been moderately studied in the literature, mainly in the context
of distance-regular graphs [7]. Vector-space analogues of classical theorems such as Erdés—
Ko-Rado and Kruskal-Katona are also known to hold [9] and translate to properties of the
Grassmann graphs. Here are some known facts regarding the Grassmann graph, though we do
not necessarily need them.

Fact 2.1. Suppose1 < € < 7.

1. The number of vertices in the graph G(V , {), is the oth p-nomial coefficient (sometimes referred
to as “Gaussian binomial coefficient”)

ez
e, dgr-p

2. The graph is reqular with degree d = lﬂn;’f_[l [ffl]p' For p =2, this is ©(2").

3. The eigenvalues of the (adjacency matrix of the) graph are

s P

with multiplicities [’;]p - [jfl]p,forj =0,..,09

For p = 2 the eigenvalues are approximately (1 +2/=4)2"+11, and so the normalized eigenvalues
are ©(277).

We will only be interested in the case p = 2 and the subscript p will be omitted henceforth.
The following observation will be useful.

Fact 2.2. Given the Grassmann graph G(V, (), dm(V') = n and a q-dimensional subspace Q C V, 0 <
g < {—1, let Zoomq denote the subset of vertices L € G(V,{) such that Q C L. Then the induced
subgraph on the subset Zoomg is isomorphic to the (lower order) Grassmann graph G(V’,{’) with
dm(V’) =n —gq, ¢’ = { — q. A natural isomorphism is by letting V' = V /Q to be the quotient space.

2.2 (j, 6)-assignments and zooming in

Let [2f] denote the set of linear functions on an ¢-dimensional space. We would need to consider
the so-called (j, 6)-assignments to the vertices of the Grassmann graph.

Definition 2.3. The density of a set S € G(V, {) is its fractional size, i.e.,

Bl __ 15l

Density(S) = {LCV |dim(@) =10} [dim;(V)] )

10 [(1)] is defined to be 0.

THEORY OF COMPUTING, Volume 21 (10), 2025, pp. 1-55 14


http://dx.doi.org/10.4086/toc

ON INDEPENDENT SETS, 2-TO-2 GAMES AND GRASSMANN GRAPHS

Definition 2.4. Let S C G(V,{)and letF : § — ([2;]) assign, to each {-space L € S, a set F[L]
of j linear functions on L. The assignment F is said to be (j, 0)-edge-consistent, or simply a
(j, 0)-assignment, if

e S has density at least 6.

e If Li,L, € S are adjacent then there is a pair a; € F[L1], a; € F[Ly] such that a1, a; agree
on L1 N L.

We consider the scenario where j and 6 are fixed, then ¢ is allowed to be sufficiently large,
and finally the global dimension 7 is allowed to be sufficiently large compared to ¢. One would
hope that a (j, 6)-assignment implies the existence of a global linear function g: V. — {0, 1}
that “explains” some of the consistency. Specifically, is there a global linear function g such that
gl € F[L] for a ¢’ = 6’(j, 6) > 0 fraction of the {-dimensional subspaces L € V? The answer
turns out to be negative as seen from the following example.

221 Subspace example

Fix Z C V to be a subspace of dimension n — ¢ and pick a set of vertices S € G(V, {) as
S={LeG(V,0)|dm(LNZ)=2}.

It is not difficult to see that S has constant density which can be computed to be ~ 0.20. We will
exhibit a (3, = 0.20)-assignment F[-] which has no non-trivial consistency with any global linear
function. For each z € Z \ {0}, choose f, : V — {0, 1} to be a global linear function arbitrarily.

The assignment F : S — ([2;]) is now defined as

FIL] ={fzlc | z € (L. N Z) \ {0}}.

In words, L is assigned three linear functions that are restrictions to L of the three global linear
functions f; for z € (LN Z) \ {0}. Note that dim(L N Z) = 2 and hence |F[L]| = 3. Now we show
thatif L1, L, € S have an edge connecting them, then the assignments F[L1], F[L,] are consistent.
Indeed, when dim(L1) = ¢, dim(L,) = ¢,dim(L1 N L) = ¢ —1, dim(L; N Z) = 2, we have

1<dm(linl,NZ)<2.

In particular, there exists z € (L1 NLoNZ)\{0}. By design, we have f; |, € F[Li]and f;|1, € F[L,]
and moreover that f,|r,, fz|r, agree on L1 N Ly, both being restrictions of the same global function
f-. Finally, we note that since the choice of functions f; is arbitrary, no global linear function
has a non-trivial consistency with the assignment F[-]. For the sake of concreteness, one can let
f- be the linear function x — (z, x). It is not difficult to see that for any global linear function
f:V—={0,1},

P € F[L]] < 2790,
Ll [flL € FIL]]
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2.2.2 Zooming in

We now consider a plausible way to circumvent the above example. For a Grassmann graph
G(V,¢) and a subspace Q C V, let

Zoomo ={L|LeG(V,{), QCL}

be the subset of vertices that contain Q (we intend to take dim(Q) < ¢). Similarly, for a subset
SCG(V,10),let

Zoomg[S]={L|LeS, QCL}

be the subset of vertices of S that contain Q. Returning to the subspace example above, let F[-]
be the (3, = 0.20)-assignment to the Grassmann graph G(V, {) as therein. Let S be the subset
of density ~ 0.20 to which F[-] actually assigns a list of 3 linear functions. We noted that no
global linear function has a non-trivial consistency with F[-]. To be specific, for any global linear
function f : V — {0, 1},

P € F[L]] < 2790,
el [flL € F[L]]

We observe however that there exists a one-dimensional subspace Q such that after zooming
into Q (i. e., conditioning on the {-spaces containing Q), there does exist a global linear function
with good consistency with F[-]. Indeed, let z € Z \ {0} be an arbitrary point, f, be the global
linear function associated with z and let Q = Span{z}. For any subspace L € Zoomg[S], we
have z € Q € L and hence f;|;, € F[L]. Thus the global linear function f, is consistent with the
assignment F[-] on every L € Zoomg[S]. Moreover, Zoomg[S] when regarded as a subset of
Zoomg has a constant density, say C (in fact its density is higher than the original density of S in
G(V, ) which is =~ 0.20). Thus

p € FIL CL]>C
L [f e FILIIQ L)

where the probability is conditional on the ¢-spaces containing Q. Further, if the point z were
chosen at random from the global space V, with probability ~ 27¢, we have z € Z \ {0} and then
zooming into Q = Span{z} gives a global linear function with good consistency. To summarize
our specific example,

Given a (3,~ 0.20)-assignment F[-] to G(V,{), for ~ 27! fraction of one-dimensional subspaces
Q C V, zooming into Q gives a global linear function that is )(1)-consistent with F[-].

We now hypothesize that something to this effect always holds for any (j, 5)-assignment
to a Grassmann graph G(V, £) when one is allowed to zoom into a g-dimensional subspace
Q with constant g and the zoom-in succeeds for a non-negligible fraction (that may depend
arbitrarily on ¢) of g-dimensional subspaces Q. Our main hypothesis appears below, followed
by its variants and special cases.
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2.3 Our hypotheses
2.3.1 The main hypothesis

Hypothesis 2.5. For every integer j > 1 and real 6 > 0, there exist an integer q > 0, a real
C € (0,1), and a function a: N — (0, 1] such that for all sufficiently large integers ¢, for all
sufficiently large integers 1, the following holds: Let F[-] be a (j, 6)-assignment to the Grassmann
graph G(V, ¢) with dim(V) = n. Then for at least a({) fraction of the g-dimensional subspaces
Q C V, there exists a global linear function gg : V. — {0, 1} such that (note the conditional
probability)

Leggm) [90lc € FIL]|Q cL] >C. (2.1)

2.3.2 Upper bound on list-decoding size

In Hypothesis 2.5, given a (j, 0)-assignment F[-], a global linear function gg satisfying Equa-
tion (2.1) is viewed as a decoded global linear function. Naturally, such a decoded function is
only useful when there are not many functions satisfying Equation (2.1), hence one would like
to obtain an upper bound on the number of such functions. Indeed, a reasonable upper bound,
stated below, follows from a result of Blinovsky [6]. We include a proof in Section C.2 for the
sake of completeness.

Theorem 2.6. Let F[-] assign to every L € G(V, {), a list F[L] of at most j linear functions on L. Let Q

be any q-dimensional subspace of V. Then there are at most #{WW global functions g for which

p F[L CLI>C.
B, ol e FILT I Q € L]

2.3.3 Hypotheses about connectivity of Grassmann graph

We are far from understanding the case of general j in the Hypothesis 2.5 and even the case
j = 1 presents interesting challenges. We show in Section 6 that Hypothesis 2.5 in the case
j = 1 follows from the Hypothesis 2.7 below without the need for zoom-in. A linearity test is
developed therein that could be of independent interest.

Hypothesis 2.7. For every 6 > 0, there exists ¢ > 0 such that for all sufficiently large integers
{, for all sufficiently large integers 7, the following holds: Let S be any set of vertices in the
Grassmann graph G(V, ¢), dim(V) = n with density at least 0. Then the induced subgraph on S
contains a connected component of density at least ¢.

The hypothesis below seems like a natural related question, stating that the Grassmann
graph is a small-set vertex expander (defined below), and it could be a good starting point for
further investigations.

Definition 2.8. For a graph G = (V, E), the neighbourhood of a set S C V of vertices is defined as
I[(S)={veV|3JueV,(u,v)ekE}
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Definition 2.9 (Small-set vertex expander). A family of graphs, {G,,¢ = (Viu,¢, En t)}n ten, is
called a small-set vertex expander if there exists a function A: (0,1) — [0, c0) such that

1. lim._p+ A(e) = 0.

2. For all € > 0 there are N and L, such that foralln > N, { > L and sets S C V,, y with size
at least €|V}, ¢|, it holds that |T'(S)| > A(¢)|S].

Hypothesis 2.10. The family of Grassmann graphs G, = G({0, 1}", ) is a small-set expander.

2.3.4 Hypothesis with side condition

As is standard, while composing the Inner PCP with the Outer PCP, we require that the decoded
global linear function gg in Equation (2.1), Hypothesis 2.5 itself respects certain linear side
condition. We state a variant of Hypothesis 2.5 that takes into account the side condition and
show that this variant follows easily from Hypothesis 2.5.

Definition 2.11. A pair ({hy, ..., h,}, (b1, ..., by)), where {h; € {0, 1}”}:21 are linearly independent
and b; € {0, 1}, is called a side condition for a function g: {0,1}" — {0,1}. We say that g respects
the side condition if g(h;) = b;, for every i.

Note that when g is a linear function respecting the side condition ({h1, ..., h;}, (b1, ...,b;)),
the value of g on the space H = Span{hy, ..., h} is fixed. We will often simplify notation and
say g respects the side condition H, when (b1, ..., b;) is clear from the context. Note that the
vertices of the Grassmann graph G(V, {) are the {-dimensional subspaces of V. Now we instead
think of the vertex set as

{LeH|LeG(V,¢0)},

restricted to only those L such that L N H = {0} and moreover, if L ® H = L’ @ H, then the two
vertices are identified together''. Note that dim(L @ H) = ¢ + r. There is an edge between L & H
and L’ @ H if and only their intersection has dimension ¢ + r — 1. It can be easily seen that the
resulting graph is isomorphic to a lower-order Grassmann graph G(V’, {), where V' C Vis a
complement to H (i.e., V' isasubspaceand V'@ H =V, V"N H = {0}, dm(V’) =n —r).

[2]

A (j, 6)-assignment respecting the side condition is an assignment F[-] : S — ( ; ) to a set of

vertices S such that
e S has density at least 6.

e For each vertex L& H € S, F[L ® H] is a list of j linear functions on L @ H that respect the
side condition. Note that since the side condition already specifies the values of a linear
function on H, the number of linear functions on L @ H that respect the side condition is
exactly 2¢.

e Forany L® H,L’ ® H € S that are adjacent there are linear functions 2 € F[L ® H], a’ €
F[L’ ® H] that agree on the intersection L& HNL @ H.

In our application, we will have = & > ¢, so almost all {-dimensional spaces L C V satisfy L N H = {0}.
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We now state the variant of Hypothesis 2.5 that takes into account the side condition.
A (rather self-evident) proof that Hypothesis 2.12 follows from Hypothesis 2.5 appears in
Section C.1.

Hypothesis 2.12. For every integer j > 1 and real 6 > 0, there exist an integer g > 0, a real
C € (0,1), and a function a: N — (0, 1) such that for all sufficiently large integers ¢, for all
sufficiently large integers 7, the following holds: Let F[-] be a (j, 0)-assignment respecting the
side condition ({h;}/_,, {bi}/_,) to the Grassmann graph G(V,{) with dim(V) = n and r < §.
Then for at least a(f) fraction of the g-dimensional subspaces Q C V, there exists a global
linear function gg : V. — {0, 1} that respects the side condition such that (note the conditional
probability)

P €eF[LoH cL|>C. 2.2
Lo lgolen € FIL@ HI | Q € L] (22)

3 The outer PCP

Our Outer PCP is a carefully constructed 2-Prover-1-Round Game from a regular instance of the
3-Lin problem. Recall (see the paragraph before Theorem 1.8) that an instance (X, Eq) of the
3-Lin problem consists of a set of [-valued variables X and a set of equations Eq, each equation
containing three (distinct) variables. The instance is regular if every variable appears in exactly,
say 5, equations, and two distinct equations share at most one variable. Starting with a 3-Lin
instance given by Hastad’s reduction [22], a standard sequence of transformations can turn the
instance into a regular one, while preserving the near-perfect completeness and keeping the
soundness bounded away from 1. To summarize:

Theorem 3.1. There exists an absolute constant + < s* < 1 such that for every constant ¢ > 0, the
Gap3Lin(1l — ¢, s*) problem on regular instances is NP-hard.

Let (X, Eq) be an instance of Gap3Lin(1 — ¢, s*) as in Theorem 3.1. We intend to construct
a 2-Prover-1-Round Game that is used as our Outer PCP. Instead of taking a passive view of
2-Prover-1-Round Game as a constraint satisfaction problem as in Definition 1.1, it is more
intuitive to take an equivalent active view in terms of two provers and a probabilistic verifier.
The two provers wish to convince the verifier that the 3-Lin instance is near-satisfiable. Since
our construction has multiple subtle features, we present it incrementally, adding one feature
at a time. The construction is along the lines of [34], smoothness and covering features are as
therein and there is an additional advice feature.

3.1 Equation vs variable game

We start with a standard “equation vs variable” game that the reader might be already familiar
with. In this game, the verifier chooses an equation e € Eq uniformly at random, sends it to the
first prover, chooses a variable x randomly from the three variables occurring in the equation e
and sends it to the second prover. The provers are expected to provide an F,-value for each of
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the variables they receive. The verifier accepts if and only if the first prover provides a satisfying
assignment to e and if both provers give x the same value.

Completeness: Suppose there is an assignment to (X, Eq) that satisfies a 1 — ¢ fraction of the
equations. The provers can answer according to this assignment and the verifier accepts with
probability at least 1 — ¢.

Soundness: Suppose no assignment to (X, Eq) satisfies more than s* fraction of the equations.
The strategy of the second prover is simply an assignment to all the variables. This assignment
fails to satisfy 1 — s* fraction of the equations. For every equation that fails, the second prover
either has to give inconsistent answer to at least one of its variables or answer with an unsatisfying
assignment to the equation. Thus the provers cannot make the verifier accept with probability

more than 1 — 155 (i.e., bounded away from 1).

3.2 Smooth equation vs variable game

We modify the equation vs variable game slightly and call it a smooth game.’? Let g € (0,1) be a
smoothness parameter. The verifier sends an equation e to the first prover as before. To the
second prover however, the verifier sends a random variable x occurring in e with probability ,
and sends the equation e with probability 1 —  (hence asking the same question to both the
provers).

Completeness: As before, the completeness is at least 1 — ¢.

Soundness: The new game is effectively a trivial game with probability 1 —  and is same as the
equation vs variable game with probability f. Hence the soundness is at most 1 — Q (), where
the O-notation hides the dependence on s* (which is an absolute constant anyways).

3.3 Smooth equation vs variable game with advice

Our application requires a further modification of the smooth game. Roughly speaking, the
provers are also provided extra advice that acts like publicly shared randomness. Nevertheless,
this advice cannot considerably help the provers.!3

As before, the verifier picks an equation e at random, say x;, + x;, + x;, = b;, and sends it
to the first prover. With probability 1 — 8, the second prover receives the equation e as well,
and otherwise a single variable from the equation e chosen at random. Let V' C {x; , xi,, x;,} be
the set of variables sent to the second prover (so |V|is 1 or 3). The verifier chooses an advice
vector a € {0, 1}V at random. If |V| = 3, define a* = a4, and if |V| = 1, let a* be obtained from a
by padding with 0 in place of {x;,, x;,, xi;} \ V. The verifier sends the first prover the vector a*
and the second prover the vector a. As before, the provers are expected to provide a value for
each of the variable they receive.

2Smoothness refers to the following property of a game: consider a fixed question for the first prover and two
distinct answers 4, b to the first prover, sample the question for the second prover, and let a’, b’ be the answers it
must answer for the verifier to accept if the first prover answered a, b, respectively. The game is called smooth if with
high probability over the choice of the question to the second prover, it must be the case that a’ # b’. The game
described is smooth provided < 1.

13As far as we know, this is the first instance of a PCP construction that incorporates the feature of advice.
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Call this game Gg, 1. The extra advice could give the first prover a hint as to which variables
the second prover receives. For example, if the first prover’s advice vector is a* = (0,0, 1), she
knows that the second prover has received either all three variables or (just) the variable x;,.
However, when the first prover receives the vector (0,0, 0), she does not know whether the
second prover has received all three variables along with advice a = (0, 0, 0) or a single variable,
whose identity she does not know, along with advice a = (0). It is clear from this discussion that:

Completeness: The completeness of game Gg 1 is at least 1 — ¢.
Soundness: The soundness of game Gg,1 is at most 1 — Q ().

We further generalize to the game Gg, for any integer ¢ > 0 where instead of sam-
pling and sending the provers one pair, (2%, a), the verifier samples, independently, g pairs
(aj,a1), ..., (a;}, ag), and sends the list [a], ..., a;] to the first prover and the list [a1, ..., a4] to
the second prover. It is not difficult to see that:

Completeness: The completeness of game Gg 4 is at least 1 — «.

Soundness: The soundness of game Gg 4 is at most 1 — Q) (zﬁq) Intuitively, the verifier rejects

with constant probability when the second prover is sent a single variable (which happens with
probability ) along with the advice-list [(0), . .., (0)] (which happens with probability 2%,).

Remark 3.2. The soundness of the (%)—fold parallel repetition game G?%:/ P is less than an
absolute constant less than 1. Intuitively, in %’ “trials,” with constant probability, there is a

“coordinate” on which the second prover receives a single variable along with the advice-list
[(0),...,(0)], and then the verifier rejects with a constant probability.

3.4 The final game (outer PCP)

Finally, our Outer PCP is a k-fold parallel repetition of the game Gg g4, i. e., the game G?lg .

Completeness: The completeness of game G?Z is at least 1 — ke.
Soundness: The soundness of game Gg’]; is at most 27(Fk/2") The game can be considered as
®21/p

g—f-fold parallel repetition of the game G which has constant soundness as per Remark 3.2.

One can then apply the parallel repetiticﬁ);\/ theorem for projection games with no dependency
on the answer size as in [36, 15].

Remark 3.3. Let U, V be the questions sent to the first and the second prover in the game Gg’ﬁ,
not taking into account the advice yet. Thus U is a set of 3k variables and V' C U with expected
size E [|V|] = 3k — 2Bk. With a careful look, it can be seen that the advice-list for the first prover
isalist[x1,...,x,]withV1<i<gq, x; € {0, 1}”. Similarly, the advice-list for the second prover
isalist [y1,...,y;] withV1<i<gq, yi € {0, 1}V. Moreover, if one regards the space {0, 1}V as
a subspace of {0, 1}” in a natural manner, thenV 1 <i < g, x; = y;. Thus the advice is to be
interpreted as a list of g points in {0,1}" that is sent to both provers.
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4 The main reduction

In this section we present our reduction towards proving Theorem 1.8. The soundness analysis
of the reduction is presented in Section 5.

4.1 Setting of the parameters

Let (X, Eq) be an instance of regular Gap3Lin(1 — ¢, s*) as in Theorem 3.1. We will use the game
G?k in Section 3.4 as the Outer PCP. Since there are several parameters involved, we specify the
(tedious) order in which the parameters are chosen.

Let (j, 6) be the parameters required of the reduction in Theorem 1.8. Depending on
(j,0),let q,C, a(-) be as given in Hypothesis 2.12 and let ¢ be an integer large enough so that
Hypothesis 2.12 holds for all sufficiently large integers k (= n therein). The soundness analysis

of the reduction shows (modulo Hypothesis 2.12) that a (j, 5)-coloring to the 2-to-2 Game yields

o- a(ﬂ) -C2

a prover strategy in the Outer PCP with success probability roughly . Conversely, by

setting the parameters f8, k appropriately, the soundness of the Outer PCP, 2 Q(Bk/21) is ensured
to be small enough beforehand so that the 2-to-2 Game does not have a (j, 0)-coloring. In
addition, we will want the construction to have the “covering property” (which we elaborate
on later), which requires f3 Vk - 2¢ to be sufficiently small. One can choose % <p<x # and k

large enough so that both the soundness of the Outer PCP is small enough and the “covering
property” holds. Finally the completeness parameter 1 — ¢ for the Gap3Lin instance is chosen
to be close enough to 1 so that the Outer PCP as well as the 2-to-2 Game have completeness
1-ke>1-56.

4.2 The reduction

ok
B
asked to the first and the second prover, respectively. Specifically, U is the set of all k-tuples

of equations, U = (e, ..., ex) from the regular Gap3Lin instance (X, Eq). For our purposes, it
will be convenient to retain only those “legitimate” U = (ey, ..., ex) such that (a) the equations
e1,...,ex are distinct and do not share variables and (b) for any pair of variables x € ¢; and
y €ej, i # j, x,y do not appear together in any equation in the instance (X, Eq). Due to
regularity of the instance (X, Eq), every variable appears in a constant number of equations, and

Consider the game G and ignore the advice for now. Let ¢ and V denote the sets of questions

hence the fraction of U that are not legitimate is negligible, i. e., O(%), and dropping these does
not affect our analysis. We assume henceforth that U consists of only the legitimate tuples U.
The verifier in the game G plcks a k-tuple U = (eq, . . ek) € U uniformly at random and

then constructs a k-tuple V such that independently for 1 < i < k, the i*" element of V is the
equation e; with probability 1 —  and is a variable in the equatlon e; with probability . Thus
the set of questions V to the second prover consists of “mixed” tuples. In the following, we will
work only with the set U and the role of the set V will be implicit.

We are now ready to describe the Transitive 2-to-2 Game G2.2(V(G2:2), E(G2:2), Z, @) that our
reduction constructs. For any U € U, we regard U as the tuple of k equations (ey, ..., ex) as
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well as the set of 3k variables appearing in these equations, say (x11, X12, X13, - - . , Xk1, Xk2, Xk3)-
For each equation e;, define a vector v,, € {0,1}" that has 1 on coordinates corresponding to
variables in ¢; and 0 on the rest. Denote Hj; = Span{vel, ey vek} referred to as the space of side
conditions. Let by, ..., by € {0, 1} be the “right hand sides” of the equations, i. e., the equation
e;1s xj1 + Xip + Xiz = bi. Define

def

Iy {LQ{O,l}u‘dim(L):E, LmHu:{O}}.

Note that for L € Ly, its intersection with Hy; is trivial and hence dim(L @ Hy) = ¢ + k.
Also, |U| = 3k, dim(Hy) = k and dim(L) = ¢. The fraction of {-spaces L C {0,1}Y such that
LN Hy # {0}, L ¢ Ly is negligible (» 20-2k see Fact C.5).

Vertices of G22: The game Gy, has a block of vertices Block[U] for every U € U defined as
Block[U] ={L® Hy |L € Lu} .

The vertex set of G2, is the (disjoint) union of all blocks:

V(Gaa) = | J Block[U].
Ueld

Colors of Gy: The set of colors T has size |Z| = 2. For a vertex L @ Hy, its color set T is
identified with

{¢ :LeoHy — {0,1} | Y islinear, V1 <i <k, ¢(v,;) = bi}.

In words, the vertex L @ Hy; is to be assigned a linear function i : L ® Hy — {0, 1} that respects
the side conditions, meaning ¢ (v,;) = b; for 1 < i < k. Since the values of 1) are already
determined on Hyj, there are exactly 2 eligible linear functions 1.

Edges and Constraints of G>.»: Towards defining the edges and constraints of the game G2.,
we stress a notational (and perhaps conceptual) point. X is the set of all variables in the
Gap3Lin instance, so U € X and {0, 1}u is a subspace of {0, 1}X in a natural manner. Every
subspace under consideration can be considered as a subspace of {0,1}* and we can freely take
the intersections or direct sums of subspaces. For instance if Uj, U, are two sets of variables
and L, C {0, 1}u1, L, C {0, 1}uz are subspaces, we can consider both L1, L, as subspaces of
{0, 1}uluu2 (which in turn is a subspace of {0, 1}X ) and then the subspaces L1 N Ly, L1 + L, make
sense.

We are ready to define the edges and the constraints of G,». For U, U’ € U (allowing the
possibility that U = U’), we describe the edges between their respective blocks.* There is an
edge between vertices L @ Hy;, L’ @ Hyp if either of the two conditions holds. Either

dim(L + Hy + Hyr) = dim(L" + Hy + Hy) =dim(L + L' + Hy + Hy), 4.1)

“Here U, U’ are thought of as sets of variables that are nearly identical. There might be edges between the blocks
of U, U’ that differ significantly, but those edges are merely “accidental” and do not have much relevance towards
the soundness of the reduction.
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in which case, the constraint is 1-to-1, or
dim(L + Hy + Hu/) = dim(L’ + Hy + Hu/) = dim(L + L'+ Hy + Hu/) -1, (4.2)

in which case, the constraint is 2-to-2. This definition is, admittedly, rather mysterious and we
try to clarify it somewhat. We recommend reading the proofs of Lemmas 4.3 and 4.4 to start
having some intuition. We first consider the 1-to-1 constraints.

1-to-1 Constraints: From Lemma 4.3, we always have
dim(L + Hy + Hyy) = dim(L" + Hy + Hy) .

If, in addition, this dimension is same as that of L + L’ + Hy; + Hy» which contains both the
spaces above, then all the three spaces must be identical, i.e., L+ Hy + Hy = L' + Hy + Hyp =
L+ L +Hy+ Hy = Z, say. From Lemma 4.4, there is a 1-to-1 correspondence between
linear functions on L & Hy; (that respect the side condition on Hy;) and linear functions on
L+ Hy + Hy = Z (that respect the side condition on both Hy;, Hyr), and the same holds between
L’ ® Hy and L’ + Hy + Hyr = Z. This gives a 1-to-1 correspondence between linear functions
on L & Hy and L’ @ Hy (respecting the relevant side conditions) which is regarded as the 1-to-1
constraint on the coloring of L @ Hy; and L’ & Hyyp.

2-to-2 Constraints: As before, from Lemma 4.3, we always have
dim(A =L+ Hy+ HU/) = dim(A’ =L+ Hy + Hu/) =d (say).

Now suppose that Z = L + L’ + Hy + Hyr, dim(Z) = d + 1. Since Z = A @ A’, it follows that
dim(A N A’) =d — 1. Thus, it is possible to choose a basis I for AN A”and v € L, v’ € L’ so that
IU {v}is abasis for A, I U {v'} is a basis for A’, and I U {v, v’} is a basis for Z. In the following,
all linear functions considered are supposed to respect the side condition on Hy; or Hyy» or both,
depending on whether the relevant space contains Hy;, Hy or both.

Every linear function f on AN A’ = Span(I) has exactly two extensions fi, f> to A = Span(I U
{v}), depending on their value on v, and has exactly two extensions f/, f, to A” = Span(I U {v"}),
depending on their value on v’. Moreover by Lemma 4.4, linear functions on A are in one-to-one
correspondence with those on L @ Hy;. Denote by ]?1, j?z the mates of fi, f», respectively, via this
correspondence. Similarly, linear functions on A" are in one-to-one correspondence with those
on L’ ® Hy and let ]?1’ , fz’ be the mates of f/, f,. This gives a 2-to-2 constraint between L & Hy

and L’ @ Hy that matches the pair (f;, f2) with the pair ( fl’  f3)-

Transitivity: The transitivity of G, is proved in Section 7.

Remark 4.1. Another useful way to describe the constraint, both in the 1-to-1 and 2-to-2 cases, is
as follows: if there is a space Z that includes both L & Hy; and L’ @ Hy» and has an assignment
p that respects the side conditions on Hy, Hy, then e, BlireH,, are colorings to L & Hy
and L’ @ Hyp, respectively that satisfy the constraint. In both cases above Z happens to be
L+ L’ + Hy + Hy, but we will have occasion to use an even larger space Z in certain proofs.
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Remark 4.2. The reason we do not identify vertices L ® Hy and L’ ® Hyp that have a 1-to-1
constraint between them, and instead resort to the transitivity property is due to the completeness
of the reduction. A priori, if (X, Eq) has a good solution A, then it may potentially be the case
that while it satisfies all of the equations of U, it may fail to satisfy some of the equations of U’,
in which case it would not be clear how to assign the vertex resulting from the identification of
L ® Hy and L’ @ Hy. Transitivity may be seen as a softer way of doing this identification which
enjoys all of the benefits proper identification would have.

421 Auxiliary lemmas

Lemma 4.3. Let U, U’ € U and let Eq[U], Eq[U’] denote the sets of equations (k in number) in U, U’,
respectively. Then, for L € Ly,

dim(L + Hy + Hy) = £ + 2k — |[Eq[U] N Eq[U’]] .

Proof. Let Eq[U'] = {e{, ..., e;} and recall that Hyr = Span(v,, . .. ,ve}/{). Let C denote the
current spuce that is initialized to C = L @ Hy and has dimension ¢ + k. We consider equations
e1,---, e, € EqIU’] one by one, and check whether Ve! belongs to the to the current space If
el € Eq[ll] then v € Huy already, and hence dim(C +Span(ve )) = dim(C). Otherwise e; ¢ Eq[U ]
and shares at most one variable with U U (U \ e)). This is where we use the fact that LI U’ are
“legitimate” tuples in the sense described in the first paragraph of current section. Thus v, is

linearly independent of L + Hy + % Span(ve;) .Hence C & Span(velf) has dimension 1 larger

than that of C. Carrying the argument fori = 1, ..., k shows that in theend C = L + Hy + Hy
and dim(C) is as desired. O

Lemma4.4. Let U, U’ € U and L € Ly. Then any linear function on L @ Hy that respects the side
condition on Hy, has a unique extension to L + Hy + Hyp that respects the side condition on both Hy
and Hyp.

Proof. Let f be a linear function on L @ Hy; that respects the side condition on Hy;. Clearly;, it
has at most one extension to L + Hy + Hyr that respects the side condition on both Hy; and Hyy,
so the main point is to show that there indeed is such an extension. Similar to the proof of
Lemma 4.3, let C denote the current space, g denote the current linear function on C, so that
initially C = L ® Hy, g = f and at each step, g respects the side condition on Hy; and the side
condition due to equations e], .. ., e/_; considered so far. Consider the equation ¢;. If ¢ € Eq[U]
then C + Span(ve;) = C and we keep g unchanged and proceed next. If ¢; ¢ Eq[U], then as in the
proof of Lemma 4.3, Ve 1s linearly independent of L + Hy +i Span(ve ). Hence C @ Span(ve )
has dimension 1 larger than that of C and the function g can be safely extended to the vector Ve!

as required. To be precise, one sets g(v./) = b; where b} is the ‘right hand side” of the equation ¢;

and then extends g linearly to C & Span(ve ) Carrymg the argument fori =1,...,k, Completes
the proof. 1 m|
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4.3 Completeness

It is easily observed that the reduction satisfies the completeness condition as in Theorem 1.8.
Let 0: X — {0, 1} be an assignment to the Gap3Lin instance (X, Eq) that satisfies a 1 — ¢ fraction
of the equations. Let Eq" denote the set of the equations satisfied so that |Eq’| > (1 — ¢)|Eq|. Let
U’ C U be the subset of k-tuples of equations U such that all its k equations are satisfied, i.e.,
U C Eq'. Clearly, |U’| > (1 - ke)|U| > (1 - 0)|U| by choosing ¢ sufficiently small.

For every U € U’, let o[U] denote the linear function on {0, 1Y that maps x € {0, 1Y to
(olu, x). Since ¢ satisfies all equations inside U, the linear function o[U] respects the side
condition Hy;. Now assign to every vertex L & Hy; in Block[U], the linear function o[U]|reH, -
We show that this assignment satisfies all constraints whose both endpoints have been assigned.
Indeed if (L ® Hy, L’ ® Hyp) is a constraint such that both endpoints are assigned, then the
constraint is satisfied since all spaces are assigned using the same global assignment o. Thus
the 2-to-2 Game has a (1, 1 — 6)-assignment.

4.4 Covering property

We need a certain covering property towards the soundness analysis. While this property was
introduced in [34], we need a more general notion. The covering property, the zoom-in required
in Hypothesis 2.12, and the “advice” in the 2-Prover-1-Round game in Section 3.4 (the Outer
PCP) are all used in a coordinated manner in the soundness analysis.

Let U be the set of 3k variables in a fixed set of k equations. We recall that in the Outer PCP
game, the verifier chooses V C U randomly by choosing from each equation independently (a)
with probability 8, one of the variables from the equation and (b) with probability 1 — g, all
three variables from the equation. We consider {0, 1}V asa subspace of {0, 1}Y in a natural
manner. Slightly rephrasing a result from [34], the statistical distance between the following
two distributions over one-dimensional subspaces of {0, 1}Y is small, i. e., at most OB Vk).15

e Choose a random one-dimensional subspace P C {0, 1}”.

e Choose V' C U as described above, choose a random one-dimensional subspace P’ C
{0, 1}V and regard it as a subspace of {0, 1}u.
We will need an analogous statement regarding two distributions over {-dimensional subspaces

of {0,1}". We define the two distributions below and prove the subsequent lemmas in Section 8.

Definition 4.5. Let U be a fixed set of k equations and V' C U be chosen as above with parameter
B. Let £ > 1be an integer. Let £, £’ be distributions over {-dimensional subspaces of {0, 1}
sampled as follows.

15The intuition is as follows. A one-dimensional subspace is same as a non-zero point. A random point in {0, 1}u
(and in {0, 1}V) has negligible chance of being zero, so we might as well consider the distribution of (a) a random
point in {0, 1}u and (b) a random point in {0, 1}V after choosing V and then “lifting it up” by appending 0 in the
coordinates U \ V. We note that |U \ V| = 28k. A point chosen from the second distribution has = 2k more zeroes
than that from the first distribution. However the imbalance between the number of zeroes and ones in a typical

point in {0, 1} is ~ Vk, so when gk < Vk, a deviation of 28k zeroes is nearly imperceptible.
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e [: Choose a uniformly random ¢-dimensional subspace of {0, 1}U.

e [’ Choose V C U as above, choose a uniformly random ¢-dimensional subspace of
{0, 1}V and regard it as a subspace of {0, 1}u.

The covering property, stated below, asserts that the distributions £, £’ (and some condi-
tioning of theirs) are close in statistical distance. Here and throughout, if P, Q are probability
distributions over a universe U, then the statistical distance between them is defined as

SD(P,Q) = 3 Zﬂ |P(u) = Q(u)].

Lemma 4.6. Suppose 28 < 1. Let £, L' be distributions over {-dimensional subspaces over {0,1}
sampled as in Definition 4.5. Then the statistical distance between L, L’ is bounded as

SD(L, £) < pVk - 21+,

Lemma 4.7. Let 0 < g < { — 1 be an integer. Let Q be a q-dimensional subspace of {0,1}Y. Let Lo
and L’Q be distributions L and L’ conditioned on the event that a sampled {-subspace L contains Q.

Suppose 2'8 < 3. Then for at least 1 — \/B ki fraction of Q,

SD(Lo, L) < B ki 20, (4.3)

5 Soundness analysis

In this section, given a (j, 0)-assignment to the game G2, constructed in Section 4, we show how
to extract a provers’ strategy in the Outer PCP game (G?’; as in Section 3.4) that succeeds with
probability p = p(j, 0, {). If the soundness of the Outer PCP game is chosen to be smaller than
p to begin with, it implies that the game G2 has no (j, 0)-assignment, proving Theorem 1.8.
Formally:

Lemma 5.1. Suppose that there is a (], 6)-assignment to the game Go.p constructed in Section 4. Then
there is a strategy for the provers in the game G?’; that achieves winning probability p = p(j, 6,¢) > 0.

The rest of this section is devoted for the proof of Lemma 5.1. We recall that the first prover
(the “larger” prover) receives as a question, a set U of 3k variables (in k equations) and an
advice-list [x1, ..., x4] of g points in {0, 1}u (in fact in {0, 1}V as stated next). The second prover
(the “smaller” prover) receives as a question a subset V' C U of variables and an advice-list
[x1,...,x4] of the same q points in {0, 1}V. We will extract the provers’ strategies in the next two
subsections, and show in the last subsection that these strategies succeed with good probability.
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5.1 Strategy for the first (larger) prover

We recall that a typical vertex in the game G, is denoted as L @ Hy;. Specifically, for U € U, the
block of vertices corresponding to U is'®

Block[U] = {L & Hy | L € {0,1}Y, dim(L) = ¢, L N Hy = {0}},

and the set of vertices of G, is the union of all blocks of vertices over U € U. Let F[-] be the
given (j, 6)-assignment to the game G».». Let us emphasize that this means:

e For atleasta 6 fraction of the vertices L® Hyy, a list F[L@® Hy;] of j linear functions on L& Hy;
(that respect the side condition on Hy;) is given. The remaining vertices are unassigned
and do not play any role in the analysis.

e If there is a 2-to-2 constraint between vertices L & H;; and L’ & H;p, both of which are
assigned, then there are linear functions f € F[L ® Hy], f’ € F[L’ ® Hy] that satisfy the
constraint.

e If there is a 1-to-1 constraint between vertices L & Hy; and L’ & Hy,, both of which are
assigned, there is a one-to-one correspondence between the lists F[L @ Hy;], F[L’ ® Hy],
via the same one-to-one correspondence that defines the 1-to-1 constraint.

By an averaging argument, for at least § fraction of the tuples U, at least 3 fraction of vertices
in Block[U ] are assigned. Call such a tuple U good and let Uyooq be the set of good tuples with
|(u|good > % : |7,[|

Let the question to the first prover be U € U along with the advice-list [x1,...,x,] of
points in {O,l}u. If U ¢ Ugood, the prover gives up, so let us assume U € Ugyood, and
let Assigned[U] C Block[U] denote the set of vertices in its block that have been assigned,
|Assigned|[U ]| > % - |Block[U]|. Since this is a (j, %)-assignment respecting the side condition
on Hy, Hypothesis 2.12 states that for some g, a(:), C that depend on (j, %), for at least a(¢)
fraction of the g-dimensional subspaces Q C {0,1}Y, there exists a global linear function
90 : {0, 1}u — {0, 1} that respects the side condition on Hy; and

Pr [70lLem, € FIL® Hul |Q C L] > C. (5.1)
Lc{0,1}Y, dim(L)=¢

We call such a choice of Q “lucky” and let Q| cky be the set of all lucky g-dimensional subspaces
of {0,1}Y. We note that the parameter g was chosen beforehand to exactly match with that
arising in Hypothesis 2.12. Moreover, call a g-dimensional subspace Q “smooth” if it satisfies
Condition (4.3) in Lemma 4.7, and let Qsmooth be the set of all smooth g-dimensional subspaces
of {0, 1}Y.

16We emphasize that Block[U ] contains the vertex L & Hy; for essentially all {-dimensional subspaces L C {0, l}u.
17To recall, the condition is that the distributions L and Lé are close in statistical distance; the former distribution

chooses a random ¢-subspace of {0, 1Y containing Q and the latter distribution chooses a random question V. C U
to the second prover and then a random ¢-subspace of {0, 1}V containing Q.
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The prover looks at the advice-list and lets Q = Span(x1, ..., x4). If Q € Qiucky or Q ¢ Qsmooth,
the prover gives up. Otherwise the prover picks a global linear function gg : {0, 1Y - {0,1}
respecting the side condition and satisfying Equation (5.1) (if there is more than one, one of
them is picked arbitrarily), and outputs gg as the answer. Strictly speaking, the linear functions
go amounts to a function x — <0Q, x) on {0, 1}u for some og € {0, 1}u and the prover answers
that o is the assignment to the 3k received variables (o( satisfies the k equations as g respects
the side condition). However, it is more convenient to view the function gg itself as the answer.

We note that a uniformly random g-subspace of {0,1}" is lucky with probability > a(f)

(by Hypothesis 2.12) and is smooth with probability > 1 — ki >1—- %9 when the parameters
y Hyp p y 2 p

B, k are chosen appropriately. Thus with probability at least @, the space Q dictated by the
advice-list is both lucky and smooth.

5.2 A Strategy for the second (smaller) prover

Let the question to the second prover be V along with the advice-list [x1, ..., x4] of points in
{0, 1}V. Let Q = Span(xy, ..., x4) be the g-dimensional subspace of {0, l}V. Let Ly be the set
of all £-dimensional subspaces of {0,1}" (though when the prover decides on an answer, only
the subspaces containing Q are relevant):

Ly = {L ILc{0,1}", dim(L) = e} .

The prover first obtains an assignment Fy[-] to Ly. Fix L € Ly. The prover examines every
k-tuple of equations U such that V C U, i.e., every question that could have been asked to
the first prover, when the question of the second prover is V. Note that L C {0, 1}V c{o,1}Y
and hence there is a vertex L @ Hy; of the game Gy, in Block[U ]. If the vertex L @ Hy; has been
assigned, then the prover defines

Fy[L]=A{fI.| f € F[L® Hul},

i.e., restrictions of all functions in F[L & Hy] to L. In general there are several U that contain V/,
so a priori, there is ambiguity in the definition of Fy[-]. The claim below shows however that
the definition is unambiguous.

Claim 5.2. Fy|-]is well defined. That is, if V. C U, V C U’ and if L ® Hy, L ® Hy are both assigned,
then the restrictions of F[L @ Hy;| and F[L @ Hyy| to L are identical.

Proof. Notice that L ® Hyy, L @ Hyp have a 1-to-1 constraint between them in the game G».,. By
Definition 1.5, a (j, 0)-assignment must assign identical sets of j assignments to the vertices that
have a 1-to-1 constraint between them. O

Once Fy is defined, the prover zooms into Q, and chooses at random any linear function
ho: {0, 1}V — {0,1} that satisfies (if one exists and if so, we show that the list-size is bounded)

C
ngv [hol € Fy[L]] |Q L] > I (5.2)
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The prover outputs hg : {0, 1}V — {0, 1} as the answer. Again, strictly speaking, the linear
function hg amounts to a function y — < 1Q, y> on {0,1}" for some 10 € {0, 1}V and the prover
answers that 7g is the assignment to the variables he received. However, it is more convenient
to view the function hg itself as the answer.

5.3 The success probability of the provers

We now show that the provers’ strategy succeeds with good probability. Let U, V, [x1, ..., x4],
x; € {0, 1}V be the provers” questions and Q = Span(xy, ..., x;). We already observed that with
probability at least §, U € Ugoog and with probability @, Q is both lucky and smooth (from
the first prover’s perspective). Assume that all these properties hold. Then the answer of the
first prover is a global function gg : {0, 1}u — {0, 1} that satisfies the side condition on Hy;, and
Pr [90lten, € FIL®@Hyl|QC L] >C.

Lc{0,1}Y, dim(L)=¢
Since Q is smooth, by Lemma 4.7, the uniform distribution on ¢-spaces in {0, 1}” containing Q
is (\/E ki . 2045 )-close in statistical distance to the distribution that chooses a question V C U to
the second prover and then chooses uniformly an ¢-space in {0,1}" containing Q. By setting
the parameters 8, k appropriately, we can assume that this statistical distance is at most § and
conclude from the above inequality:

C
P eF[Le H CL|>—.
p o [90lten, € FIL®Hyl | Q C L] >
By an averaging argument, with probability at least $ over the choice of question V' to the
second prover,

C
P e FIL® H CLl>2—.
o [90lrem, € FI ullQclL] 1

Fix any such good choice of question V. Note that the assignment Fy[L] to the ¢-spaces L of the
second prover is precisely the restriction of the assignment F[L & Hy;] to the ¢-spaces of the first
prover. Letting h*Q : {0, 1}V — {0, 1} to be the restriction of gg : {0, 1}u — {0,1} to {0, 1}V, we
can rewrite the inequality above as:

C
P p Fy|L CL| >—.
P [mpleeFulLliQ e L] > 5

Thus the function hb satisfies Condition (5.2) and is a legitimate candidate for the second
prover’s answer. By Theorem 2.6, the number of functions hg satisfying Condition (5.2) is at

% < % for a large enough choice of £. When the second prover does pick &,

as the answer, both the provers” answers are consistent (h*Q being a restriction of gg) and the
provers succeed. Their overall success probability is at least

6 all) C C _da(l)C?

2 2 4 8  128j

most
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thus completing the proof of Lemma 5.1 for p(j, 6, {) = %g;j’é)z.

6 The case j =1 of Hypothesis 2.5

In this section it is shown that Hypothesis 2.5, in the case j = 1, follows from Hypothesis 2.7
without the need of zoom-ins.

Let f : S — [2%], Density(S) = 6 be the given (1, §)-assignment to the Grassmann graph
G(V ={0,1}",¢), meaning, for any two ¢-spaces L1, L, € S such thatdim(L;1 N Ly) = -1, we
have the consistency f[Li]r,n1, = f[L2]1,n1,- We intend to show, using Hypothesis 2.7, that
there is a global linear function g : {0,1}" — {0, 1} such that g|;, = f[L] for a fraction C = C(6)
of the {-spaces L.

Here is the idea. Fix an integer b = %. Using Hypothesis 2.7, we conclude rather easily,
that for a constant fraction of pairs L1, L, € S such that dim(L; N Ly) = b, we still have
flL1linL, = fIL2]1,n1,- This enables us to assign linear functions to all b-dimensional spaces
that have a good agreement with the given assignment to the {-dimensional spaces. In other
words, this assignment passes the “{-space vs b-space linearity test”!® with good probability.
Using a Fourier analytic approach, we are able to show a soundness guarantee for the “{-space
vs b-space linearity test,” implying the existence of a desired global linear function. A formal
proof appears below. The analysis of the linearity test is presented in Section B which might be
of independent interest.

Letb = %. For a b-dimensional space B C V, let Zoomp be the (lower order) Grassmann graph
induced on the set of vertices {L|L € G(V,¥), B C L} (see Fact 2.2). Let Zoomg[S] = S N Zoomp
be the set of vertices in S that contain B, and let Density(Zoomp[S]) be its density inside Zoomg.
Clearly,

E [Density(Zoomg[S])] = Density(S) = 6.
BCV, dim(B)=b

By an averaging argument, Density(Zoomg[S]) > § for at least 3 fraction of b-spaces B; denote
by B the set of all such “good” b-spaces. Fix any B € B. Note that there are 2 different
[F>-valued linear functions on B. Partition Zoomg[S] into classes Cy, ..., Cy» according to the
restriction of f[L]|p for L € Zoomg[S]. We observe that for any edge (L, L") of the Grassmann
graph inside Zoomg[S], the linear functions f[L], f[L’] agree on L1 N L, 2 B and hence the edge
is inside one of the partitions C;. Since Density(Zoomg[S]) > %, Hypothesis 2.7 implies that there
is a connected component C of density > ¢ in Zoomg[S] and as observed, C C C;, for some
1 < ip < 2°. Let h[B] denote the linear function on B that equals the common function f[L]|z
over L € C;,. This gives an assignment 1 : 8 — [2°] of linear functions to b-spaces. From the
discussion, if a pair (B, L), B € L of a b-space and a {-space is chosen at random from V' = {0, 1}",
then

LPr [fILls = MBI > 5 e

8 Analogous to the “line vs point low-degree test.”
19 As opposed to the rather involved algebraic (and/or combinatorial) analysis of the “line vs point” and “plane vs
plane” low-degree test in [3, 38].
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where B € B with probability at least % and then L is in the “large” connected component
of Zoomg[S] with probability at least €. That is, the “f-space vs b-space test” succeeds with
probability > § - ¢. Theorem B.1 now implies that there is a global linear function g : V — {0, 1}
that agrees with at least C fraction of the L-spaces in G(V, {).

7 Transitivity of G

In this section, we show that the game G, constructed in Section 4 is transitive as per
Definition 1.4.

Lemma 7.1. Suppose L1 @ Hy,, L, ® Hy, have a 1-to-1 constraint between them in Ga.p, and Ly @
Hu,, L3 @ Hy, have a 1-to-1 or a 2-to-2 constraint between them. Then there is a constraint between
L1 ® Hy,, L3 ® Hy,, and it is 1-to-1 or a 2-to-2 depending on whether the constraint between Ly @
Huy,, Lz ® Hy, is 1-to-1 or 2-to-2.

Proof. Since there is 1-to-1 constraint between L ® Hyy,, Lo @ Hy,, we have
L+ I‘Iu1 + I‘Iu2 =1Ly + Hu] + Hu2 . (7.1)

We first consider the case when the constraint between L, ® Hy;,, L3 @ Hyy, is also 1-to-1. This
gives
Ly + Huz + HU3 =L3+ I‘Iu2 + Hu3 . (7.2)

7

Combining the above equations gives (“add” Hy;, to Equation (7.2) and do a “substitution’
using Equation (7.1))

L+ I‘Iu1 + I‘IU2 + HU3 =L3+ I‘Iu1 + Huz + Hu3 . (73)

Now we would like to “remove” Hy, from both the sides so as to obtain L1 + Hyy, + Hy, =
L3 + Hy, + Hy, and implying that there is a 1-to-1 constraint between L1 @ Hy, and L3 @ Hy,.
This “removal” can be done for the following reason. Write Hy;, = A @ B, AN B = {0} where
(a) A is the span of all vectors v, such that the equation e occurs in Uy, but also occurs in U
or Uz, and hence A C Hy, + Hy,. (b) B is the span of all vectors v, such that the equation e
occurs in Uy, but not in U; nor in Uz. Any such equation e shares at most one variable with
U; and at most one variable with Us and no variable with U, \ e. Hence there is a variable
that is “private” to e, meaning it does not occur in U; U U3 U (U \ e). In particular, the
“private” variables of the equations contributing to B are distinct. Thus the intersection of B and
L1+ L3 + Hy, + Hy, € {0, 1Y @ {0, 1} is {0}. To summarize, we can write Equation (7.3) as

Li+(Hy, +Hy, +A)+ B =L3+ (Hy, + Hui; + A) + B,

which simplifies to
(Ll +I‘Iu1 +Hu3)+B = (L3+I‘Iu1 +Hu3)+B,

and we can now safely “remove” B, using Fact C.6.
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We now consider the case when the constraint between L, ® Hyy,, Lz @ Hy, is 2-to-2. We
have Equation (7.1) as before, but instead of Equation (7.2), we now have

dim(L2 + Hu2 + Hu3) = dim(L;, + I‘Iu2 + Hu3) = dim(Lz + L3+ Huz + HU3) -1. (74)

We claim that one can “add” Hy, to all three “sums” in Equation (7.4). Arguing as eatlier, one
can write Hy, = A’ ® B’, A’ N B’ = {0} where A’ C Hy, + Hy, and B’ is linearly independent
of {0, 1}uz + {0, 1}u3. Thus “adding” Hy;, to all three “sums,” increases the dimension of each
“sum” by precisely dim(B’). Thus

dim(L2 + HU1 + Huz + Hu3) = dim(L3 + HU1 + Huz + Hu3) = dim(L2 + L3 + HU1 + Huz + Hu3) -1.
Using Equation (7.1) and “substituting,” we get
dim(L1 + HU1 + Hu2 + Hu3) = dim(L3 + HU1 + Huz + Hu3) = dim(L1 + L3 + HU1 + Huz + Hu3) -1.

Now, arguing as earlier again, we “remove” Hy, from all three “sums.” One can write
Hy, =A®B, AnB = {0} where A C Hy;, + Hy; and B intersects L1 + L3 + Hyy, + Hy, only at
{0}. Thus “removing” Hyy, from all three “sums,” decreases the dimension of each “sum” by
precisely dim(B). Thus

dim(L1 + Hy, + Hy,) = dim(L3 + Hy, + Hy,) =dim(Ly + L3 + Hy, + Hy,) - 1,
implying that there is a 2-to-2 constraint between L1 @ Hy;, and Lz ® Hy;. O

Lemma 7.2. Let s1 = L1 ® Hy,, s2 = Ly ® Hy,, s3 = L3 ® Huy, be vertices in Ga.p such that there is
1-to-1 constraint between (s1, $») and a constraint between (S, s3). Then the constraint between (s1, S3)
(as guaranteed by Lemma 7.1) is a composition of the constraints between (s1,s2) and (sz, s3).

Specifically, if linear functions (respecting relevant side conditions) f on L1 @ Hy,, g on Ly & Hyy,,
and h on Lz ® Hyy, are such that (f, g) satisfy (s1,s2) and (g, h) satisfy (s, s3), then (f, h) satisfy
(s1,53).

Proof. In the following, whenever we construct a linear function on a certain space, it will always
respect the side condition contained in that space. Since (g, 1) satisfy the constraint (sy, s3),
there is a linear function f on W = L, + L3 + Hy, + Hy, that respects side conditions on Hyy, and
Hyp, and

!] = ﬁle@HuZI h = ,B|L3®Hu3 .
Let Z = W + Hy, and extend the linear function  on W uniquely to a linear function y on Z so
as to respect the side condition Hy,. This is possible because every equation in Uj that does not
appear in U, or Us has a “private variable,” as in the proof of the previous lemma. We note that
VeHy, = (VIw)lLeHy, = BlieHy, =9,

VseHu, = (VIw)lsety, = BliseHy, = h
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Since there is a 1-to-1 constraint (s1, s7), we have
L1+ Hy, +Hy, =Ly + Hy, + Hy, .
It therefore holds that
Z =1L+ L3+ Hy, + Hy, + Huy, 2 L + Hy, + Hy, = L1 + Hy, + Hy, 2 L1 ® Hy, .

Since y is an assignment on Z, by Remark 4.1, y|1,eH,, and y|i,eH,, = g satisfy the constraint
(s1,s2). However (f, g) is supposed to satisfy this 1-to-1 constraint, and hence we must have
f =7lLeHy, - Now we have f = y|,,em,, and h = y|1,eH,, and by Remark 4.1, (f, h) satisfy the
constraint (s1, s3). O

8 Covering property

The goal of this section is to prove the covering property, namely Lemmas 4.6 and 4.7.

Proof of Lemma 4.7 from Lemma 4.6

LetU,V,k,B,¢,L,L,q, Q,LQ,.LIQ be as in Definition 4.5 and Lemmas 4.6 as in 4.7. Let

Q, Q be distributions over g-dimensional subspaces of {0,1}" that are analogous to L, L,
respectively (i. e., as in Definition 4.5, with parameter g instead of ¢). It is easily observed that an
equivalent way to sample from Q and Q') is to sample an {-space L from L and L’), respectively,
and then sample a uniformly random g-dimensional subspace of L. We stress that Q and L are
uniform distributions on g-dimensional and ¢-dimensional subspaces of {0, 1}, respectively.
We have the sequence of arguments

SPrl@=01) (Pr [Lo=L]-Pr [L;Q =L”
o

Eols0Le £0)

L2Q

-y 3 pr[a=Q]-Pr[£Q=L]—Pr[Q=Q]'Pf[£é:L]
Q L2Q

< DD [Pri@=01-Pr[Lo=L] -Pri@ = Q1P| £, = ]|
Q L2Q ‘
> 2 pri@ = Qe[ = 1] -Pri@ =) Pr | £ = L
Q L2Q _

Z)Pr[L:L]—Pr[L':L]‘+
L

Z)Pr[Q':Q]—Pr[Q:Q]’ZPr[.ﬁb :L]
Q

L2Q

SD(L,L')+8D(Q,®),
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where we used triangle inequality and the fact that sampling Q € Q and then L ~ Lg is
equivalent to sampling L ~ £ and similarly, sampling Q € Q" and then L ~ L, is equivalent to
sampling L ~ £’. Now Lemma 4.6 upper bounds both SD(£, £’) and SD(Q, Q') by Vk - 2+
and hence

’ . nl+5
E [SD(LQ,LQ)] < pVk 2845,

Lemma 4.7 now follows by Markov’s inequality.

Proof of Lemma 4.6

We recall that U, |U| = 3k is a set of 3k variables in k equations. A subset V C U is chosen by
choosing independently for each equation, one of the variables in the equation with probability
p and all three variables in the equation with probability 1 — . The expected size of V is 3k — 2k
and except with probability 27K, we have |V| > 2k.

We note that choosing a uniformly random ¢-subspace L of {0, 1}u (resp. {0, 1}V) is
equivalent to choosing uniformly a sequence of points x1, ..., xy in {0, 1}u (resp. {0, 1}V) that
are linearly independent and letting L = Span(xy,...,x). Since a uniformly random and
independent sequence of points x1, ..., x; in {0, 1}" (resp. in {0,1}") is linearly independent
except with probability < 2-9MW) (resp. < 2/-9m(V) see Fact C.4), we might as well focus on
such sequences of points. Itis thus enough to bound the statistical distance between distributions
D, D’ over ({0,1}4)! sampled as:

e D: Choose uniformly and independently x1, ..., x; € {0, 1}”.

e D'": Choose V C U, choose uniformly and independently x7, ..., x; € {0, 1}V and regard
them as points in {0,1}" (by appending 0 in coordinates U \ V).

We now observe that since the process of choosing V' C U is independent over the k equations,
D = SFand O’ = 8’F where S, S’ are the “basic” distributions exactly as above, but with
k =1,|U| = 3. A bound on the statistical distance between D, D’ now follows in the same
manner as in [34, Lemma 3.1], by bounding the Hellinger distance between S, S’, using the
multiplicativity of the Hellinger distance to bound the Hellinger distance between D, D’
and finally, bounding the Hellinger distance in terms of the statistical distance. We observe
how a bound on Hellinger distance between S, S’ also follows already from the proof of [34,
Lemma 3.1]. Re-writing the sampling process for S, S’ for convenience (this is the special case
k=1,|U|=3):

e S: Choose uniformly at random x1, ..., x¢ € {0, 1)3.

e S§’: With probability 1 — 8, choose uniformly at random x4, ..., x¢ € {0, 1}3. Otherwise:
Choose uniformly at random by, ..., b, € {0,1}. Output with probability é each,

b100,...,b,00, or 0b:10,...,00,0, or 00by,...,00b,.
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The distributions S, 8’ are over ({0, 1}3)€ which is equivalent to £ with © = {0, 1}5, where the
first, second, and third coordinate in X3 correspond to the concatenation of the first, second, and
third coordinate, respectively, in the ¢ output triplets. Note that 0/ € £. Denoting the uniform
distribution over X by Uniform(Z), it is seen that

S = (Uniform(Z), Uniform(X), Uniform(X)) ,
i.e., three independent and uniform copies of X, whereas,

S" = (1-B)(Uniform(X), Uniform(XZ), Uniform(X)) +
g (Uniform(Z), of, 0 ) 4 g (o" , Uniform(x), 0° ) 4 g (0" 0, Uniform(Z)) .
With this viewpoint, the Hellinger distance between S, S’ is calculated to be at most 4%|Z|? in

the proof of [34, Lemma 3.1]. The statistical distance between D, D’ is then at most 16 vk - |Z].

Appendix

A Reduction from 2-to-2 Games to the Independent Set Problem

In this section, we present a reduction from the (Transitive) 2-to-2 Games problem to the
Independent Set problem, proving Theorem 1.7. The reduction is along the lines of [14, 26, 33],
using the Biased Long Code and analytic theorems of Russo, Margulis and Friedgut, introduced
in [14]. Some care is required to handle the transitivity feature.

A.1 Biased Long Code

While the Biased Long Code can be viewed as an encoding scheme, it is more convenient to
take a combinatorial view and treat it as a weighted Kneser graph. The valid codewords then
amount to certain large (in fact the largest) independent sets in this graph. The analysis of the
Biased Long Code amounts to a structural theorem about independent sets of moderately large
(= linear) size.

Definition A.1. For a bias parameter p € (0,1) and alphabet £, the vertex set of weighted
Kneser graph G,[X] is $(X), the family of all subsets of X.. The weight of a vertex A C ¥ is
up(A) = pll(1 — p)E=IAL The edge setis {(A,B) |A,BC L, AnB=0}.

It can be shown easily that the largest independent sets in G,[Z] have weight p. These are
precisely the sets I, = {F | o9 € F} for any fixed o¢ € X.

Definition A.2. For a set family ¥ C P(X), let u, () denote its weight under p,. Let A ~ p,
denote the process of picking a set A C ¥ according to the distribution y,. For a fixed element
o € X, let Infl;(F) denote its influence on the family ¥ defined as

Inflo(F) = AP{J [ Exactly one of the pair A and AA{c} is in T] .
~Hp
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The average sensitivity of a family as,(¥) is the sum of all influences, i.e.,

as,(F) = Z Infly(F) .

geL

A.2 The reduction

Let G = (V,E,®, L) be the instance of a Transitive 2-to-2 Game as in Conjecture 1.6. The
parameters j and 0 therein will be chosen later. The Independent Set instance G’ = (V’, E’) is
defined as follows. Set the parameter p = 1 — & — §. The vertex set of the instance is

V2
V' ={(x,A) |xeV, ACX}.

The weight of the vertex (x, A) is |17| - up(A), so that the total weight of all the vertices is 1. The
edge set is

E" = {((x1, A1), (x2,A2)) | (x1,x2) € E A V01 € A1, 02 € Ay, (01,02) & D(x1,x2)} .

In words, there is a cloud of vertices for every x € V. For every constraint (x1, x2) € E, there
are cross edges between the respective clouds. There is an edge between (x1, A1), (x2, A2) if
there is no pair of colors in the sets Ay, A; that satisfy the constraint on (x1, x2). 2

A.3 Completeness

LetC: X — X bea(l,1-0)-coloring of the game G = (V,E, ®,X) where X C V, |X| = (1-0)|V].
The coloring satisfies all the constraints inside X. Consider the set of vertices in G’(V’, E’),

1Y ((x,A) |x € X, C(x) € A} .

Clearly, the set I includes a weight p of the vertices inside the cloud for every x € X. Hence
the weight of [is (1 -0)p > 1 - % —20. We observe that I is an independent set. For every

pair of vertices (x, A), (x’, A’) € I, we show that there is no edge between them in G’. Since the
coloring C satisfies the constraint (x, x”), we have (C(x), C(x’)) € ®(x, x’). By definition of the
set I, we have C(x) € A, C(x’) € A’. Thus A, A’ contain a consistent pair of colors, so there is no
edge between (x, A) and (x’, A’).

A4 Soundness

We begin by stating two auxiliary lemmas towards the soundness analysis. The relevance of the
2-to-2-ness of the constraints and the choice of p ~ 1 — - is apparent from the statements of

V2
these lemmas. Let X and I be alphabets such that |I'| = |2£| and i : ¥ — I' be a 2-to-1 map. For
F C ¥, its projection nt(F) C T is defined naturally as {rt(c)|c € F}. For a family ¥ € P(X), the
projected family n(#) € P(I) is defined naturally as {n(F)|F € ¥ }. For a subset H C T, the set
nY(H), |7 Y(H)| = 2|H| is defined naturally as {c|o € £, (o) € H}.

20ne could add edges inside each cloud according to the Kneser graph. The reduction does not need it though.
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Lemma A.3. For g € (0,1), py_(1-qp(1i(F)) > ptq(F).

Proof. For every H C T, we define n/(H) = {F C X|n(F) = H}. We observe that
o tqoge(H) = ig(r(H)).
e The families 7t/ (H) over all H C T form a partition of the family P(X).

The lemma follows by noting that

beaop(UE) = > piagpH) = Y wpmH) > Y (@ (H) N F) = uy(F). ©
Hen(F) Hen(F) Hen(F)

Lemma A4. Let F C P(Z), F' C P(L) be two families, each of weight strictly larger than ¥ under
the distribution u, with q =1 - % Letm: X — T, n’: X — T be 2-to-1 maps (so |Z| = |£'| = 2|T)).
Then there exist F € ¥, F' € ¥’ such that (F) N /(F’) = 0.

Proof. We note that 1 — (1 —¢)* = % and from Lemma A.3, 1 (n(F)) = pq(F) > % and similarly
M1 ("(F7)) > % Thus 7(¥) and /(") are families, each containing more than half (in the usual

counting sense) of the sets from $(I'). Hence there must exist H € i(¥), H' € /(¥”’) that are
complements of each other and in particular H N H” = 0. m|

We now present the soundness analysis. Given a maximal independent set I of weight at
least ¢ in G’, we show how to construct a (j, 0)-coloring for G = (V, E, ®, X)) where j, 6 depend
only on ¢. For every x € G, consider the part of I inside the cloud of x,

Fr={A|ACL, (x,A)el}.
Claim A.5. The family ¥ is monotone.

Proof. Otherwise, there are A C B such that A € ¥ and B ¢ ¥x. Then I U {(x, B)} is an
independent set larger than I, contradicting the maximality of I. O

Since the independent set I has weight ¢, by an averaging argument, there is a set X C
V, |X| = 5§ -|V| such that I includes a weight > 5 of vertices from the cloud of x, i.e., y,(%x) > §
for x € X.

Theorem A.6 (Russo — Margulis [40, 35]). Suppose ¥ is a monotone family. Then u,(F) is an
increasing function of q and

d#q(T)
Fra as,(F).
Claim A.7. There exists p’ € (p, p + 0) such that
E [asy(Fx)] < L
xeX P 0
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Proof. By Lagrange’s mean value theorem, it follows that there exists p” € (p, p + 6) such that

d Exe +6(Fx)| — Exe (Fx) 1
cfoil g ] - 2 ] 1

xeX

>

From Claim A.7 and an averaging argument, there is a set X’ C X, [X'| > % such that

forall x € X’, asy(¥x) < 3. A theorem of Friedgut states that families with bounded average
sensitivity are well-approximated by “juntas.”

Definition A.8 (Junta). A family ¥ C P(X) is called a j-junta, if there exists | C ¥, |J| = j such
that the membership of a set A in F is determined by only A N J.

Theorem A.9 (Friedgut [17]). There exists C(q) > 1 such that for every ¥ C P(X) and every accuracy
parameter 1) > O, there exists ¥’ C P(L) that is a j-junta and

°«j= C(q)asq(?")/ﬂ.
° ‘uq(TAT') <1

Fix x € X" and set 1 o a5- Since asy () < %, it follows from Friedgut’s Theorem that 7
is n-close to a k-junta with k = C(p’)?/®?. Let J, C T denote the set of elements on which the
junta depends. Clearly, the set-family that is a junta on J, and is closest to ¥ is the “majority
vote” on each setting of |, namely

d
if{PquPQZ\]x, FFcj, Pr [AuF'eﬁ]>1}.

[7_;] ACTN]x, A~pip 2

1
2
The following claim shows that the family [ ] 3 is also close to ¥ (and will be more useful to
work with):

def 3

:{Fup'|Fg2\]x,P'g]x Pr [AUF’e?'x]>—}.
ACY\]y, A~y 4

[F+]

3
1

Claim A.10. [Jp/(ﬂA[ﬂ]%) < 5n.

Proof. Let 7 C P(Jx) be the family of subsets F C ], such that

1 3
=< P AUF € <.
2 " Az, Avigy [ l<q

Notice that for each such F (a) at least % (weighted) fraction of its extensions to T are not in ¥y
(b) each extension is in [Fx] 1 (c) no extension is in [F] 3. Hence

Pr  [F € F7] < pp(FA[Fr]

1 ) <
4 Fcly, Frpy P S
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It follows that
(A AIF) = P [FeF ] <4n.

Fg]x/ F"Hp/

We finish the proof using the triangle inequality,
pp (FeA[Fxl3) < wp (FAF2]y) + pp ((F2]1 Al ]3) < 5n. O

Claim A.11. [F ]z # 0.

3
1

Proof. Using the triangle inequality, the previous claim, and that n = 55,

}lp'([ﬁ]g) > [Jp’(?tx) - Hp’(ﬂA[fﬂ:x]%) >—--51>0. O

N m

Definition A.12. The extended junta EJ(x) of x is defined by
Ef(x)=]: U {0 €X|Infly(F) >271%} .

We note that for x € X', as,/(Fx) < % and since the average sensitivity is the sum of all
influences, |[EJ(x)| < j =k + %. Our coloring to the game G = (V, E, @, X) will assign, to
every x € X', a set of at most j colors EJ(x). We now show that this is indeed a (j, 0)-coloring.
Firstly,

1]
2
as 6 will be chosen accordingly. Secondly, we need to show that every constraint (x1, x) inside
X' is satisfied in the sense of Definition 1.5. Fix any such constraint. It is a 2-to-2 or a 1-to-1
constraint. Our main soundness lemma below takes care of the 2-to-2 case, and the 1-to-1 case

then follows directly from the transitivity of the game.

X > 2> ZlVl > 5|V

Lemma A.13. Suppose x1,x2 € X’ are such that (x1,x2) is a 2-to-2 constraint. Then there exist
consistent colors for x1, Xy in their respective extended juntas. i.e., there exist 01 € EJ(x1), 02 € EJ(x2)
such that (01, 03) € ®(x1, x2).

Proof. It will be convenient to think of the 2-to-2 constraint in terms of a pair of 2-to-1 maps
1 : X1 — I, Xy — I. Here X1 = I = X are the same alphabet, but it will be convenient to
think of them as separate. A coloring (a1, a2) to vertices (x1, x2) satisfies the 2-to-2 constraint if
and only if 711(a1) = 72(a2). Assume towards a contradiction that there is no pair of consistent
colors in the extended juntas for x1 and x,. The assumption can be stated as

ni1(EJ(x1)) N m2(EJ(x2)) = 0.

Note in particular that J,, € EJ(x2) and hence
m(EJ(x1)) N m2(Jy,) = 0. (A1)
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Our goal is to exhibit F1 € F,, F» € ¥, such that t1(F1) N 12(F2) = 0. We will zero in on such
F1, F in progressive manner. We consider the case of Fj, the other case being similar. We zero

in on a sequence of sets,
A1 € B C€B; CFq,

that are contained, respectively, in a progressively expanding “universe of focus”

]x1 c qu(nl(]m)) - qu(nl(]m))Unl_l(T(Z(]xz)) - Z:1-

We clarify that the set qu (t1(Jx,)) is a superset of ], and can have size up to 2|, | since that map
71 is 2-to-1. The weights (sizes) of set-families are with respect to y,, unless stated otherwise.

o Recalling the definition of [ﬁl]% and using Claim A.11, there is A1 C ]y, such that at least

2 of its extensions outside Jy, are in %, .

e WeletB; = A1 U (nl_l(m(]xl)) \ ]xl)- Due to monotonicity of ¥, at least % of extensions
of B1 outside nl_l(T(l (Jx;)) are in 7.

e We now retain B; as is, but consider it as subset of enlarged universe nl‘l(nl(]xl)) v
nl‘l(nz(]xZ)). The elements added to the enlarged universe, namely nl‘l(nz(]xZ)) are
outside of EJ(x1) (using Equation (A.1)), hence have influence at most 2710k ‘and are at
most 2k in number. The fraction of extensions of Bj outside nl‘l(nl(]xl)) U 7'([1(7'(2(]“))
remains at least

3 _
1 210k_p

)
2%k-1 5

r=2k=1,4 _ - Y

Using a similar argument for x, to summarize, there exist

B1 € D1 = i (m1(Jx,)) Ut H(2(Jx,)), B2 € Do = 1, (m1(Jx,)) U 115 (112(Jix,))

such that at least % of their extensions outside D1 and D; are in ¥y, and ¥,, respectively. Note
that

n1(B1) Nm2(B2) = 0. (A.2)

We are almost done. Denote

F1={S1CSX1\D1|B1US1 €Ty}, F2={S2CX2\D2|BUSy € Fy,},

1
2
ug(F2) > g. Applying Lemma A.4 to 71, %2 along with 2-to-1 maps 7t1 : £1\ D1 — I'\ 11(D1) and
1y : Lo \ Dy — I'\ ma(D3) (we have 11(D1) = m2(D2) = Jy, U Jx,), there exist F; € X1\ Dy, F; C
Y \ Dy such that

so that y,(71) > 3 and due to monotonicity, letting g = 1 — &= > p’, 14(%1) > 3, and similarly

ni(Fy) Nma(Fy) = 0. (A.3)
Finally, letting F1 = By U F] and F> = B, U F}, and using Equations (A.2) and (A.3), we conclude
that F1 € ¥y, F2 € Fx,, m1(F1) N m2(F2) = 0 as desired. O
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Finally, we handle the 1-to-1 constraints inside X’. Let Gx be the subgraph of G(V,E, ®, L)
induced on X’. The transitivity of the game, as per Definition 1.4, then implies that G|x’ can be
partitioned into cliques Cj, . .., Cy such that

e All constraints inside a clique C, are 1-to-1, i.e., matchings on X X X.. For any x,y,z € C,,
the matchings between (x, y), (v, z) can be composed to derive the matching between

(x, 2).

e For r # s, either there is no edge between C;, Cs or there is a complete bipartite graph
between C,, C; with all constraints being 2-to-2. In the latter case, for any x, y € C, and
z € Cs, the 2-to-2 constraint (x, z) is a composition of the 1-to-1 constraint (x, y) and the
2-to-2 constraint (y, z).

These considerations show that all vertices inside a clique C, play an essentially identical
role. Therefore, in a maximal independent set I, for any x, y € C;, the families %, F, € P(X)
are identical up to the permutation of X that defines the 1-to-1 constraint (x, y), and hence
the color-sets EJ(x), EJ(y) are identical up to the (same) permutation. This shows that 1-to-1
constraints are satisfied in the sense of Definition 1.5.

B “{-space vs b-space” Linearity Test

In this section, we present and analyze “¢-space vs b-space” linearity test. The analysis is Fourier
analytic and, as is standard, it is convenient to think of boolean values as {—1, 1} and replace
addition over [, by product of the signs {-1,1}. A function f : Q = {-1,1}" — {-1,1} is linear
if f(x)f(y) = f(x-y)forall x,y € Qand x - y denotes the coordinatewise product of x, y.

The {-space vs b-space Linearity Test

For Q = {-1,1}", let B and £ denote the set of all b-dimensional and ¢-dimensional subspaces
of Q. Let A and F be tables that assign, for B € 8 and L € L, linear functions A[B] : B — {-1,1}
and F[L] : L — {-1,1} on the respective subspaces. The test picks a pair (B, L) uniformly at
random with B C L, B € B, L € £ and accepts if

F[L]|p = A[B].
Our result is the following:

Theorem B.1. Let Q), B, L and parametersn, {,1 < b < ﬁ be as in the description of the test above. Let
A and F be tables that assign linear functions to B € B and L € L, respectively. Suppose the tables pass
the linearity test with probability at least Zl—b + ¢ where e > 22704 j.e.,

1
P F[L]llg = A|B]]l > — + ¢.
BgL,Be%,LeL (L]l [B]] 2b ¢

Then there exists a global linear function g : (3 — {-1,1} that agrees with at least % fraction of the

{-spaces, that is

&3

LI;TL[F[L] =g|L] > 300
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The rest of the section is devoted to proving Theorem B.1. We start by viewing the entire
table A[:] as a function f : {—1,1}”b — {—1,1}b as follows. In notation, for (vy,...,v) €
({-1, 11" = {-1,1}",

f(v1,...,vp) = (A[Span(vy, ..., vp)|(v1), ..., A[Span(vy, ..., vp)](vp)) .

In words, to evaluate f(v1,...,v;), one considers the b-space B = Span(vy, ..., vp), and the
linear function A[B] on B. The linear function assigns, in particular, {—1, 1}-values to the vectors
v1,...,0p. The list of these b values is defined to be f(v1,...,vp). Since the output of f is a
string of length b, we can think of f as a collection of {1, 1}-valued functions, f, ..., fy, one
for each output coordinate. In notation, f; : {-1, 1}"b — {-1,1} is defined as

fi(v1,...,vp) = A[Span(vy, ..., vp)](vi) .

We must make a couple of clarifying remarks. First, when the input vectors {v1, ..., v} are linearly
dependent, then their span B has dimension less than b and A[B] is undefined. However the
fraction of such inputs is negligible (at most 2°~"") and on those inputs f can be defined arbitrarily
without affecting the analysis. Second, since the same b-space may have different bases, f has
many symmetries, e. g., f1(v1,..., ) = f2(v2,01, ..., vp). We will use these symmetries, but not
in any explicit manner.

B.1 The Gowers Test

The main idea behind the analysis is to use a “Gowers Test” as an auxiliary tool. We can relate
the acceptance probability of the £-space vs b-space test to that of the acceptance probability of
the Gowers Test. The Gowers Test allows us to conveniently switch from local considerations to

global considerations. Let 1 denote a b-dimensional vector with all coordinates 1.

Definition B.2. [The Gowers Test] Given & : {-1,1}"" — {-1,1}?, pick x,y,z € {-1, 1}
randomly and check if

h)h(y)h()h(x -y -2)=1.
Represent a function & : {-1, 1}"b — {-1, 1}b as h = (hy,..., hy) where h; are the coordi-
natewise functions. For T C [b], let ht = [];cr /i be the product functions. The lemma below

expresses the probability of h passing the Gowers Test in terms of the Fourier coefficients of
products of functions hr.

Lemma B.3. The probability that h: {-1, 1}”b — {-1, 1}h passes the Gowers Test is:

Pr o [hhyhGy 2 =1] = % +2lb 33 ).

nb
xyze{(-11} TC[b],T#0 SCnb]
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Proof. For the test to pass, it must pass on every coordinate. Thus,

Pr [h(x)h(y)h(z)h(x yz)= i]

x,y,ze{-1,1}"
b
= 1+ hi(x)hi(y)hi(z)hi(x - y - 2)
B |E nb |:l_[ 2
x,y,ze{-1,1} i=1
1 1
= —+ — E [hT(x)hT(y)hT(Z)hT(x Y- z)]
Zb 2b Tg[bz],j“;t@ X,y,ZE{—l,l}nb
1 1 ~
=gty D, D, M) _

TC[b],T#0 SC[nb]

The main trick is that Lemma B.3 is applied globally as well as locally and then the information
gained from the two applications is combined. Globally, the lemma is applied to the function
f {1, 1}”b - {-1, 1}b that (essentially) represents the entire assignment {A[B]|B € B}.
Locally, for a fixed ¢-space L, the lemma is applied to the function g : {-1, 1% - (-1,13
that represents, in a similar manner, the assignment {A[B]|B C L} (i. e., only the assignment to
b-spaces that are contained in L). We present the local application first.

Fix an {-space L. Locally, L can be identified with {-1, 1} and the linear function F[L] on it
can be identified with a Fourier character xs for some S C [{]. The assignment {A[B]|B C L}
can be represented, in a similar manner as before, by a function g : {-1, 1 - (-1,1),
g =(g1,...,9p) where for (w1, ..., wyp) € ({—1,1}€)b = {—1,1}%,

gi(wy, ..., wp) = A[Span(wy, ..., wp)](w;).

We note that g really is the restriction of f to L”. As before, for T C [b], let g7 = [];er i be
the product functions. We now relate the probability that g passes the Gowers Test with the
probability that the linearity test passes for the fixed L, i. e., the probability that F[L]|p = A[B]
for arandom B C L. Let 1 — y be the probability that random vectors wy, ..., wy, € {-1, 1}‘7 are
linearly independent, so that y < 2°~¢ is negligible. Thus choosing a random b-dimensional
subspace of L is essentially same as choosing b random vectors from L = {—1,1}’. We now have

(1=7)- Pr [FILIls = A[B]] ALy FILIGw) = AlSpan(wi, ..., wp)](w)]

N
—
~

1,1}

= Pr (AL xs(wi) = gi(w, ..., wp)]

[ﬁ 1+ xs(wi)gi(wy, ... ,wb)]
2

gT(wl,---,wb)nXs(wi)]

¢
TC[b],T#0 ¥1rs wpe{-1,1} icT

1 1 ~
= wty Z g1(St1),
TC[b],T+0
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where St C [¢b] is defined as (S7(1),...,St(b)) and St(i) C [¢] equals S if i € T and equals 0 if
i ¢ T. Hence noting that y < 2b=t

1 -t 1 ~
= < — . — )
Pr[FILIls = A[B] < o5 +2-2""+ 5 > Gr(so)
TC[b], T+0

Now we take average of this inequality over the choice of L € £ and note that the L.H.S. then
equals the probability that the linearity test accepts (which is > 21—b + ¢). This gives

& b—t 1 —~

-< e€-2-2 < E |= Z gr(S1)| -
b

2 LeL |27 1 o0

We keep in mind that g and S depend on the choice of L. Using convexity of the function x — x4,

we get

et 1

—<E |5 D, 70|
b T

16 “ier|2 TC{b],T#0

Applying Lemma B3 tog : {-1, 1}” — {-1, 1}b, we get

4

£
— < E [Pr asses Gowers Test ] .
< E [Prlop ]

Now we relate the R.H.S. to the probability that f passes the Gowers Test, using the fact that g
really is the restriction of f to Lb. Letx = (x1,...,xp), y=Wi,...,y),z=1(z1,...,2p) where
Xi, Yi, zi are either in L or in the global space {-1,1}", as understood from the context. We
would like to argue as

|
N

E [Pr asses the Gowers Test ]
16 LeL [g P ]

_ Pr [9(x)9(y)g(2)g(x y-z)= T]

LelL, Xi,Yi,zi€L

P @r@rE@f ey 2 =]

x,‘,yi,Z,‘G{—l,
= Pr|[f passes the Gowers Test| .

Q

This is an almost correct argument, except that the distribution D of x;, y;,z; € {-1,1}" is
slightly different from the distribution D’ of L € L, x;,y;,z; € L = {1, 1}€ (i.e., first choosing
L at random and then choosing x;, y;, z; from inside L). The distributions are identical however
if conditioned on the 3b vectors x;, y;, z; being linearly independent. The probability of this
happening is at least 1 — 23~" and 1 — 2%~¢ depending on the space they are chosen from. It
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follows that the statistical distance between the distributions is at most 3 - 23~¢ and the argument
above is correct up to that much error. It follows that (provided ¢ > 4 - 27b/4)

— < Pr [ f passes the Gowers Test] .

Applying Lemma B.3 to f,
o > D) fr8) >
TC[b],T+#0 SC[nb]

Noting that the sum of squares of Fourier coefficients of a boolean function equals 1, we see that
thereexists T C [b], T # 0 and S C [nb] such that sz(S ) > % We are almost done, by inspecting

the coefficient ]?T(S). LetS =(S1,...,Sp), Si € [n], and denote B = Span(vy, ..., vy) below. By
definition of Fourier coefficients and of the functions f, fr,

fr(S)

I
A

i b
fT(Ul, R 1_[ Xs,-(Ui)‘

= UEMWTM @)Hmw1

ieT

[ JaB @)ﬂmw4z“

ieT

B, dim(B)= b V1, Vp€B,
Rank(vq,.. vb) b

where while choosing v1,...,v, € {-1,1}", they are assumed to be linearly independent
(introducing the negligible error term 2°~") and then their choice is same as first choosing a
random b-space B and then letting vy, ..., v, be a random basis of B. Regard B = {-1, 1}
and A[B] as the linear function xgp for S[B] ¢ [b]. The global function xs,(v;) where
S; C [n],v; € {-1,1}", after restnctmg to v; € B, amounts to a linear function on B, say xs,|p
with S; | B C [b]. Thus

fr(8) = 1_[)(5 1as:18(0i) - 1_[ Xs.p(i)| 277

Rank(vl ,,,,, op)=b i€T i€[b\T
Let us look at the expectation for a fixed B. Call B good if
VieT, S; | B=S[B], Vielb]\T, S;|B=0, (B.1)

and let B’ be the set of such good B. For a good B, the expectation equals 1 and from Lemma C.3,
the expectation is bounded by 27°*2 in magnitude for a bad B. Thus

fr(S) = Pr(Be 8= b2 4 b
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Since |j?T(S)| > %, it follows that Prg [B € 8] > % (since e > 227b/% » 23-b/2) Now we show
that in fact for some S* C [n], foralli € T, S; = S*and forall i € [b]\ T, S; = 0. This is because if
this were not the case, for a random b-space B, Condition (B.1) holds with probability at most 277,
upper bounding Prg [B € 8’| by 27" a contradiction. It follows that ys- : {-1,1}" - {-1,1}
is a global linear function that agrees with the given linear function A[B] on > % fraction of
B, dim(B) = b.

B.2 Agreement with {-spaces

What we have concluded so far is that if tables F, A pass the {-space vs b-space linearity test with
probability > % + ¢, then there is a global linear function g : {-1,1}" — {-1,1}" that agrees

with A[B] for > % fraction of b-spaces B. Theorem B.1 however demands a good agreement
with F[L] for ¢-spaces L. This is easy to fix. Let

- _ &
B = {B | D [FIL]ls = A[B]] > 5} -

Since the linearity test succeeds with probability > 2% + ¢, by an averaging argument,
|B*| > 5 - |B]. Now modify the table A[-] to table A’[-] so that A’[B] = A[B] for B € 8" and
A’[B] is a random linear function on B otherwise. Clearly, the tables F, A’ still pass the linearity
test with probability > 27% + £ and by the analysis so far, there is a global linear function g that

agrees with A’[B] for > Z—é fraction of B € B. Since A’[B] for B ¢ B* was defined at random,

their contribution to consistency with g is negligible, i. e., at most 2. Thus we have
* 62
I;r[g|B=A[B] A BeB]> R
For every B € 8", by definition, A[B] is consistent with F[L] for at least 5 fraction of L containing

B. Hence,
3

€
= * = 2 —_— .
Prlgls = A[B] A B € B" AF[L]p = A[B]] > 75
In particular,
3
€
Pr [F[L||g = g|B]| > —.
E | Pr [FILIla = g1B]| > o

b

This implies immediately that g|;, = F[L] for at least %0 -2 > % fraction of L, since for L not

satisfying this, the inside probability is at most 27°.
C Missing proofs

C.1 Hypothesis 2.5 implies Hypothesis 2.12

Let G(V, ), dim(V) = n and the side condition {h;};_;, {b;}j_;, r < § be as in Hypothesis 2.12.
Let H = Span(hy, ..., h;), dim(H) = r. Let W[H] be any “complementing space” to H so that
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V =HoWI[H], HNW[H] = {0}. We identify linear functions on subspaces of V that respect the
side condition H with their restrictions to W[H ], move to the “lower order” Grassmann graph
G(WI[H], ?), apply Hypothesis 2.5, and then “pull-back” the function on W[H] guaranteed by
Hypothesis 2.5 to a function on V that respects the side condition.

Formally, let g, a(-), C be as in Hypothesis 2.5 given (j, %) and n sufficiently large. Let Q C V
be a random g-dimensional space. With probability at least 1 — 277" (see Fact C.5), we have
Q N H = {0} and we condition on this event henceforth.

Claim C.1. W[Q] Y (Q ® H) n W[H] is a random q-dimensional subspace of W[H].
Proof. Firstly, the dimension consideration shows that
dim(W[Q]) = dim(W[H]) +dm(Q ® H) —dim(W[H]® Q@& H)=(n-r)+(g+r)-n=gq.

Also, it is easily seen that each g-dimensional subspace of W[H] has equally many pre-images
under the mapping Q — (Q ® H) N W[H]. O

Let F[-] be the (j, 6)-assignment to G(V, ) respecting the side condition H and S be the
set of its vertices that have been assigned. We “move” to the lower order Grassmann graph
G(W[H], ¢) and define a (j, 6)-assignment F[] to it as (denoting the set of its vertices assigned
as S)

S={LeGWI[H],¢)|L&HEeS)}.
F[L]=F[L® H]|...

By Hypothesis 2.12, with probability at least a(¢) over the choice of Q, there exists go: W[H] —
{0, 1} such that
P e F[L]] > C.
L:QQLQIW[H] [gQ L€ Fl ]]
Define g’Q to be the unique extension of gg to V respecting the side condition. Since spaces
L € W[H] can be pulled back to L& H, 9 satisfies Equation (2.2) of Hypothesis 2.12 as required.

C.2 Proof of Theorem 2.6

Denote by N the size of L dif {LeG(V,0)|Q c L}andlet fi, ..., fm be all functions agreeing
with F[-] on at least C fraction of L € L. We construct a bipartite graph, where the left side
consists of fi, ..., f and the right side consists of pairs {(L, o) |L € L, 0 € F[L]}. We connect f;
and (L, 0) by an edge if f;|;, = 0. Then the degree of each f; is at least C - N and the number of
vertices on the right side is at most jN. Let us remove edges if necessary so that the degree of
each f; is exactly C - N.

Denote by d(L, o) the degree of (L, o) and let us count the triples {f;, f;, (L, 0)} where i # j
and (f;, (L, 0)), (fj, (L, 0)) are both edges in the bipartite graph. Using Cauchy-Schwarz and
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noting that the number of vertices on the right side is at most jN and ¥’/ ¢ / ser(r) 4(L, 0) = CmN,
the number of such triples is at least

2
CmN
3 d(L,0)| _ y dLof dlo) () _CmN _ C2mAN CmN
Zi\ 2 VR 2 2 2 2j 2

o€F[L] o€F[L]

On the other hand, since any distinct pair of functions f;, f; agree on at most 27~ fraction of
L € £, the number of such triples is at most (%)207/N < 222N Combining the two bounds

] J
gives m < [T

C.3 Auxiliary lemmas and facts

Claim C.2. Let X be a real random variable such that |X| < 1 always, and let B be an event. Then
|E[X]-E[X |B]| <2Pr [B].

Proof. Let Z = 1p be the random variable indicating if B occurred. Then by the law of total
expectation we have

E[X] = [E[[E[X |Z]] = Pr[BJE[X | B] + Pr [B|E [X | B].

Thus E [X] - E[X |B] =Pr [B|(E [X | B] - E[X | B]), and the claim follows. u

Lemma C.3. Let s1,...,8 € [sz such that at least one of them is non-zero. Let v1,...,vp € [Fé’ be
chosen at random. Then the following conditional expectation is bounded as:

< 2—b+2 )

b
~1)%i%) | Rank(vy, . ..,vp) = b
LEL l]‘[( ) | Rank(or, .., o) ]

i=1

Proof. Note that without the conditioning, the expectation is clearly zero. The point is to prove
the upper bound conditional on the event that vy, ..., v, are linearly independent (and hence
form a basis of [Fé7 ). Assume w.l.o.g. that s; is non-zero. Let

A={A=(v1,...,0) | Rank(A) = b},

so that we are interested in the expectation

b
E []—[(—1)@”’1'> |Ae A
Al

i=1

Let
A ={A=(v1,...,vp) | Rank(A) =b, V2 <i<b, (s1,0;) =0}.
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It is easily seen that |A’| < 27041 | A|. Indeed, imagine choosing vy, v3, ..., v} so that every v;
is outside the span of the previously chosen ones. If we require (in addition) that every v; also
lies in the hyperplane defined by the equation (sq, x) = 0, then at each step, this happens with
probability at most 1, showing the desired upper bound on |A’|. It follows from Claim C.2 that

E
A

b
[ [cn&= 1A e
i=1

b
, DG A e A\NA
E[D i) | \

differ by at most 270*2 We show that the latter is zero. For fixed ay, as, ..., ap € [y, consider
the following bijection on A \ A’ (that adds to the first vector, a linear combination of others):

b
(v1,v2,03,...,0p) = (V1 + Z QiVi, V2,03,...,0p).
i=2

The quantity of interest changes as follows:

b b
b
| |(_1)<5irvi> N (_1)2,:2&1‘(51,01') . | |(_1)<Si10i).
i=1

i=1

Now take expectation of L.H.S. over the choice of A = (vy,...,vp) € A\ A’ and expectation
of R.H.S. over the choice of A € A \ A’ as well as over a random choice of ay,...,a,. The
two expectations are equal (due to bijectivity) and the expectation of the L.H.S. is what we are
interested in. Since (s1,v;) # 0 for some 2 < i < b, the expectation over the R.H.S. is zero and
we are done. O

Fact C.4. Let V be an n-dimensional vector space over Fr, and 1 < { < n—1. Let x1,...,xp € V
be chosen randomly and independently. Then x1,...,x, are linearly independent with probability
>1-20",

Proof. 1f x1, ..., x, arelinearly dependent, then forsome 1 < i < ¢, x;isinthespanof xq, ..., x;_1.

Hence the probability that these ¢ vectors are linearly dependent is at most

¢ i1
Z;xl,..l.j,i,-ev [x; € Span{x1, ..., xi-1}] < le o
1= 1=

Fact C.5. Let V be an n-dimensional vector space over F,, H C U be a subspace of dimension r, and
1<l<n-V{ Letxy,...,xg €V bechosen randomly and independently. Then

Pr [Span({x1,...x¢}) N H = {0}] > 1 -2+,

X1,..,X¢€

<2, O

Proof. If Span({x1,...,x¢}) N H # {0}, then for some 1 < i < ¢, x; is in the span of H U
{x1,...,xi-1}. Hence the probability that Span({x1, ..., x¢}) N H # {0} is at most

!

‘
Z Pr [x; € H@® Span({x1, ..., xi-1})] < Z
-1

,,,,, x€V -
i=1

2r+i—1

2_n < 27+(’—n ) O
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Fact C.6. Let A, A’, B be subspaces of a vector space V over [, such that A® B = A’ ® B and
(A®A)NB={0}. Then A = A’.

Proof. By symmetry, it suffices to show that A C A’. Leta € A. Thena € A®B = A’ ® B and so
therearea’ € A’,b € Bsuchthata =a’®b. Henceb=a®a’ € A® A’, and b must be 0. O
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