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Abstract. We present a candidate reduction from the 3-Lin problem to the 2-to-2

Games problem and present a combinatorial hypothesis about Grassmann graphs

which, if correct, is sufficient to show the soundness of the reduction in a certain

non-standard sense. A reduction that is sound in this non-standard sense implies

that it is NP-hard to distinguish whether an =-vertex graph has an independent set

of size

(
1 − 1√

2

)
= − >(=) or every independent set has size >(=), and consequently,

that it is NP-hard to approximate the Vertex Cover problem within a factor

√
2− >(1).

This article initiates and serves as the first installment in a line of work by

various subsets of the authors together with Dinur and Kindler (with additional

contributions by Barak, Kothari, and Steurer (ITCS’19)) which led to a proof of the
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2-to-2 Games Conjecture (albeit with imperfect completeness), which in particular

implies the NP-hardness results for independent set and vertex cover mentioned

above.

1 Introduction

This paper focuses on hardness-of-approximation results for the Vertex Cover and the Inde-

pendent Set problems, which are closely related to the hardness of approximating the 2-to-2

Games problem with a certain non-standard notion of soundness. This article represents the

starting point of a successful line of attack on the 2-to-2 Games Conjecture [31, 12, 11, 32] (with

additional contributions from [34, 30, 4]), which culminated in a proof of the conjecture (albeit

with imperfect completeness) and its implications. These implications in particular include

the improved hardness results for independent set and vertex cover claimed in this paper. We

elaborate on these subsequent developments in Section 1.5.

1.1 Vertex Cover and Independent Set

Given an =-vertex graph � = (+, �), the Vertex Cover problem asks for a vertex cover of

minimum size, namely, a subset � ⊆ + of minimum size that includes at least one endpoint of

each edge 4 ∈ �. This is a classic NP-hard problem and has a greedy 2-approximation algorithm.

The algorithm starts with the graph �, initializes � = ∅, and until the graph has at least one edge

remaining, picks an edge, adds both its endpoints to �, removes all edges incident on either of

these two endpoints, and repeats. It is easily seen that the final set � is a vertex cover of � and

has size at most twice that of the minimum vertex cover. A somewhat better approximation

algorithm achieving factor 2 −Ω
(

1√
log =

)
is known via SDP relaxation [20, 24]. However it is a

major open question whether there is a 2 − � approximation algorithm for some fixed positive

constant �. Surprisingly, as discussed below, there is some evidence to the contrary: Vertex

Cover might actually be hard to approximate within a factor 2 − � for every positive constant �.
The complement + \ � of a vertex-cover � is an independent set, namely, a set of vertices

� ⊆ + that has no edge inside it. For constants 0 < � < 
 < 1, let GapIS(
, �) denote the

promise gap-problem where the task is to distinguish whether a given =-vertex graph has an

independent set of size at least 
= or whether every independent set is of size at most �=.
Clearly, if GapIS(
, �) is hard,1 then it would be hard to approximate Vertex Cover within a

factor strictly less than
1−�
1−
 .

Let � denote a positive and arbitrarily small constant. We summarize the knownNP-hardness

results for approximating the Vertex Cover problem, obtained in a sequence of highly influential

papers. Building on the PCP Theorem [16, 3, 2], the Parallel Repetition Theorem [37], and the

Long Code based PCP framework in [5], Håstad [21] showed that GapIS(1
4
− �, 1

8
+ �) is NP-hard,

1The statement thatGapIS(
, �) is NP-hard is equivalent to the statement that NP has a Probabilistically Checkable

Proof (PCP) that has zero-free bit complexity, has completeness at least 
 and has soundness at most �, see [5,

Proposition 5.6, Theorem 8.2]. We avoid the terminology of free bit complexity in this paper.
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implying
7

6
− � ≈ 1.16 hardness factor for Vertex Cover. Dinur and Safra [14] showed that

GapIS(? − �, 4?3 − 3?4 + �) is NP-hard for ? = 3−
√

5

2
, implying 10

√
5 − 21 − � ≈ 1.36 hardness

factor for Vertex Cover. Their paper introduced several techniques, e. g., the Biased Long Code,

application of Fourier analytic theorems on Boolean hypercube, and implicitly, the notion of

2-to-2 Games, all of which are indispensable in the authors’ opinion, for further progress on

Vertex Cover.

1.2 3-to-3 games

In this section, we discuss the 3-to-3 Games and their connection to the Independent Set and

Vertex Cover problems.

Definition 1.1. A 2-Prover-1-Round Game � = (+, �,Σ,Φ) consists of a set of variables + , a set

of directed edges � ⊆ +×+ , a set of colorsΣ, and a constraintΦ(D, E) ⊆ Σ×Σ for every (directed)

edge (D, E) ∈ �. The goal is to assign colors to variables, say � : + → Σ, so as to satisfy the

maximum number of the constraints. A constraint Φ(D, E) is satisfied if (�(D), �(E)) ∈ Φ(D, E),
where by abuse of notation, Φ(D, E) ⊆ Σ × Σ denotes the subset of color-pairs that are deemed

satisfactory. The subset Φ(D, E) ⊆ Σ × Σmay in general depend on the edge (D, E).
Let 3 > 1 be an integer. A constraint Φ(D, E) ⊆ Σ × Σ is said to be a 3-to-3 constraint if there

are partitions �1 , ..., �A and �1 , ..., �A of Σ into sets of size 3 such that (|Σ| = A3)

Φ(D, E) =
A⋃
8=1

(�8 × �8) .

A 2-Prover-1-Round Game � = (+, �,Φ,Σ) is said to be a 3-to-3 Game if every constraintΦ(D, E)
is a 3-to-3 constraint. A 1-to-1 Game is also called a Unique Game. In this case, Φ(D, E) is simply

a perfect matching on Σ × Σ.
In the above definitions, the number of colors |Σ| is thought of as a constant, possibly large,

and the size of the constraint graph as the growing input size. Motivated by a hardness-of-

approximation result for the 2-SAT problem, Khot [26] formulated the following conjecture.

Conjecture 1.2 (Unique Games Conjecture). For every � > 0, for sufficiently large |Σ|, given an

instance � = (+, �,Φ,Σ) of a Unique Game, it is NP-hard to distinguish between

• YES case: there is a coloring satisfying a 1 − � fraction of the constraints of �.

• NO case: no coloring satisfies more than a � fraction of the constraints of �.

The reduction in [14] implicitly suggests the idea of 2-to-2 Games (though therein, the

game is a 
-game in the sense of [13] instead of a 2-to-2 game and the notion of soundness is

non-standard). Motivated by hardness-of-approximation result for the Vertex Cover problem,

Khot [26] also formulated the 3-to-3 Conjecture.2

2Note that the Unique Games Conjecture is, necessarily, made with imperfect completeness whereas the 3-to-3

Conjecture is made with perfect completeness. Strictly speaking, the conjecture in [26] is a 3-to-1 Conjecture. It

implies (and in the authors’ opinion, is morally equivalent to) the 3-to-3 Conjecture stated here.
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Conjecture 1.3 (3-to-3 Conjecture). Fix any integer 3 > 2. For every � > 0, for sufficiently large

|Σ|, given an instance � = (+, �,Φ,Σ) of a 3-to-3 Game, it is NP-hard to distinguish between

• YES case: there is a coloring satisfying all of the constraints of �.

• NO case: no coloring satisfies more than a � fraction of the constraints of �.

Let � denote a positive and arbitrarily small constant. It was shown that the 3-to-3 Conjecture

implies that GapIS
(
1 − 1

2
1/3 − �, �

)
is NP-hard for 3 > 2 [26]. The result did not apply in case of

Unique Games, because the imperfect completeness of Unique Games presented a difficulty.

This difficulty was circumvented in [33] where the authors showed that the Unique Games

Conjecture implies that GapIS(1
2
− �, �) is NP-hard and therefore, implies that Vertex Cover is

NP-hard to approximate within a factor 2 − �. The Unique Games Conjecture, and to a lesser

extent the 3-to-3 Conjecture, is now a prominent open question in theoretical computer science.

It implies hardness-of-approximation results, often optimal results, for numerous problems and

has connections to several areas in algorithms, computational complexity, and geometry, see

[42, 29, 28] for surveys on the topic. It is thus worthwhile to investigate possible lines of attack

towards proving (or disproving) the Unique Games Conjecture, the 3-to-3 Conjectures, and

their variants. In this paper, we present a line of attack towards proving a variant of the 2-to-2

Conjecture with a certain non-standard notion of soundness, and towards making progress on

the Independent Set and Vertex Cover problems.

Unfortunately we have to consider games where the constraints are a mix of 2-to-2 constraints

and 1-to-1 constraints and the game satisfies an additional transitivity property. This feature

might not be necessary, but we are unable to circumvent it for now (see Remark 4.2).

Definition 1.4. A Transitive 2-to-2 Game is a game � = (+, �,Φ,Σ)where

• Each constraint Φ(D, E) is a 2-to-2 constraint or a 1-to-1 constraint.

• Transitivity: If there is a 1-to-1 constraint Φ(D, E) and a constraint Φ(E, F), then there is

also a constraint Φ(D, F). The constraint Φ(D, F) is either 1-to-1 or 2-to-2 depending on

whether Φ(E, F) is 1-to-1 or 2-to-2.

Moreover, the constraint Φ(D, F) is a composition of constraints Φ(D, E) and Φ(E, F), i. e.,
for every 0, 1, 2 ∈ Σ,

(0, 1) ∈ Φ(D, E), (1, 2) ∈ Φ(E, F) =⇒ (0, 2) ∈ Φ(D, F) .

The notion of soundness (NO case) in Conjectures 1.2 and 1.3 states that no coloring satisfies

more than a tiny fraction of the constraints. This notion will be referred to as the standard

notion of soundness. It has been a folklore among the experts (see [33, Theorem 3.1], where

this is stated for the 1-to-1 case) that as far as the Independent Set and Vertex Cover hardness

results are concerned, a non-standard notion of soundness for the 3-to-3 Games suffices. The

non-standard notion concerns “(9 , �)-colorings” that we define next. 3

3Our definition has to take into account the transitivity feature that we unfortunately have to deal with. Also, we

restrict ourselves to the case 3 = 2 which is our primary concern.
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Definition 1.5. Let �(+, �,Φ,Σ) be a Transitive 2-to-2 Game, � > 0, 9 be a positive integer, and

- ⊆ + . A coloring � : - →
(
Σ

9

)
is called a (9 , �)-coloring if the following holds (note that one

is allowed to assign a set of 9 colors to every variable in - and the rest of the variables are

unassigned):

• |- | > � |+ |.

• For every D, E ∈ - such that Φ(D, E) is a 2-to-2 constraint, there are colors 0 ∈ �(D),
1 ∈ �(E) such that (0, 1) ∈ Φ(D, E).

• For every D, E ∈ - such that Φ(D, E) is a 1-to-1 constraint, the color sets �(D) and �(E) are
identical up to the matching Φ(D, E). More precisely, for every (0, 1) ∈ Φ(D, E), 0 ∈ �(D) if
and only if 1 ∈ �(E).

Nowwe state a variant of Conjecture 1.3 (for 3 = 2) with a non-standard notion of soundness,

imperfect completeness, and for transitive 2-to-2 games. This variant is to be thought of as

weaker than Conjecture 1.3 in the sense that Conjecture 1.3 (for 3 = 2) implies it (up to an

insignificant caveat). 4

Conjecture 1.6. For every � > 0 and every positive integer 9, for all sufficiently large |Σ|, given
an instance � = (+, �,Φ,Σ) of a Transitive 2-to-2 Game, it is NP-hard to distinguish between

• YES case: there is a (1, 1 − �)-coloring to the graph �.

• NO case: there is no (9 , �)-coloring to the graph �.

Finally, we note that the result below follows directly from prior work [14, 26, 33]. A proof is

presented in Section A for the sake of completeness. The ingredients include the Biased Long

Code and analytic theorems of Russo, Margulis and Friedgut on the Boolean hypercube. Some

care is required to handle the transitivity feature.

Theorem 1.7. If Conjecture 1.6 holds, thenGapIS(1− 1√
2

− �, �) is NP-hard for every positive constant �.

1.3 Our results

Roughly speaking, we give a reduction from an NP-hard problem known as 3-Lin to (Transitive)

2-to-2 Game such that the reduction is sound in the sense of Conjecture 1.6 assuming a

combinatorial hypothesis. Therefore, correctness of the combinatorial hypothesis would imply

Conjecture 1.6 and the corresponding results for GapIS and Vertex Cover via Theorem 1.7.

We now state the results more formally. Let 3-Lin be the following problem. The instance

of the problem is (-,Eq)where - is a set of variables taking values over F2 and Eq is a set of

4The insignificant caveats are twofold. First, the “YES case” in Conjecture 1.6 is a bit stronger than the yes case

in Conjecture 1.3 with imperfect completeness, since it requires � to have a subgraph of density 1 − � wherein all

constraints can be satisfied. Second, in the “NO case” we would need the graph � to satisfy mild connectivity

properties, in the sense that a set of density � would contain at leastΩ(�2) fraction of edges. In that case if an instance

� has a (9 , �)-coloring, then there is an assignment satisfying at least an Ω(�2/92) fraction of constraints which is the

result of choosing a color randomly for each vertex from its 9-list.
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linear equations over F2 such that every equation depends on three variables in -. The goal

is to find an assignment to the variables so as to maximize the number of equations satisfied.

Let Gap3Lin(2, B) denote the promise gap-problem where the task is to distinguish whether a

given 3-Lin instance has an assignment satisfying at least 2 fraction of the equations or whether

every assignment satisfies at most B fraction of the equations. A celebrated result of Håstad [22]

shows that for every � > 0, Gap3Lin(1− �, 1

2
+ �) is NP-hard. For our purposes, it is convenient to

work with a 3-Lin instance that is regular, i. e., every equation contains three distinct variables,

every variable appears in exactly, say 5, equations, and two distinct equations share at most one

variable. Starting with Håstad’s result, it is a routine exercise to show that Gap3Lin(1 − �, B∗)
is NP-hard on regular instances for every positive constant � and for some absolute constant

B∗ < 1. Our main result is this.

Theorem 1.8. For every B∗ ∈ (1/2, 1), every positive integer 9 and every � > 0, for sufficiently small
� > 0, there is a polynomial time reduction mapping a regular instance (-,Eq) of Gap3Lin(1 − �, B∗) to
an instance � = (+, �,Φ,Σ) of Transitive 2-to-2 Game such that:

• YES case: If there is an assignment satisfying at least a 1 − � fraction of the equations in (-,Eq),
then there is a (1, 1 − �)-coloring to �.

• NO case: Assuming the combinatorial Hypothesis 2.5, if no assignment satisfies more than B∗
fraction of the equations in (-,Eq), then there is no (9 , �)-coloring to �.

We present the combinatorial hypothesis later, after discussing the Grassmann graph and

the motivation behind the hypothesis. The following corollary follows via Theorem 1.7.

Corollary 1.9. Assuming the combinatorial Hypothesis 2.5,

• Conjecture 1.6 is correct.

• GapIS
(
1 − 1√

2

− �, �
)
is NP-hard for every � > 0.

• Vertex Cover is NP-hard to approximate to within a factor
√

2 − � for every � > 0.

Remark 1.10. Our reduction, depending on the correctness of the combinatorial hypothesis,

would give

√
2 − >(1) hardness for Vertex Cover, improving on the 1.36 hardness of Dinur and

Safra. While the numerical improvement would be interesting, in the authors’ opinion, a much

more interesting feature would be the “gap-location” for the Independent Set problem. Our

reduction would show that GapIS(
∗ , �) is NP-hard where 
∗ is a fixed, absolute constant and
�→ 0 is an arbitrarily small constant. Such a result would be remarkable, in authors’ opinion,

irrespective of whether it gives an improvement in the Vertex Cover hardness factor. The best

known result in this direction is that GapIS(2−: − >(1), 2
−2

:+1 + >(1)) is NP-hard for every integer

: > 2, by Siu On Chan [8]. Hardness of GapIS(
, �) corresponds to Vertex Cover hardness

of
1−�
1−
 . An improvement in Vertex Cover hardness would not necessarily yield � → 0 while

keeping 
 fixed, which in authors’ opinion, is a more fundamental and challenging question.

THEORY OF COMPUTING, Volume 21 (10), 2025, pp. 1–55 6

http://dx.doi.org/10.4086/toc


ON INDEPENDENT SETS, 2-TO-2 GAMES AND GRASSMANN GRAPHS

Remark 1.11. 3-Lin is known to have a Lasserre integrality gap on random instances with perfect

completeness [18, 41, 43]. Our reduction from 3-Lin to 2-to-2 Games and then the reduction from

2-to-2 Games to the Independent Set and Vertex Cover problems could yield similar Lasserre

integrality gap for the latter problems.

1.4 Overview of the reduction

The vast majority of hardness-of-approximation results are proved by constructing special

purposeProbabilisticallyCheckableProof Systems (PCPs) (e. g., [2, 5, 21, 22, 19, 27, 8]). Sometimes

it is more convenient, and certainly helpful to a reader not familiar with PCP terminology, to

take a combinatorial view and present a PCP construction, equivalently, as a combinatorial

reduction (e. g., [14, 10]). In this paper, we adopt the latter view as far as possible, using PCP

terminology wherever helpful or necessary.

Ageneric and extremely successful framework to construct PCPs, developed in [1, 5, 37, 21, 22],

is as follows. It consists of two modules, known as an Inner PCP and an Outer PCP, which are

then composed together.

• The Inner PCP is best thought of as a combinatorial gadget combined with an analysis of

its structural properties. The gadget is often coding-theoretic and amounts to a specific

encoding scheme and a probabilistic procedure to test whether a given word is (close

to) a codeword and if so, to decode (or “list-decode”) that codeword. The choice of

the encoding scheme as well as the nature of the tester (e. g., number of queries and

the acceptance predicate) are dictated by the target problem for which one desires a

hardness-of-approximation result.

• The Outer PCP is a canonical NP-hard problem known variously as 2-Prover-1-Round

Game, 2-CSP, or Label Cover. The problem is known to be very hard to approximate

[1, 37], via Raz’s Parallel Repetition Theorem.

• The composition amounts to taking several (local) copies of the Inner PCP gadget and

combining them via the (global) Outer PCP.5

With this framework in mind, we give a short and informal overview of our reduction, leaving

out several intricate details. We recall that the reduction is intended to construct a 2-to-2 Game,

where the goal is to assign “colors” to vertices of a graph and once a color has been assigned

to a vertex, each one of its neighbors has exactly 2 colors that are deemed acceptable. This

consideration dictates our choice of Inner PCP and specifically, what we might call Grassmann
encoding, wherein the encoded object is a linear function on an F2-vector space. As such,

linearity is inherent to our reduction which dictates, in turn, our choice of Outer PCP as a

2-Prover-1-Round Game arising from 3-Lin instances, making Gap3Lin a natural starting point

for the reduction.

5Perhaps a useful analogy here is the text-book reduction from 3SAT to the Traveling Salesperson. Therein, for

every variable of the 3SAT instance, there is a copy of a fixed graph (= TSP-gadget) and then edges are added between

these copies using the clauses of the 3SAT instance.
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1.4.1 Inner PCP: Grassmann graph, Grassmann encoding, and our hypotheses

Let 1 � ℓ � = be integers. The vertex set ℒ , |ℒ| = # of the Grassmann graph �({0, 1}= , ℓ )
consists of all ℓ -dimensional subspaces ! of {0, 1}= , the =-dimensional vector space over F2.

A pair of vertices, !, !′ ∈ ℒ, are adjacent if and only if dim(! ∩ !′) = ℓ − 1. Given a linear

function 5 : {0, 1}= → {0, 1} (or equivalently an =-bit string B 5 that defines the linear function

G ↦→
〈
B 5 , G

〉
), the Grassmann graph leads to a natural encoding of 5 by a string of length # over

the alphabet Σ = {1, 2, . . . , 2ℓ }. The encoding writes down, for every ℓ -dimensional subspace !,

the linear function 5 |!, namely, the restriction of 5 to the subspace !. There are exactly 2
ℓ
distinct

linear functions on an ℓ -dimensional space which can be numbered with Σ = {1, 2, . . . , 2ℓ }.
Now suppose that the (global) linear function 5 is unknown, but for an edge (!, !′) in the

Grassmann graph, 5 |! = � ∈ Σ is known. What do we know about 5 |!′ = �′? We note that

dim(! ∩ !′) = ℓ − 1 and since �, �′ are (supposed to be) restrictions of the same global function,

it must be the case that they are consistent on ! ∩ !′, i. e., � |!∩!′ = �′ |!∩!′. Clearly, for a given

�, there are exactly two possible choices for �′. In fact, the consistent pairs of functions (�, �′)
on (!, !′) are in 2-to-2 correspondence with each other. Let Φ(!, !′) ⊆ Σ × Σ denote this set of

consistent pairs.

We are naturally led to the following 2-to-2 Game: assign “colors” from Σ (interpreted as

linear functions on ℓ -spaces) to the vertices of the Grassmann graph, and be consistent on a

significant fraction of the constraints Φ(!, !′). Of course, one option is to pick a global linear

function 5 and assign ! ↦→ 5 |!; such strategy yields consistency on all edges. Is this essentially

the only strategy? Before proceeding, let us mention that there are two notions of consistency

that are natural and relevant:

• (Standard Consistency): An assignment � : ℒ → Σ is said to be �-consistent if it
is consistent on a � fraction of the edges, i. e., for a � fraction of the edges (!, !′),
(�[!], �[!′]) ∈ Φ(!, !′).

• (Non-Standard Consistency): An assignment � : ℒ →
(
Σ

9

)
∪ {∅} (i. e., every vertex either

gets 9 colors or does not get any color) is said to be (9 , �)-consistent if there is a subset

S ⊆ ℒ , |S| > � |ℒ| such that (a) for all ! ∈ S , �[!] ≠ ∅ (b) for all edges (!, !′) inside S,
there are colors � ∈ �[!], �′ ∈ �[!′]with (�, �′) ∈ Φ(!, !′).

One is tempted to speculate as follows. (The parameters ℓ , = are thought of as arbitrarily

large with ℓ � =.) Speculation (1): For every �, there is �′ such that given any �-consistent (in

the standard sense) assignment �, there is a global linear function 5 : {0, 1}= → {0, 1} such that

for �′ fraction of the vertices !, it holds that �[!] = 5 |!.
Speculation (2): For every 9 > 1, � > 0, there is �′ = �′(�, 9) > 0, such that given any

(9 , �)-consistent (in the non-standard sense) assignment �, there is a global linear function

5 : {0, 1}= → {0, 1} such that for �′ fraction of the vertices !, it holds that 5 |! ∈ �[!].
In coding-theoretic terms, in both the speculations, the assignments � or � are regarded as

“received words.” If the desired global linear function 5 exists, it then serves as a “decoding”

of the received word. We however know that Speculation (2) is false in the case 9 > 3. A
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counterexample appears in Section 2. Since Speculation (1) implies Speculation (2),6 Speculation

(1) is also false. We believe that Speculation (2) is correct in the case 9 = 1 and seems to present

interesting challenges. We show, in Section 6, that it follows from our Hypothesis 2.7, via an

“ℓ -space vs 1-space” linearity test.7 The linearity test and its analysis using Fourier-analytic

methods are presented in Section B. Hypothesis 2.7 states that in the Grassmann graph, a set of

constant density contains a connected component of constant density inside it. In addition, we

propose Hypothesis 2.10 stating that the Grassmann graph is a small-set vertex expander (see

Def. 2.9).8 These hypotheses might be a good starting point for further investigation.

Wenow state ourmain hypothesis informally. Wewould like to somehow salvage Speculation

(2) for 9 > 1. We hypothesize that (see Hypothesis 2.5 for a formal statement) given a (9 , �)-
assignment to the Grassmann graph �({0, 1}= , ℓ ), there exists a @-dimensional subspace & such

that if one “zooms into” the subgraph induced on ℓ -spaces ! that contain & (this subgraph is

isomorphic to �({0, 1}=−@ , ℓ − @)), then indeed there is a global linear function that is consistent

with the given assignment on �′ fraction of vertices in the induced subgraph. Here @, �′ depend
on 9 , �. We in fact hypothesize that the zoom-in is successful in this sense for 
 fraction of

@-dimensional subspaces & where 
 depends on 9 , �, ℓ . This hypothesis is sufficient to prove

Conjecture 1.6. The “zoom-in” is a new feature in the context of Inner PCPs and our Outer PCP

needs to have an appropriate mechanism to handle it.

1.4.2 Outer PCP: 2-Prover-1-Round Game

We present the Outer PCP as a 2-Prover-1-Round Game. Usually, this game is constructed

from a hard instance of 3SAT, e. g., [22, 21], in which case it is compatible with a Long Code

based Inner PCP. However in our case, to be compatible with the Grassmann Code based Inner

PCP, the game needs to be constructed from a hard instance of a linear constraint satisfaction

problem, Gap3Lin being the natural choice (this has been done previously, e. g., [25, 34], with a

Hadamard Code based Inner PCP).

Let (-,Eq) be an instance of Gap3Lin(1 − �, B∗) where � can be chosen to be arbitrarily small

and B∗ < 1 is an absolute constant. The 2-Prover-1-Round Game is a game between a verifier

and two non-communicating provers, where the provers wish to convince the verifier that the

instance (-,Eq) has a (1 − �)-satisfying assignment. Fix a parameter :, thought of as a large

integer, and a “smoothness” parameter �, say � = :−
3

4 for the sake of concreteness. The game

proceeds as follows.

6The Grassmann graph is dense in the sense that a set consisting of a delta fraction of the vertices contains at least

a �2
fraction of the edges. Given a (9 , �)-assignment, one can pick a random assignment from its 9-list for every vertex

that has been assigned and satisfy
�2

9
fraction of the edges in expectation. Hence the existence of a (9 , �)-consistent

assignment implies the existence of a
�2

9
-consistent assignment.

7This test is in the spirit of “line vs point” and “plane vs plane” low-degree test in [39, 3, 38]. However our

analysis is Fourier-based instead of algebraic and combinatorial.

8We remark that the Grassmann graph �({0, 1}= , ℓ ) is not a small-set edge expander. Indeed, it has sets of

subconstant size with edge expansion 6 1

2
. For example, one can fix a non-zero point G ∈ {0, 1}= and take the set of

all ℓ -spaces containing G.
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• The verifier picks at random : equations {41 , . . . , 4:}, lets* be the set of 3: variables that

appear in these equations, and sends* to the first prover as a question.

• The verifier picks a subset + ⊆ * of variables by including in + , independently for

1 6 8 6 :, (a) all three variables from the equation 48 with probability 1 − � and (b) one of

the three variables chosen at random from the equation 48 with probability �. Note that

the size of + is, w.h.p., close to its expected size 3: − 2�:, so + is nearly the same as * .

The verifier sends + to the second prover as a question.

• The first and the second prover answer with bit-strings B* , |B* | = |* | and B+ , |B+ | = |+ |,
respectively, supposedly giving the assignment to the set of variables they received.

• The verifier accepts if and only if B* |+ = B+ (i. e., if the two provers agree on the shared

variables +) and B* satisfies the : equations (this is known as a side condition).

The parameter : is a constant, so the size of the game is polynomial in the size of the Gap3Lin
instance. Instead of viewing the game as “active” verification, one canwrite down the description

of the game as a graph, with possible questions as its vertices and possible question-pairs asked to

the provers as its edges. The game is then viewed as a “passive” optimization problem: assigning

colors (= bit-strings of appropriate length) to the vertices, so as to satisfy constraints on the

edges. The following statements show that approximating the provers’ optimal strategy (which,

in the passive view, is same as a coloring that maximizes the fraction of the edge-constraints

satisfied) is a very hard problem, and hence can be used as a canonical hard problem for further

reduction.

(Completeness): It is clear that if the instance (-,Eq) has a (1 − �)-satisfying assignment, the

provers can answer according to this (global) assignment. The : equations chosen by the verifier

are all satisfied with probability > 1 − :�, in which case the verifier accepts.

(Soundness): On the other hand, it follows from the Parallel Repetition Theorem [37, 23, 36, 15]

that if every assignment to the instance (-,Eq) is at most B∗-satisfying, then any strategy of the

provers can make the verifier accept with probability at most 2
−Ω(�:)

.

1.4.3 Composition of Inner and Outer PCP

We compose the Inner PCP and the Outer PCP, constructing an instance �2:2 of a Transitive

2-to-2 Game as in Definition 1.4 and Theorem 1.8. Only the questions* to the first prover in the

Outer PCP appear explicitly in the construction whereas the questions + to the second prover

are only implicitly used. The composition, at a high level, is rather straightforward. However,

incorporating the side conditions from the Outer PCP and ensuring the transitivity of the 2-to-2

Game �2:2 present serious difficulties. Both of these issues are skipped altogether from this

overview. Also, in the actual reduction, there are more constraints in �2:2 than described here.

In the 2-to-2 Game �2:2, for every question * to the first prover, there is a copy of the

Grassmann graph �({0, 1}* , ℓ ). A vertex ! in this graph is to be assigned a color (or a 9-list of

colors) from the alphabet Σ, |Σ| = 2
ℓ
, the colors being interpreted as linear functions on !. The

intention is as follows. Suppose that in the Outer PCP, the prover intends to answer with a bit
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string B, |B | = |* | = 3:, a supposed assignment to the variables in * . The string B is thought

of as the linear “inner product” function 5B : {0, 1}* → {0, 1} , 5B(G) = 〈B, G〉. The assignment

of colors to the vertices of the Grassmann graph is then precisely the encoding of the linear

function 5B , i. e., a vertex ! is assigned the color 5B |!. We add the 2-to-2 constraints for all edges

(!, !′) of this Grassmann graph as in the Inner PCP.

To summarize, the 2-to-2 Game �2:2 has a block of vertices for every question* to the first

prover and along with the edge-constraints inside it, the block is exactly a copy of the Grassmann

graph/encoding/game. Now we describe the edges across two different blocks. Let*,*′ be
two distinct questions to the first prover and + be a question to the second prover such that

+ ⊆ * as well as + ⊆ *′, i. e., the verifier can potentially ask the question-pair (*,+) as well as

the question-pair (*′, +). Obviously the space {0, 1}+ is contained in both {0, 1}* and {0, 1}*′ .
There are two types of edges9 between the block of* and the block of*′.

• For any ! ⊆ {0, 1}+ , dim(!) = ℓ , ! is contained in both * and *′, and hence there are

vertices D, D′ in their blocks corresponding to !. We add a 1-to-1 constraint between D, D′.
Note that (a) the colorings to the blocks of*,*′ are supposed to be the encodings of the

functions 5B* and 5B*′ , respectively (b) the assignments B* and B*′ are supposed to be

restrictions of some global assignment to* and*′, respectively and hence are supposed

to agree with an assignment B+ on+ . Therefore, the linear function 5B* |!, i. e., the intended
color of D, and the linear function 5B*′ |!, i. e., the intended color of D′, must be the same,

i. e., 5B* |! = 5B+ |! = 5B*′ |!. This defines the 1-to-1 constraint between D, D′.

• Similarly, for any !, !′ ⊆ {0, 1}+ , dim(!) = dim(!′) = ℓ , dim(! ∩ !′) = ℓ − 1, ! is contained

in {0, 1}* and !′ is contained in {0, 1}*′ , and hence there are vertices D, D′ in the blocks of

*,*′ corresponding to !, !′, respectively. We add a 2-to-2 constraint between D, D′. As

before, the intended color of D is 5B* |! = 5B+ |! and the intended color of D′ is 5B*′ |!′ = 5B+ |!′ .
Since dim(! ∩ !′) = ℓ − 1, there is a 2-to-2 correspondence between the functions 5B+ |! and
5B+ |!′, which defines the 2-to-2 constraint between D, D′.

This completes the informal description of the reduction. The actual reduction, with several

additional details, is presented in Section 4. The transitivity of the game �2:2 is proved

in Section 7.

1.4.4 Advice, Covering Property, and soundness analysis

Let us attempt the soundness analysis at a high level, showing the need for an additional

feature in the Outer PCP, which we call advice, as well as a certain covering property. Given a

(9 , �)-coloring to the game �2:2, the soundness analysis derives prover strategies in the Outer

PCP with a good success probability. This implies conversely that if the Outer PCP is chosen

beforehand to have low enough soundness (= 2
−Ω(�:)

), then the game �2:2 has no (9 , �)-coloring,
completing the proof of Theorem 1.8.

9In the actual reduction, potentially, there are edges between blocks of*,*′, even when there is no question +

that appears along with both*,*′.
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Accordingly, suppose there is a (9 , �)-coloring to the game �2:2 and assume for simplicity

that a � fraction of vertices in every block have been (9-list-)colored. Fix a question * to the

first prover. Towards deriving her answer, she looks at the (9 , �)-coloring of her copy of the

Grassmann graph �({0, 1}* , ℓ ). Our main hypothesis (Hypothesis 2.5) implies that for a good

fraction of @-dimensional subspaces & ⊆ {0, 1}* , after zooming into the subgraph induced on

vertices (= ℓ -spaces) that contain &, there is a global linear function 5 = 5B : {0, 1}* → {0, 1}
that has good agreement with the given coloring. The prover returns the string B as her answer.

Though she does not know which zoom-in space & works, she can choose & randomly, and it is

hypothesized to work with a good probability. We emphasize that the decoded global linear

function 5B , and hence her answer, in general depends on the choice of the zoom-in space &.

Now let + be the question to the second prover. Since {0, 1}+ is contained in {0, 1}* , the
Grassmann graph �({0, 1}+ , ℓ ) is an induced subgraph of the Grassmann graph �({0, 1}* , ℓ ).
The second prover wishes to derive his answer from the coloring to his graph �({0, 1}+ , ℓ ). Let
( be the subset of vertices in the graph �({0, 1}* , ℓ ) that are colored, with density of ( being

�. The prover can only use the coloring to the set ( ∩ �({0, 1}+ , ℓ ), which might potentially

have negligible density in �({0, 1}+ , ℓ ). If so, he has no information to derive his answer from,

and in the worst case, this could happen for almost every question + asked to him, for a fixed

question* to the first prover. The purpose of the smoothness parameter in the Outer PCP is

to precisely avoid this issue. Provided that �
√
: · 2ℓ → 0 (which happens with � = :−

3

4 and :

large enough), + has expected size |* | − 2�: that is close enough to |* | = 3: that one has the

following guarantee: for a fixed question* to the first prover and for any subset ( of density �
in �({0, 1}* , ℓ ), for almost every question+ to the second prover, the density of (∩�({0, 1}+ , ℓ )
in �({0, 1}+ , ℓ ) is ≈ �. This guarantee is referred to as the covering property, a special case of

which is defined and used in [34]. The property is stated formally as Lemmas 4.6 and 4.7 and

proved in Section 8.

We assume therefore that for the question + to the second prover, a � fraction of vertices

of his Grassmann graph �({0, 1}+ , ℓ ) are colored. In a similar manner as the first prover, he

wishes to zoom into a @-dimensional subspace &′ ⊆ {0, 1}+ , decode a global linear function

5B′ : {0, 1}+ → {0, 1}, return B′ as the answer, and hope that B′ = B |+ , i. e., that his answer is

consistent with the first prover’s answer. Strictly speaking, he outputs a short list of all 5B′ that

have agreement with coloring to his Grassmann graph and hopes that one of them is consistent

with the first prover’s function 5B . It is reasonable to expect this consistency because both

provers are using the same coloring: if 5B is consistent with coloring to ( ⊆ �({0, 1}* , ℓ ), then
its restriction 5B |+ is consistent with ( ∩ �({0, 1}+ , ℓ ) for a good fraction of questions + to the

second prover, and then 5B |+ = 5B′ appears in the decoded list of the second prover. There is

one catch however. The decoded global functions depend in general on the zoom-in space, so

the two provers must “agree” on the zoom-in space, i. e., manage to choose & = &′, without

communication. We resolve this issue by letting the verifier in the Outer PCP choose a random

@-dimensional subspace & ⊆ {0, 1}+ and send it to both provers as extra advice along with their

questions. We make sure that this advice does not compromise or hurt the soundness of the

Outer PCP.
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1.5 Subsequent work

Following the conference publication of our work [31], much progress has been made in

understanding the NP-hardness of 2-to-2 Games and Unique Games. In [12], together with

Dinur and Kindler, we propose a candidate NP-hardness reduction for 2-to-2 Games under the

standard notion of soundness. The reduction therein builds on the ideas presented in the current

paper, and its soundness was only proved under a combinatorial hypothesis (in the spirit of

Hypothesis 2.5). In a subsequent article [11], this combinatorial question is linked to the study

of edge expansion in the Grassmann graph; more concretely, to the structure of small sets of

vertices whose edge expansion is bounded away from 1. The authors of [11] pose a concrete

hypothesis for the structure of such sets, validate it in a special regime of parameters, and argue

that it is necessary in order to resolve the combinatorial hypothesis of [11] (and thus prove that

2-to-2 Games Conjecture holds). Barak, Kothari and Steurer [4] have subsequently shown that

the edge-expansion hypothesis also implies, in a black-box manner, the combinatorial hypothesis

of [11]. Finally, the edge-expansion hypothesis is proved in its full generality in [32] (with an

additional insight gained from [30]), thus completing the line of research initiated by the current

paper.

2 The Grassmann graph and related hypotheses

In this section we introduce the Grassmann graph and related hypotheses that are relevant

towards the soundness analysis of our PCP construction (at the Inner PCP level). The Grassmann

graph leads to an encoding of a linear function on a high-dimensional F2-vector space and a

2-to-2 test to check the encoding. The linear function is encoded bywriting down its restriction to

all ℓ -dimensional subspaces, the restrictions themselves being linear functions on the respective

subspaces. Given a supposed encoding, i. e., an assignment of a linear function to every

ℓ -dimensional subspace, one can test that the given linear functions on a pair of ℓ -dimensional

subspaces are consistent on their intersection. For the test to have the 2-to-2 property, the test is

performed only on a pair of ℓ -dimensional subspaces that intersect on a (ℓ − 1)-dimensional

subspace. Naturally, the following decoding question arises: Given an assignment to the

ℓ -spaces that demonstrates some consistency, is there a global linear function that explains

some (or almost all) of the consistency? We hypothesize that the answer is affirmative, but

subtle. Also, towards the analysis of our reduction, we have to deal with more general notion of

(9 , �)-assignments, where a � fraction of the ℓ -spaces are each assigned a list of 9 linear functions

on it.

2.1 The Grassmann graph

Let F be a field of size ?, + a linear space of dimension = over F and 1 6 ℓ 6 = − 1 a positive

integer. The Grassmann graph �(+, ℓ )? is defined as follows.

• The vertices are all ℓ -dimensional subspaces of + .

• The edges are pairs of vertices !, !′ such that dim(! ∩ !′) = ℓ − 1.

THEORY OF COMPUTING, Volume 21 (10), 2025, pp. 1–55 13

http://dx.doi.org/10.4086/toc


SUBHASH KHOT, DOR MINZER, AND MULI SAFRA

The Grassmann graph has been moderately studied in the literature, mainly in the context

of distance-regular graphs [7]. Vector-space analogues of classical theorems such as Erdős–

Ko–Rado and Kruskal–Katona are also known to hold [9] and translate to properties of the

Grassmann graphs. Here are some known facts regarding the Grassmann graph, though we do

not necessarily need them.

Fact 2.1. Suppose 1 6 ℓ 6 =
2
.

1. The number of vertices in the graph �(+, ℓ )? is the ℓ th ?-nomial coefficient (sometimes referred
to as “Gaussian binomial coefficient”)[

=

ℓ

]
?

34 5
=

ℓ−1∏
8=0

?= − ? 8
?ℓ − ? 8

.

2. The graph is regular with degree 3 = ?=−?ℓ
?ℓ−?ℓ−1

[
ℓ
ℓ−1

]
?
. For ? = 2, this is Θ(2=).

3. The eigenvalues of the (adjacency matrix of the) graph are

� 9 = ?
9+1

[
ℓ − 9

1

] [
= − ℓ − 9

1

]
−

[
9

1

]
?

.

with multiplicities
[
=
9

]
?
−

[
=
9−1

]
?
, for 9 = 0, ..., ℓ 10.

For ? = 2 the eigenvalues are approximately (1 + 2
9−ℓ )2=+1−9 , and so the normalized eigenvalues

are Θ(2−9).

We will only be interested in the case ? = 2 and the subscript ? will be omitted henceforth.

The following observation will be useful.

Fact 2.2. Given the Grassmann graph �(+, ℓ ), dim(+) = = and a @-dimensional subspace & ⊆ +, 0 6
@ 6 ℓ − 1, let Zoom& denote the subset of vertices ! ∈ �(+, ℓ ) such that & ⊆ !. Then the induced
subgraph on the subset Zoom& is isomorphic to the (lower order) Grassmann graph �(+′, ℓ ′) with
dim(+′) = = − @, ℓ ′ = ℓ − @. A natural isomorphism is by letting +′ = +/& to be the quotient space.

2.2 (9 , �)-assignments and zooming in

Let [2ℓ ] denote the set of linear functions on an ℓ -dimensional space. We would need to consider

the so-called (9 , �)-assignments to the vertices of the Grassmann graph.

Definition 2.3. The density of a set ( ⊆ �(+, ℓ ) is its fractional size, i. e.,

Density(() = |( |
|{! ⊆ + | dim(!) = ℓ }| =

|( |[
dim(+)

ℓ

] .
10

[
0

1

]
is defined to be 0.
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Definition 2.4. Let ( ⊆ �(+, ℓ ) and let � : ( →
([2ℓ ]
9

)
assign, to each ℓ -space ! ∈ (, a set �[!]

of 9 linear functions on !. The assignment � is said to be (9 , �)-edge-consistent, or simply a

(9 , �)-assignment, if

• ( has density at least �.

• If !1 , !2 ∈ ( are adjacent then there is a pair 01 ∈ �[!1], 02 ∈ �[!2] such that 01 , 02 agree

on !1 ∩ !2.

We consider the scenario where 9 and � are fixed, then ℓ is allowed to be sufficiently large,

and finally the global dimension = is allowed to be sufficiently large compared to ℓ . One would

hope that a (9 , �)-assignment implies the existence of a global linear function , : + → {0, 1}
that “explains” some of the consistency. Specifically, is there a global linear function , such that

, |! ∈ �[!] for a �′ = �′(9 , �) > 0 fraction of the ℓ -dimensional subspaces ! ⊆ +? The answer

turns out to be negative as seen from the following example.

2.2.1 Subspace example

Fix / ⊆ + to be a subspace of dimension = − ℓ and pick a set of vertices ( ⊆ �(+, ℓ ) as

( = {! ∈ �(+, ℓ ) | dim(! ∩ /) = 2} .

It is not difficult to see that ( has constant density which can be computed to be ≈ 0.20. We will

exhibit a (3,≈ 0.20)-assignment �[·] which has no non-trivial consistency with any global linear

function. For each I ∈ / \ {0}, choose 5I : + → {0, 1} to be a global linear function arbitrarily.

The assignment � : (→
([2ℓ ]

3

)
is now defined as

�[!] = { 5I |! | I ∈ (! ∩ /) \ {0}} .

In words, ! is assigned three linear functions that are restrictions to ! of the three global linear

functions 5I for I ∈ (! ∩ /) \ {0}. Note that dim(! ∩ /) = 2 and hence |�[!]| = 3. Now we show

that if !1 , !2 ∈ ( have an edge connecting them, then the assignments �[!1], �[!2] are consistent.
Indeed, when dim(!1) = ℓ , dim(!2) = ℓ , dim(!1 ∩ !2) = ℓ − 1, dim(!1 ∩ /) = 2, we have

1 6 dim(!1 ∩ !2 ∩ /) 6 2 .

In particular, there exists I ∈ (!1∩!2∩/)\{0}. By design, we have 5I |!1
∈ �[!1] and 5I |!2

∈ �[!2]
andmoreover that 5I |!1

, 5I |!2
agree on !1∩!2, both being restrictions of the same global function

5I . Finally, we note that since the choice of functions 5I is arbitrary, no global linear function

has a non-trivial consistency with the assignment �[·]. For the sake of concreteness, one can let

5I be the linear function G → 〈I, G〉. It is not difficult to see that for any global linear function

5 : + → {0, 1},
Pr

!∈�(+,ℓ )
[ 5 |! ∈ �[!]] 6 2

−Ω(ℓ ) .
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2.2.2 Zooming in

We now consider a plausible way to circumvent the above example. For a Grassmann graph

�(+, ℓ ) and a subspace & ⊆ + , let

Zoom& = {! | ! ∈ �(+, ℓ ), & ⊆ !}

be the subset of vertices that contain & (we intend to take dim(&) � ℓ ). Similarly, for a subset

( ⊆ �(+, ℓ ), let
Zoom&[(] = {! | ! ∈ (, & ⊆ !}

be the subset of vertices of ( that contain &. Returning to the subspace example above, let �[·]
be the (3,≈ 0.20)-assignment to the Grassmann graph �(+, ℓ ) as therein. Let ( be the subset

of density ≈ 0.20 to which �[·] actually assigns a list of 3 linear functions. We noted that no

global linear function has a non-trivial consistency with �[·]. To be specific, for any global linear

function 5 : + → {0, 1},
Pr

!∈�(+,ℓ )
[ 5 |! ∈ �[!]] 6 2

−Ω(ℓ ).

We observe however that there exists a one-dimensional subspace & such that after zooming

into & (i. e., conditioning on the ℓ -spaces containing &), there does exist a global linear function

with good consistency with �[·]. Indeed, let I ∈ / \ {0} be an arbitrary point, 5I be the global

linear function associated with I and let & = Span{I}. For any subspace ! ∈ Zoom&[(], we

have I ∈ & ⊆ ! and hence 5I |! ∈ �[!]. Thus the global linear function 5I is consistent with the

assignment �[·] on every ! ∈ Zoom&[(]. Moreover, Zoom&[(] when regarded as a subset of

Zoom& has a constant density, say � (in fact its density is higher than the original density of ( in

�(+, ℓ )which is ≈ 0.20). Thus

Pr

!∈�(+,ℓ )
[ 5I |! ∈ �[!] | & ⊆ !] > �

where the probability is conditional on the ℓ -spaces containing &. Further, if the point I were

chosen at random from the global space + , with probability ≈ 2
−ℓ
, we have I ∈ / \ {0} and then

zooming into & = Span{I} gives a global linear function with good consistency. To summarize

our specific example,

Given a (3,≈ 0.20)-assignment �[·] to �(+, ℓ ), for ≈ 2
−ℓ fraction of one-dimensional subspaces

& ⊆ + , zooming into & gives a global linear function that is Ω(1)-consistent with �[·].

We now hypothesize that something to this effect always holds for any (9 , �)-assignment

to a Grassmann graph �(+, ℓ ) when one is allowed to zoom into a @-dimensional subspace

& with constant @ and the zoom-in succeeds for a non-negligible fraction (that may depend

arbitrarily on ℓ ) of @-dimensional subspaces &. Our main hypothesis appears below, followed

by its variants and special cases.
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2.3 Our hypotheses

2.3.1 The main hypothesis

Hypothesis 2.5. For every integer 9 > 1 and real � > 0, there exist an integer @ > 0, a real

� ∈ (0, 1), and a function 
 : ℕ → (0, 1] such that for all sufficiently large integers ℓ , for all

sufficiently large integers =, the following holds: Let �[·] be a (9 , �)-assignment to the Grassmann

graph �(+, ℓ )with dim(+) = =. Then for at least 
(ℓ ) fraction of the @-dimensional subspaces

& ⊆ + , there exists a global linear function ,& : + → {0, 1} such that (note the conditional

probability)

Pr

!∈�(+,ℓ )

[
,& |! ∈ �[!] | & ⊆ !

]
> � . (2.1)

2.3.2 Upper bound on list-decoding size

In Hypothesis 2.5, given a (9 , �)-assignment �[·], a global linear function ,& satisfying Equa-

tion (2.1) is viewed as a decoded global linear function. Naturally, such a decoded function is

only useful when there are not many functions satisfying Equation (2.1), hence one would like

to obtain an upper bound on the number of such functions. Indeed, a reasonable upper bound,

stated below, follows from a result of Blinovsky [6]. We include a proof in Section C.2 for the

sake of completeness.

Theorem 2.6. Let �[·] assign to every ! ∈ �(+, ℓ ), a list �[!] of at most 9 linear functions on !. Let &
be any @-dimensional subspace of + . Then there are at most 9�

�2−9·2−(ℓ−@) global functions , for which

Pr

!∈�(+,ℓ )
[, |! ∈ �[!] | & ⊆ !] > � .

2.3.3 Hypotheses about connectivity of Grassmann graph

We are far from understanding the case of general 9 in the Hypothesis 2.5 and even the case

9 = 1 presents interesting challenges. We show in Section 6 that Hypothesis 2.5 in the case

9 = 1 follows from the Hypothesis 2.7 below without the need for zoom-in. A linearity test is

developed therein that could be of independent interest.

Hypothesis 2.7. For every � > 0, there exists � > 0 such that for all sufficiently large integers

ℓ , for all sufficiently large integers =, the following holds: Let ( be any set of vertices in the

Grassmann graph �(+, ℓ ), dim(+) = = with density at least �. Then the induced subgraph on (

contains a connected component of density at least �.

The hypothesis below seems like a natural related question, stating that the Grassmann

graph is a small-set vertex expander (defined below), and it could be a good starting point for

further investigations.

Definition 2.8. For a graph � = (+, �), the neighbourhood of a set ( ⊆ + of vertices is defined as

Γ(() = {E ∈ + | ∃D ∈ +, (D, E) ∈ �}.
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Definition 2.9 (Small-set vertex expander). A family of graphs, {�=,ℓ = (+=,ℓ , �=,ℓ )}=,ℓ∈ℕ, is
called a small-set vertex expander if there exists a function � : (0, 1) → [0,∞) such that

1. lim�→0
+ �(�) = ∞.

2. For all � > 0 there are # and !, such that for all = > # , ℓ > ! and sets ( ⊆ +=,ℓ with size

at least �|+=,ℓ |, it holds that |Γ(()| > �(�)|( |.

Hypothesis 2.10. The family of Grassmann graphs �=,ℓ = �({0, 1}= , ℓ ) is a small-set expander.

2.3.4 Hypothesis with side condition

As is standard, while composing the Inner PCP with the Outer PCP, we require that the decoded

global linear function ,& in Equation (2.1), Hypothesis 2.5 itself respects certain linear side

condition. We state a variant of Hypothesis 2.5 that takes into account the side condition and

show that this variant follows easily from Hypothesis 2.5.

Definition 2.11. Apair ({ℎ1 , ..., ℎA}, (11 , ..., 1A)), where {ℎ8 ∈ {0, 1}=}A8=1
are linearly independent

and 18 ∈ {0, 1}, is called a side condition for a function , : {0, 1}= → {0, 1}. We say that , respects

the side condition if ,(ℎ8) = 18 , for every 8.

Note that when , is a linear function respecting the side condition ({ℎ1 , . . . , ℎA}, (11 , . . . , 1A)),
the value of , on the space � = Span{ℎ1 , ..., ℎA} is fixed. We will often simplify notation and

say , respects the side condition �, when (11 , . . . , 1A) is clear from the context. Note that the

vertices of the Grassmann graph �(+, ℓ ) are the ℓ -dimensional subspaces of + . Now we instead

think of the vertex set as

{! ⊕ � | ! ∈ �(+, ℓ )} ,
restricted to only those ! such that ! ∩ � = {0} and moreover, if ! ⊕ � = !′ ⊕ �, then the two

vertices are identified together11. Note that dim(! ⊕ �) = ℓ + A. There is an edge between ! ⊕ �
and !′ ⊕ � if and only their intersection has dimension ℓ + A − 1. It can be easily seen that the

resulting graph is isomorphic to a lower-order Grassmann graph �(+′, ℓ ), where +′ ⊆ + is a

complement to � (i. e., +′ is a subspace and +′ ⊕ � = +, +′ ∩ � = {0}, dim(+′) = = − A).
A (9 , �)-assignment respecting the side condition is an assignment �[·] : ( →

([2ℓ ]
9

)
to a set of

vertices ( such that

• ( has density at least �.

• For each vertex ! ⊕ � ∈ (, �[! ⊕ �] is a list of 9 linear functions on ! ⊕ � that respect the

side condition. Note that since the side condition already specifies the values of a linear

function on �, the number of linear functions on ! ⊕ � that respect the side condition is

exactly 2
ℓ
.

• For any ! ⊕ �, !′ ⊕ � ∈ ( that are adjacent there are linear functions 0 ∈ �[! ⊕ �], 0′ ∈
�[!′ ⊕ �] that agree on the intersection ! ⊕ � ∩ !′ ⊕ �.

11In our application, we will have A = =
3
� ℓ , so almost all ℓ -dimensional spaces ! ⊆ + satisfy ! ∩ � = {0}.
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We now state the variant of Hypothesis 2.5 that takes into account the side condition.

A (rather self-evident) proof that Hypothesis 2.12 follows from Hypothesis 2.5 appears in

Section C.1.

Hypothesis 2.12. For every integer 9 > 1 and real � > 0, there exist an integer @ > 0, a real

� ∈ (0, 1), and a function 
 : ℕ → (0, 1) such that for all sufficiently large integers ℓ , for all

sufficiently large integers =, the following holds: Let �[·] be a (9 , �)-assignment respecting the

side condition

(
{ℎ8}A8=1

, {18}A8=1

)
to the Grassmann graph �(+, ℓ ) with dim(+) = = and A 6 =

3
.

Then for at least 
(ℓ ) fraction of the @-dimensional subspaces & ⊆ + , there exists a global

linear function ,& : + → {0, 1} that respects the side condition such that (note the conditional

probability)

Pr

!∈�(+,ℓ )

[
,& |!⊕� ∈ �[! ⊕ �] | & ⊆ !

]
> �. (2.2)

3 The outer PCP

Our Outer PCP is a carefully constructed 2-Prover-1-Round Game from a regular instance of the

3-Lin problem. Recall (see the paragraph before Theorem 1.8) that an instance (-,Eq) of the
3-Lin problem consists of a set of F2-valued variables - and a set of equations Eq, each equation

containing three (distinct) variables. The instance is regular if every variable appears in exactly,

say 5, equations, and two distinct equations share at most one variable. Starting with a 3-Lin

instance given by Håstad’s reduction [22], a standard sequence of transformations can turn the

instance into a regular one, while preserving the near-perfect completeness and keeping the

soundness bounded away from 1. To summarize:

Theorem 3.1. There exists an absolute constant 1

2
< B∗ < 1 such that for every constant � > 0, the

Gap3Lin(1 − �, B∗) problem on regular instances is NP-hard.

Let (-,Eq) be an instance of Gap3Lin(1 − �, B∗) as in Theorem 3.1. We intend to construct

a 2-Prover-1-Round Game that is used as our Outer PCP. Instead of taking a passive view of

2-Prover-1-Round Game as a constraint satisfaction problem as in Definition 1.1, it is more

intuitive to take an equivalent active view in terms of two provers and a probabilistic verifier.

The two provers wish to convince the verifier that the 3-Lin instance is near-satisfiable. Since

our construction has multiple subtle features, we present it incrementally, adding one feature

at a time. The construction is along the lines of [34], smoothness and covering features are as

therein and there is an additional advice feature.

3.1 Equation vs variable game

We start with a standard “equation vs variable” game that the reader might be already familiar

with. In this game, the verifier chooses an equation 4 ∈ Eq uniformly at random, sends it to the

first prover, chooses a variable G randomly from the three variables occurring in the equation 4

and sends it to the second prover. The provers are expected to provide an F2-value for each of
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the variables they receive. The verifier accepts if and only if the first prover provides a satisfying

assignment to 4 and if both provers give G the same value.

Completeness: Suppose there is an assignment to (-,Eq) that satisfies a 1 − � fraction of the

equations. The provers can answer according to this assignment and the verifier accepts with

probability at least 1 − �.
Soundness: Suppose no assignment to (-,Eq) satisfies more than B∗ fraction of the equations.

The strategy of the second prover is simply an assignment to all the variables. This assignment

fails to satisfy 1 − B∗ fraction of the equations. For every equation that fails, the second prover

either has to give inconsistent answer to at least one of its variables or answerwith an unsatisfying

assignment to the equation. Thus the provers cannot make the verifier accept with probability

more than 1 − 1−B∗
3

(i. e., bounded away from 1).

3.2 Smooth equation vs variable game

Wemodify the equation vs variable game slightly and call it a smooth game.12 Let � ∈ (0, 1) be a
smoothness parameter. The verifier sends an equation 4 to the first prover as before. To the

second prover however, the verifier sends a random variable G occurring in 4 with probability �,
and sends the equation 4 with probability 1 − � (hence asking the same question to both the

provers).

Completeness: As before, the completeness is at least 1 − �.
Soundness: The new game is effectively a trivial game with probability 1 − � and is same as the

equation vs variable game with probability �. Hence the soundness is at most 1 −Ω (�), where

the Ω-notation hides the dependence on B∗ (which is an absolute constant anyways).

3.3 Smooth equation vs variable game with advice

Our application requires a further modification of the smooth game. Roughly speaking, the

provers are also provided extra advice that acts like publicly shared randomness. Nevertheless,

this advice cannot considerably help the provers.13

As before, the verifier picks an equation 4 at random, say G81 + G82 + G83 = 18 , and sends it

to the first prover. With probability 1 − �, the second prover receives the equation 4 as well,

and otherwise a single variable from the equation 4 chosen at random. Let + ⊆ {G81 , G82 , G83} be
the set of variables sent to the second prover (so |+ | is 1 or 3). The verifier chooses an advice

vector 0 ∈ {0, 1}+ at random. If |+ | = 3, define 0∗ = 0, and if |+ | = 1, let 0∗ be obtained from 0

by padding with 0 in place of {G81 , G82 , G83} \+ . The verifier sends the first prover the vector 0∗

and the second prover the vector 0. As before, the provers are expected to provide a value for

each of the variable they receive.

12Smoothness refers to the following property of a game: consider a fixed question for the first prover and two

distinct answers 0, 1 to the first prover, sample the question for the second prover, and let 0′, 1′ be the answers it

must answer for the verifier to accept if the first prover answered 0, 1, respectively. The game is called smooth if with

high probability over the choice of the question to the second prover, it must be the case that 0′ ≠ 1′. The game

described is smooth provided � � 1.

13As far as we know, this is the first instance of a PCP construction that incorporates the feature of advice.
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Call this game ��,1. The extra advice could give the first prover a hint as to which variables

the second prover receives. For example, if the first prover’s advice vector is 0∗ = (0, 0, 1), she
knows that the second prover has received either all three variables or (just) the variable G83 .

However, when the first prover receives the vector (0, 0, 0), she does not know whether the

second prover has received all three variables along with advice 0 = (0, 0, 0) or a single variable,

whose identity she does not know, along with advice 0 = (0). It is clear from this discussion that:

Completeness: The completeness of game ��,1 is at least 1 − �.
Soundness: The soundness of game ��,1 is at most 1 −Ω (�).

We further generalize to the game ��,@ for any integer @ > 0 where instead of sam-

pling and sending the provers one pair, (0∗ , 0), the verifier samples, independently, @ pairs

(0∗
1
, 01), . . . , (0∗@ , 0@), and sends the list [0∗

1
, . . . , 0∗@] to the first prover and the list [01 , . . . , 0@] to

the second prover. It is not difficult to see that:

Completeness: The completeness of game ��,@ is at least 1 − �.

Soundness: The soundness of game ��,@ is at most 1 −Ω
(
�
2
@

)
. Intuitively, the verifier rejects

with constant probability when the second prover is sent a single variable (which happens with

probability �) along with the advice-list [(0), . . . , (0)] (which happens with probability
1

2
@ ).

Remark 3.2. The soundness of the

(
2
@

�

)
-fold parallel repetition game �

⊗2
@/�

�,@ is less than an

absolute constant less than 1. Intuitively, in
2
@

� “trials,” with constant probability, there is a

“coordinate” on which the second prover receives a single variable along with the advice-list

[(0), . . . , (0)], and then the verifier rejects with a constant probability.

3.4 The final game (outer PCP)

Finally, our Outer PCP is a :-fold parallel repetition of the game ��,@ , i. e., the game �⊗:�,@ .

Completeness: The completeness of game �⊗:�,@ is at least 1 − :�.

Soundness: The soundness of game �⊗:�,@ is at most 2
−Ω(�:/2@)

. The game can be considered as

�:
2
@ -fold parallel repetition of the game �

⊗2
@/�

�,@ which has constant soundness as per Remark 3.2.

One can then apply the parallel repetition theorem for projection games with no dependency

on the answer size as in [36, 15].

Remark 3.3. Let*,+ be the questions sent to the first and the second prover in the game �⊗:�,@ ,

not taking into account the advice yet. Thus* is a set of 3: variables and + ⊆ * with expected

size E [|+ |] = 3: − 2�:. With a careful look, it can be seen that the advice-list for the first prover

is a list [G1 , . . . , G@]with ∀ 1 6 8 6 @, G8 ∈ {0, 1}* . Similarly, the advice-list for the second prover

is a list [H1 , . . . , H@] with ∀ 1 6 8 6 @, H8 ∈ {0, 1}+ . Moreover, if one regards the space {0, 1}+ as

a subspace of {0, 1}* in a natural manner, then ∀ 1 6 8 6 @, G8 = H8 . Thus the advice is to be

interpreted as a list of @ points in {0, 1}+ that is sent to both provers.
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4 The main reduction

In this section we present our reduction towards proving Theorem 1.8. The soundness analysis

of the reduction is presented in Section 5.

4.1 Setting of the parameters

Let (-,Eq) be an instance of regular Gap3Lin(1 − �, B∗) as in Theorem 3.1. We will use the game

�⊗:�,@ in Section 3.4 as the Outer PCP. Since there are several parameters involved, we specify the

(tedious) order in which the parameters are chosen.

Let (9 , �) be the parameters required of the reduction in Theorem 1.8. Depending on

(9 , �), let @, �, 
(·) be as given in Hypothesis 2.12 and let ℓ be an integer large enough so that

Hypothesis 2.12 holds for all sufficiently large integers : (= = therein). The soundness analysis

of the reduction shows (modulo Hypothesis 2.12) that a (9 , �)-coloring to the 2-to-2 Game yields

a prover strategy in the Outer PCP with success probability roughly
�·
(ℓ )·�2

9 . Conversely, by

setting the parameters �, : appropriately, the soundness of the Outer PCP, 2
−Ω(�:/2@)

, is ensured

to be small enough beforehand so that the 2-to-2 Game does not have a (9 , �)-coloring. In

addition, we will want the construction to have the “covering property” (which we elaborate

on later), which requires �
√
: · 2ℓ to be sufficiently small. One can choose

1

:
� � � 1√

:
and :

large enough so that both the soundness of the Outer PCP is small enough and the “covering

property” holds. Finally the completeness parameter 1 − � for the Gap3Lin instance is chosen

to be close enough to 1 so that the Outer PCP as well as the 2-to-2 Game have completeness

1 − :� > 1 − �.

4.2 The reduction

Consider the game �⊗:�,@ and ignore the advice for now. LetU andV denote the sets of questions

asked to the first and the second prover, respectively. Specifically,U is the set of all :-tuples

of equations, * = (41 , . . . , 4:) from the regular Gap3Lin instance (-,Eq). For our purposes, it
will be convenient to retain only those “legitimate”* = (41 , . . . , 4:) such that (a) the equations

41 , . . . , 4: are distinct and do not share variables and (b) for any pair of variables G ∈ 48 and
H ∈ 4 9 , 8 ≠ 9, G, H do not appear together in any equation in the instance (-,Eq). Due to

regularity of the instance (-,Eq), every variable appears in a constant number of equations, and

hence the fraction of* that are not legitimate is negligible, i. e., $( :2

|- | ), and dropping these does

not affect our analysis. We assume henceforth thatU consists of only the legitimate tuples* .

The verifier in the game �⊗:�,@ picks a :-tuple* = (41 , . . . , 4:) ∈ U uniformly at random and

then constructs a :-tuple + such that independently for 1 6 8 6 :, the 8Cℎ element of + is the

equation 48 with probability 1 − � and is a variable in the equation 48 with probability �. Thus
the set of questionsV to the second prover consists of “mixed” tuples. In the following, we will

work only with the setU and the role of the setV will be implicit.

We are now ready to describe the Transitive 2-to-2 Game �2:2(+(�2:2), �(�2:2),Σ,Φ) that our
reduction constructs. For any * ∈ U , we regard * as the tuple of : equations (41 , . . . , 4:) as
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well as the set of 3: variables appearing in these equations, say (G11 , G12 , G13 , . . . , G:1 , G:2 , G:3).
For each equation 48 , define a vector E48 ∈ {0, 1}* that has 1 on coordinates corresponding to

variables in 48 and 0 on the rest. Denote �* = Span
{
E41 , ..., E4:

}
referred to as the space of side

conditions. Let 11 , . . . , 1: ∈ {0, 1} be the “right hand sides” of the equations, i. e., the equation

48 is G81 + G82 + G83 = 18 . Define

ℒ*
34 5
=

{
! ⊆ {0, 1}*

��� dim(!) = ℓ , ! ∩ �* = {0}} .
Note that for ! ∈ ℒ* , its intersection with �* is trivial and hence dim(! ⊕ �* ) = ℓ + :.
Also, |* | = 3:, dim(�* ) = : and dim(!) = ℓ . The fraction of ℓ -spaces ! ⊆ {0, 1}* such that

! ∩ �* ≠ {0}, ! ∉ ℒ* is negligible (≈ 2
ℓ−2:

, see Fact C.5).

Vertices of �2:2: The game �2:2 has a block of vertices Block[*] for every* ∈ U defined as

Block[*] = {! ⊕ �* | ! ∈ ℒ*} .

The vertex set of �2:2 is the (disjoint) union of all blocks:

+(�2:2) =
⋃
*∈U

Block[*] .

Colors of �2:2: The set of colors Σ has size |Σ| = 2
ℓ
. For a vertex ! ⊕ �* , its color set Σ is

identified with

{# : ! ⊕ �* → {0, 1} | # is linear, ∀ 1 6 8 6 :, #(E48 ) = 18} .

In words, the vertex ! ⊕ �* is to be assigned a linear function # : ! ⊕ �* → {0, 1} that respects
the side conditions, meaning #(E48 ) = 18 for 1 6 8 6 :. Since the values of # are already

determined on �* , there are exactly 2
ℓ
eligible linear functions #.

Edges and Constraints of �2:2: Towards defining the edges and constraints of the game �2:2,

we stress a notational (and perhaps conceptual) point. - is the set of all variables in the

Gap3Lin instance, so * ⊆ - and {0, 1}* is a subspace of {0, 1}- in a natural manner. Every

subspace under consideration can be considered as a subspace of {0, 1}- and we can freely take

the intersections or direct sums of subspaces. For instance if *1 , *2 are two sets of variables

and !1 ⊆ {0, 1}*1

, !2 ⊆ {0, 1}*2

are subspaces, we can consider both !1 , !2 as subspaces of

{0, 1}*1∪*2

(which in turn is a subspace of {0, 1}- ) and then the subspaces !1 ∩ !2 , !1 + !2 make

sense.

We are ready to define the edges and the constraints of �2:2. For*,*
′ ∈ U (allowing the

possibility that* = *′), we describe the edges between their respective blocks.14 There is an

edge between vertices ! ⊕ �* , !′ ⊕ �*′ if either of the two conditions holds. Either

dim(! + �* + �*′) = dim(!′ + �* + �*′) = dim(! + !′ + �* + �*′) , (4.1)

14Here*,*′ are thought of as sets of variables that are nearly identical. There might be edges between the blocks

of*,*′ that differ significantly, but those edges are merely “accidental” and do not have much relevance towards

the soundness of the reduction.
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in which case, the constraint is 1-to-1, or

dim(! + �* + �*′) = dim(!′ + �* + �*′) = dim(! + !′ + �* + �*′) − 1 , (4.2)

in which case, the constraint is 2-to-2. This definition is, admittedly, rather mysterious and we

try to clarify it somewhat. We recommend reading the proofs of Lemmas 4.3 and 4.4 to start

having some intuition. We first consider the 1-to-1 constraints.

1-to-1 Constraints: From Lemma 4.3, we always have

dim(! + �* + �*′) = dim(!′ + �* + �*′) .

If, in addition, this dimension is same as that of ! + !′ + �* + �*′ which contains both the

spaces above, then all the three spaces must be identical, i. e., ! + �* + �*′ = !′ + �* + �*′ =
! + !′ + �* + �*′ = /, say. From Lemma 4.4, there is a 1-to-1 correspondence between

linear functions on ! ⊕ �* (that respect the side condition on �* ) and linear functions on

!+�* +�*′ = / (that respect the side condition on both �* , �*′), and the same holds between

!′ ⊕ �*′ and !′ + �* + �*′ = /. This gives a 1-to-1 correspondence between linear functions

on ! ⊕ �* and !′ ⊕ �*′ (respecting the relevant side conditions) which is regarded as the 1-to-1

constraint on the coloring of ! ⊕ �* and !′ ⊕ �*′.
2-to-2 Constraints: As before, from Lemma 4.3, we always have

dim(� = ! + �* + �*′) = dim(�′ = !′ + �* + �*′) = 3 (say).

Now suppose that / = ! + !′ + �* + �*′ , dim(/) = 3 + 1. Since / = � ⊕ �′, it follows that

dim(� ∩ �′) = 3 − 1. Thus, it is possible to choose a basis � for � ∩ �′ and E ∈ !, E′ ∈ !′ so that

� ∪ {E} is a basis for �, � ∪ {E′} is a basis for �′, and � ∪ {E, E′} is a basis for /. In the following,

all linear functions considered are supposed to respect the side condition on �* or �*′ or both,

depending on whether the relevant space contains �* , �*′ or both.

Every linear function 5 on �∩�′ = Span(�) has exactly two extensions 51 , 52 to � = Span(� ∪
{E}), depending on their value on E, and has exactly two extensions 5 ′

1
, 5 ′

2
to �′ = Span(� ∪ {E′}),

depending on their value on E′. Moreover by Lemma 4.4, linear functions on � are in one-to-one

correspondence with those on ! ⊕ �* . Denote by 5̃1 , 5̃2 the mates of 51 , 52, respectively, via this

correspondence. Similarly, linear functions on �′ are in one-to-one correspondence with those

on !′ ⊕ �*′ and let 5̃ ′
1
, 5̃ ′

2
be the mates of 5 ′

1
, 5 ′

2
. This gives a 2-to-2 constraint between ! ⊕ �*

and !′ ⊕ �*′ that matches the pair ( 5̃1 , 5̃2)with the pair ( 5̃ ′
1
, 5̃ ′

2
).

Transitivity: The transitivity of �2:2 is proved in Section 7.

Remark 4.1. Another useful way to describe the constraint, both in the 1-to-1 and 2-to-2 cases, is

as follows: if there is a space / that includes both ! ⊕ �* and !′ ⊕ �*′ and has an assignment

� that respects the side conditions on �* , �*′, then � |!⊕�* , � |!′⊕�*′ are colorings to ! ⊕ �*
and !′ ⊕ �*′, respectively that satisfy the constraint. In both cases above / happens to be

! + !′ + �* + �*′, but we will have occasion to use an even larger space / in certain proofs.
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Remark 4.2. The reason we do not identify vertices ! ⊕ �* and !′ ⊕ �*′ that have a 1-to-1

constraint between them, and instead resort to the transitivity property is due to the completeness

of the reduction. A priori, if (-,Eq) has a good solution �, then it may potentially be the case

that while it satisfies all of the equations of* , it may fail to satisfy some of the equations of*′,
in which case it would not be clear how to assign the vertex resulting from the identification of

! ⊕ �* and !′ ⊕ �*′ . Transitivity may be seen as a softer way of doing this identification which

enjoys all of the benefits proper identification would have.

4.2.1 Auxiliary lemmas

Lemma 4.3. Let*,*′ ∈ U and let Eq[*],Eq[*′] denote the sets of equations (: in number) in*,*′,
respectively. Then, for ! ∈ ℒ* ,

dim(! + �* + �*′) = ℓ + 2: − |Eq[*] ∩ Eq[*′]| .

Proof. Let Eq[*′] = {4′
1
, . . . , 4′

:
} and recall that �*′ = Span(E4′

1

, . . . , E4′
:
). Let � denote the

current space that is initialized to � = ! ⊕ �* and has dimension ℓ + :. We consider equations

4′
1
, . . . , 4′

:
∈ Eq[*′] one by one, and check whether E4′

8
belongs to the to the current space. If

4′
8
∈ Eq[*], then E4′

8
∈ �* already, and hence dim(�+Span(E4′

8
)) = dim(�). Otherwise 4′

8
∉ Eq[*]

and shares at most one variable with* ∪ (*′ \ 4′
8
). This is where we use the fact that*,*′ are

“legitimate” tuples in the sense described in the first paragraph of current section. Thus E4′
8
is

linearly independent of ! + �* +
∑
9≠8 Span(E4′9 ) . Hence � ⊕ Span(E4′

8
) has dimension 1 larger

than that of �. Carrying the argument for 8 = 1, . . . , : shows that in the end � = ! + �* + �*′
and dim(�) is as desired. �

Lemma 4.4. Let*,*′ ∈ U and ! ∈ ℒ* . Then any linear function on ! ⊕ �* that respects the side
condition on �* , has a unique extension to ! + �* + �*′ that respects the side condition on both �*
and �*′.

Proof. Let 5 be a linear function on ! ⊕ �* that respects the side condition on �* . Clearly, it

has at most one extension to ! + �* + �*′ that respects the side condition on both �* and �*′ ,

so the main point is to show that there indeed is such an extension. Similar to the proof of

Lemma 4.3, let � denote the current space, , denote the current linear function on �, so that

initially � = ! ⊕ �* , , = 5 and at each step, , respects the side condition on �* and the side

condition due to equations 4′
1
, . . . , 4′

8−1
considered so far. Consider the equation 4′

8
. If 4′

8
∈ Eq[*]

then � +Span(E4′
8
) = � and we keep , unchanged and proceed next. If 4′

8
∉ Eq[*], then as in the

proof of Lemma 4.3, E4′
8
is linearly independent of ! + �* +9≠8 Span(E4′

9
). Hence � ⊕ Span(E4′

8
)

has dimension 1 larger than that of � and the function , can be safely extended to the vector E4′
8

as required. To be precise, one sets ,(E4′
8
) = 1′

8
where 1′

8
is the ‘right hand side” of the equation 4′

8
and then extends , linearly to � ⊕ Span(E4′

8
). Carrying the argument for 8 = 1, . . . , :, completes

the proof. �
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4.3 Completeness

It is easily observed that the reduction satisfies the completeness condition as in Theorem 1.8.

Let � : - → {0, 1} be an assignment to the Gap3Lin instance (-,Eq) that satisfies a 1− � fraction
of the equations. Let Eq′ denote the set of the equations satisfied so that |Eq′ | > (1 − �)|Eq|. Let
U′ ⊆ U be the subset of :-tuples of equations* such that all its : equations are satisfied, i. e.,

* ⊆ Eq′. Clearly, |U′ | > (1 − :�)|U | > (1 − �)|U | by choosing � sufficiently small.

For every * ∈ U′, let �[*] denote the linear function on {0, 1}* that maps G ∈ {0, 1}* to

〈� |* , G〉. Since � satisfies all equations inside * , the linear function �[*] respects the side

condition �* . Now assign to every vertex ! ⊕ �* in Block[*], the linear function �[*]|!⊕�* .
We show that this assignment satisfies all constraints whose both endpoints have been assigned.

Indeed if (! ⊕ �* , !′ ⊕ �*′) is a constraint such that both endpoints are assigned, then the

constraint is satisfied since all spaces are assigned using the same global assignment �. Thus
the 2-to-2 Game has a (1, 1 − �)-assignment.

4.4 Covering property

We need a certain covering property towards the soundness analysis. While this property was

introduced in [34], we need a more general notion. The covering property, the zoom-in required

in Hypothesis 2.12, and the “advice” in the 2-Prover-1-Round game in Section 3.4 (the Outer

PCP) are all used in a coordinated manner in the soundness analysis.

Let* be the set of 3: variables in a fixed set of : equations. We recall that in the Outer PCP

game, the verifier chooses + ⊆ * randomly by choosing from each equation independently (a)

with probability �, one of the variables from the equation and (b) with probability 1 − �, all
three variables from the equation. We consider {0, 1}+ as a subspace of {0, 1}* in a natural

manner. Slightly rephrasing a result from [34], the statistical distance between the following

two distributions over one-dimensional subspaces of {0, 1}* is small, i. e., at most $(�
√
:).15

• Choose a random one-dimensional subspace % ⊆ {0, 1}* .

• Choose + ⊆ * as described above, choose a random one-dimensional subspace %′ ⊆
{0, 1}+ and regard it as a subspace of {0, 1}* .

We will need an analogous statement regarding two distributions over ℓ -dimensional subspaces

of {0, 1}* . We define the two distributions below and prove the subsequent lemmas in Section 8.

Definition 4.5. Let* be a fixed set of : equations and+ ⊆ * be chosen as above with parameter

�. Let ℓ > 1 be an integer. Let ℒ , ℒ′ be distributions over ℓ -dimensional subspaces of {0, 1}*
sampled as follows.

15The intuition is as follows. A one-dimensional subspace is same as a non-zero point. A random point in {0, 1}*
(and in {0, 1}+ ) has negligible chance of being zero, so we might as well consider the distribution of (a) a random

point in {0, 1}* and (b) a random point in {0, 1}+ after choosing + and then “lifting it up” by appending 0 in the

coordinates* \+ . We note that |* \+ | ≈ 2�:. A point chosen from the second distribution has ≈ 2�: more zeroes

than that from the first distribution. However the imbalance between the number of zeroes and ones in a typical

point in {0, 1}* is ≈
√
:, so when �: �

√
:, a deviation of 2�: zeroes is nearly imperceptible.
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• ℒ: Choose a uniformly random ℓ -dimensional subspace of {0, 1}* .

• ℒ′: Choose + ⊆ * as above, choose a uniformly random ℓ -dimensional subspace of

{0, 1}+ and regard it as a subspace of {0, 1}* .

The covering property, stated below, asserts that the distributions ℒ ,ℒ′ (and some condi-

tioning of theirs) are close in statistical distance. Here and throughout, if %, & are probability

distributions over a universe U , then the statistical distance between them is defined as

SD(%, &) = 1

2

∑
D∈U
|%(D) −&(D)|.

Lemma 4.6. Suppose 2
ℓ� 6 1

8
. Let ℒ , ℒ′ be distributions over ℓ -dimensional subspaces over {0, 1}*

sampled as in Definition 4.5. Then the statistical distance between ℒ , ℒ′ is bounded as

SD(ℒ , ℒ′) 6 �
√
: · 2ℓ+4 .

Lemma 4.7. Let 0 6 @ 6 ℓ − 1 be an integer. Let & be a @-dimensional subspace of {0, 1}* . Let ℒ&
and ℒ′

&
be distributions ℒ and ℒ′ conditioned on the event that a sampled ℓ -subspace ! contains &.

Suppose 2
ℓ� 6 1

8
. Then for at least 1 −

√
� :

1

4 fraction of &,

SD(ℒ& , ℒ′&) 6
√
� :

1

4 · 2ℓ+5 . (4.3)

5 Soundness analysis

In this section, given a (9 , �)-assignment to the game �2:2 constructed in Section 4, we show how

to extract a provers’ strategy in the Outer PCP game (�⊗:�,@ as in Section 3.4) that succeeds with

probability ? = ?(9 , �, ℓ ). If the soundness of the Outer PCP game is chosen to be smaller than

? to begin with, it implies that the game �2:2 has no (9 , �)-assignment, proving Theorem 1.8.

Formally:

Lemma 5.1. Suppose that there is a (9 , �)-assignment to the game �2:2 constructed in Section 4. Then
there is a strategy for the provers in the game �⊗:�,@ that achieves winning probability ? = ?(9 , �, ℓ ) > 0.

The rest of this section is devoted for the proof of Lemma 5.1. We recall that the first prover

(the “larger” prover) receives as a question, a set * of 3: variables (in : equations) and an

advice-list [G1 , . . . , G@] of @ points in {0, 1}* (in fact in {0, 1}+ as stated next). The second prover

(the “smaller” prover) receives as a question a subset + ⊆ * of variables and an advice-list

[G1 , . . . , G@] of the same @ points in {0, 1}+ . We will extract the provers’ strategies in the next two

subsections, and show in the last subsection that these strategies succeed with good probability.
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5.1 Strategy for the first (larger) prover

We recall that a typical vertex in the game �2:2 is denoted as ! ⊕ �* . Specifically, for* ∈ U , the

block of vertices corresponding to* is16

Block[*] = {! ⊕ �* | ! ⊆ {0, 1}* , dim(!) = ℓ , ! ∩ �* = {0}} ,

and the set of vertices of �2:2 is the union of all blocks of vertices over * ∈ U . Let �[·] be the
given (9 , �)-assignment to the game �2:2. Let us emphasize that this means:

• For at least a � fraction of the vertices !⊕�* , a list �[!⊕�*] of 9 linear functions on !⊕�*
(that respect the side condition on �* ) is given. The remaining vertices are unassigned

and do not play any role in the analysis.

• If there is a 2-to-2 constraint between vertices ! ⊕ �* and !′ ⊕ �*′, both of which are

assigned, then there are linear functions 5 ∈ �[! ⊕ �*], 5 ′ ∈ �[!′ ⊕ �*′] that satisfy the

constraint.

• If there is a 1-to-1 constraint between vertices ! ⊕ �* and !′ ⊕ �*′, both of which are

assigned, there is a one-to-one correspondence between the lists �[! ⊕ �*], �[!′ ⊕ �*′],
via the same one-to-one correspondence that defines the 1-to-1 constraint.

By an averaging argument, for at least
�
2
fraction of the tuples* , at least

�
2
fraction of vertices

in Block[*] are assigned. Call such a tuple* good and letUgood be the set of good tuples with

|U |good > �
2
· |U |.

Let the question to the first prover be * ∈ U along with the advice-list [G1 , . . . , G@] of
points in {0, 1}* . If * ∉ Ugood, the prover gives up, so let us assume * ∈ Ugood, and

let Assigned[*] ⊆ Block[*] denote the set of vertices in its block that have been assigned,

|Assigned[*]| > �
2
· |Block[*]|. Since this is a (9 , �

2
)-assignment respecting the side condition

on �* , Hypothesis 2.12 states that for some @, 
(·), � that depend on (9 , �
2
), for at least 
(ℓ )

fraction of the @-dimensional subspaces & ⊆ {0, 1}* , there exists a global linear function

,& : {0, 1}* → {0, 1} that respects the side condition on �* and

Pr

!⊆{0,1}* , dim(!)=ℓ

[
,& |!⊕�* ∈ �[! ⊕ �*] | & ⊆ !

]
> � . (5.1)

We call such a choice of & “lucky” and let Qlucky be the set of all lucky @-dimensional subspaces

of {0, 1}* . We note that the parameter @ was chosen beforehand to exactly match with that

arising in Hypothesis 2.12. Moreover, call a @-dimensional subspace & “smooth” if it satisfies

Condition (4.3) in Lemma 4.717, and let Qsmooth be the set of all smooth @-dimensional subspaces

of {0, 1}* .

16We emphasize that Block[*] contains the vertex ! ⊕ �* for essentially all ℓ -dimensional subspaces ! ⊆ {0, 1}* .

17To recall, the condition is that the distributionsℒ& andℒ′
&
are close in statistical distance; the former distribution

chooses a random ℓ -subspace of {0, 1}* containing & and the latter distribution chooses a random question + ⊆ *
to the second prover and then a random ℓ -subspace of {0, 1}+ containing &.
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The prover looks at the advice-list and lets& = Span(G1 , . . . , G@). If& ∉ Qlucky or& ∉ Qsmooth,

the prover gives up. Otherwise the prover picks a global linear function ,& : {0, 1}* → {0, 1}
respecting the side condition and satisfying Equation (5.1) (if there is more than one, one of

them is picked arbitrarily), and outputs ,& as the answer. Strictly speaking, the linear functions

,& amounts to a function G →
〈
�& , G

〉
on {0, 1}* for some �& ∈ {0, 1}* and the prover answers

that �& is the assignment to the 3: received variables (�& satisfies the : equations as ,& respects

the side condition). However, it is more convenient to view the function ,& itself as the answer.

We note that a uniformly random @-subspace of {0, 1}* is lucky with probability > 
(ℓ )
(by Hypothesis 2.12) and is smooth with probability > 1 − �: 1

4 > 1 − 
(ℓ )
2

when the parameters

�, : are chosen appropriately. Thus with probability at least

(ℓ )

2
, the space & dictated by the

advice-list is both lucky and smooth.

5.2 A Strategy for the second (smaller) prover

Let the question to the second prover be + along with the advice-list [G1 , . . . , G@] of points in
{0, 1}+ . Let & = Span(G1 , . . . , G@) be the @-dimensional subspace of {0, 1}+ . Let ℒ+ be the set

of all ℓ -dimensional subspaces of {0, 1}+ (though when the prover decides on an answer, only

the subspaces containing & are relevant):

ℒ+ =
{
! | ! ⊆ {0, 1}+ , dim(!) = ℓ

}
.

The prover first obtains an assignment �+ [·] to ℒ+ . Fix ! ∈ ℒ+ . The prover examines every

:-tuple of equations * such that + ⊆ * , i. e., every question that could have been asked to

the first prover, when the question of the second prover is + . Note that ! ⊆ {0, 1}+ ⊆ {0, 1}*
and hence there is a vertex ! ⊕ �* of the game �2:2 in Block[*]. If the vertex ! ⊕ �* has been

assigned, then the prover defines

�+ [!] = { 5 |! | 5 ∈ �[! ⊕ �*]} ,

i. e., restrictions of all functions in �[! ⊕ �*] to !. In general there are several* that contain + ,

so a priori, there is ambiguity in the definition of �+ [·]. The claim below shows however that

the definition is unambiguous.

Claim 5.2. �+ [·] is well defined. That is, if + ⊆ *, + ⊆ *′ and if ! ⊕ �* , ! ⊕ �*′ are both assigned,
then the restrictions of �[! ⊕ �*] and �[! ⊕ �*′] to ! are identical.

Proof. Notice that ! ⊕ �* , ! ⊕ �*′ have a 1-to-1 constraint between them in the game �2:2. By

Definition 1.5, a (9 , �)-assignment must assign identical sets of 9 assignments to the vertices that

have a 1-to-1 constraint between them. �

Once �+ is defined, the prover zooms into &, and chooses at random any linear function

ℎ& : {0, 1}+ → {0, 1} that satisfies (if one exists and if so, we show that the list-size is bounded)

Pr

!∈ℒ+

[
ℎ& |! ∈ �+ [!]] | & ⊆ !

]
>
�

4

. (5.2)
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The prover outputs ℎ& : {0, 1}+ → {0, 1} as the answer. Again, strictly speaking, the linear

function ℎ& amounts to a function H →
〈
�& , H

〉
on {0, 1}+ for some �& ∈ {0, 1}+ and the prover

answers that �& is the assignment to the variables he received. However, it is more convenient

to view the function ℎ& itself as the answer.

5.3 The success probability of the provers

We now show that the provers’ strategy succeeds with good probability. Let*,+, [G1 , . . . , G@],
G8 ∈ {0, 1}+ be the provers’ questions and & = Span(G1 , . . . , G@). We already observed that with

probability at least
�
2
,* ∈ Ugood and with probability


(ℓ )
2
, & is both lucky and smooth (from

the first prover’s perspective). Assume that all these properties hold. Then the answer of the

first prover is a global function ,& : {0, 1}* → {0, 1} that satisfies the side condition on �* , and

Pr

!⊆{0,1}* , dim(!)=ℓ

[
,& |!⊕�* ∈ �[! ⊕ �*] | & ⊆ !

]
> � .

Since & is smooth, by Lemma 4.7, the uniform distribution on ℓ -spaces in {0, 1}* containing &

is (
√
�:

1

4 · 2ℓ+5)-close in statistical distance to the distribution that chooses a question + ⊆ * to

the second prover and then chooses uniformly an ℓ -space in {0, 1}+ containing &. By setting

the parameters �, : appropriately, we can assume that this statistical distance is at most
�
2
and

conclude from the above inequality:

Pr

+, !∈ℒ+

[
,& |!⊕�* ∈ �[! ⊕ �*] | & ⊆ !

]
>
�

2

.

By an averaging argument, with probability at least
�
4
over the choice of question + to the

second prover,

Pr

!∈ℒ+

[
,& |!⊕�* ∈ �[! ⊕ �*] | & ⊆ !

]
>
�

4

.

Fix any such good choice of question + . Note that the assignment �+ [!] to the ℓ -spaces ! of the

second prover is precisely the restriction of the assignment �[! ⊕ �*] to the ℓ -spaces of the first

prover. Letting ℎ∗
&

: {0, 1}+ → {0, 1} to be the restriction of ,& : {0, 1}* → {0, 1} to {0, 1}+ , we

can rewrite the inequality above as:

Pr

!∈ℒ+

[
ℎ∗& |! ∈ �+ [!] | & ⊆ !

]
>
�

4

.

Thus the function ℎ∗
&
satisfies Condition (5.2) and is a legitimate candidate for the second

prover’s answer. By Theorem 2.6, the number of functions ℎ& satisfying Condition (5.2) is at

most
9�/4

(�/4)2−9·2@−ℓ 6
89

� for a large enough choice of ℓ . When the second prover does pick ℎ∗
&

as the answer, both the provers’ answers are consistent (ℎ∗
&
being a restriction of ,&) and the

provers succeed. Their overall success probability is at least

�
2

· 
(ℓ )
2

· �
4

· �
89
=
� 
(ℓ ) �2

128 9
,
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thus completing the proof of Lemma 5.1 for ?(9 , �, ℓ ) = � 
(ℓ ) �(9 ,�)2
128 9 .

6 The case 9 = 1 of Hypothesis 2.5

In this section it is shown that Hypothesis 2.5, in the case 9 = 1, follows from Hypothesis 2.7

without the need of zoom-ins.

Let 5 : ( → [2ℓ ], Density(() = � be the given (1, �)-assignment to the Grassmann graph

�(+ = {0, 1}= , ℓ ), meaning, for any two ℓ -spaces !1 , !2 ∈ ( such that dim(!1 ∩ !2) = ℓ − 1, we

have the consistency 5 [!1]!1∩!2
= 5 [!2]!1∩!2

. We intend to show, using Hypothesis 2.7, that

there is a global linear function , : {0, 1}= → {0, 1} such that , |! = 5 [!] for a fraction � = �(�)
of the ℓ -spaces !.

Here is the idea. Fix an integer 1 = ℓ
10
. Using Hypothesis 2.7, we conclude rather easily,

that for a constant fraction of pairs !1 , !2 ∈ ( such that dim(!1 ∩ !2) = 1, we still have

5 [!1]!1∩!2
= 5 [!2]!1∩!2

. This enables us to assign linear functions to all 1-dimensional spaces

that have a good agreement with the given assignment to the ℓ -dimensional spaces. In other

words, this assignment passes the “ℓ -space vs 1-space linearity test”18 with good probability.

Using a Fourier analytic approach,19 we are able to show a soundness guarantee for the “ℓ -space

vs 1-space linearity test,” implying the existence of a desired global linear function. A formal

proof appears below. The analysis of the linearity test is presented in Section B which might be

of independent interest.

Let 1 = ℓ
10
. For a 1-dimensional space � ⊆ + , let Zoom� be the (lower order) Grassmann graph

induced on the set of vertices {!|! ∈ �(+, ℓ ), � ⊆ !} (see Fact 2.2). Let Zoom�[(] = ( ∩ Zoom�

be the set of vertices in ( that contain �, and let Density(Zoom�[(]) be its density inside Zoom�.

Clearly,

E
�⊆+, dim(�)=1

[Density(Zoom�[(])] = Density(() = � .

By an averaging argument, Density(Zoom�[(]) > �
2
for at least

�
2
fraction of 1-spaces �; denote

by ℬ the set of all such “good” 1-spaces. Fix any � ∈ ℬ. Note that there are 2
1
different

F2-valued linear functions on �. Partition Zoom�[(] into classes C1 , . . . , C2
1 according to the

restriction of 5 [!]|� for ! ∈ Zoom�[(]. We observe that for any edge (!, !′) of the Grassmann

graph inside Zoom�[(], the linear functions 5 [!], 5 [!′] agree on !1 ∩ !2 ⊇ � and hence the edge

is inside one of the partitions C8 . Since Density(Zoom�[(]) > �
2
, Hypothesis 2.7 implies that there

is a connected component C of density > � in Zoom�[(] and as observed, C ⊆ C80 for some

1 6 80 6 2
1
. Let ℎ[�] denote the linear function on � that equals the common function 5 [!]|�

over ! ∈ C80 . This gives an assignment ℎ : ℬ → [21] of linear functions to 1-spaces. From the

discussion, if a pair (�, !), � ⊆ ! of a 1-space and a ℓ -space is chosen at random from+ = {0, 1}= ,
then

Pr

�⊆!⊆+
[ 5 [!]|� = ℎ[�]] >

�
2

· � ,

18Analogous to the “line vs point low-degree test.”

19As opposed to the rather involved algebraic (and/or combinatorial) analysis of the “line vs point” and “plane vs

plane” low-degree test in [3, 38].
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where � ∈ ℬ with probability at least
�
2
and then ! is in the “large” connected component

of Zoom�[(] with probability at least �. That is, the “ℓ -space vs 1-space test” succeeds with

probability > �
2
· �. Theorem B.1 now implies that there is a global linear function , : + → {0, 1}

that agrees with at least � fraction of the !-spaces in �(+, ℓ ).

7 Transitivity of �2:2

In this section, we show that the game �2:2 constructed in Section 4 is transitive as per

Definition 1.4.

Lemma 7.1. Suppose !1 ⊕ �*1
, !2 ⊕ �*2

have a 1-to-1 constraint between them in �2:2, and !2 ⊕
�*2

, !3 ⊕ �*3
have a 1-to-1 or a 2-to-2 constraint between them. Then there is a constraint between

!1 ⊕ �*1
, !3 ⊕ �*3

, and it is 1-to-1 or a 2-to-2 depending on whether the constraint between !2 ⊕
�*2

, !3 ⊕ �*3
is 1-to-1 or 2-to-2.

Proof. Since there is 1-to-1 constraint between !1 ⊕ �*1
, !2 ⊕ �*2

, we have

!1 + �*1
+ �*2

= !2 + �*1
+ �*2

. (7.1)

We first consider the case when the constraint between !2 ⊕ �*2
, !3 ⊕ �*3

is also 1-to-1. This

gives

!2 + �*2
+ �*3

= !3 + �*2
+ �*3

. (7.2)

Combining the above equations gives (“add” �*1
to Equation (7.2) and do a “substitution”

using Equation (7.1))

!1 + �*1
+ �*2

+ �*3
= !3 + �*1

+ �*2
+ �*3

. (7.3)

Now we would like to “remove” �*2
from both the sides so as to obtain !1 + �*1

+ �*3
=

!3 + �*1
+ �*3

and implying that there is a 1-to-1 constraint between !1 ⊕ �*1
and !3 ⊕ �*3

.

This “removal” can be done for the following reason. Write �*2
= � ⊕ �, � ∩ � = {0} where

(a) � is the span of all vectors E4 such that the equation 4 occurs in *2, but also occurs in *1

or *3, and hence � ⊆ �*1
+ �*3

. (b) � is the span of all vectors E4 such that the equation 4

occurs in *2, but not in *1 nor in *3. Any such equation 4 shares at most one variable with

*1 and at most one variable with *3 and no variable with *2 \ 4. Hence there is a variable

that is “private” to 4, meaning it does not occur in *1 ∪ *3 ∪ (*2 \ 4). In particular, the

“private” variables of the equations contributing to � are distinct. Thus the intersection of � and

!1 + !3 + �*1
+ �*3

⊆ {0, 1}*1 ⊕ {0, 1}*3

is {0}. To summarize, we can write Equation (7.3) as

!1 + (�*1
+ �*3

+ �) + � = !3 + (�*1
+ �*3

+ �) + � ,

which simplifies to

(!1 + �*1
+ �*3

) + � = (!3 + �*1
+ �*3

) + � ,
and we can now safely “remove” �, using Fact C.6.
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We now consider the case when the constraint between !2 ⊕ �*2
, !3 ⊕ �*3

is 2-to-2. We

have Equation (7.1) as before, but instead of Equation (7.2), we now have

dim(!2 + �*2
+ �*3

) = dim(!3 + �*2
+ �*3

) = dim(!2 + !3 + �*2
+ �*3

) − 1 . (7.4)

We claim that one can “add” �*1
to all three “sums” in Equation (7.4). Arguing as earlier, one

can write �*1
= �′ ⊕ �′, �′ ∩ �′ = {0} where �′ ⊆ �*2

+ �*3
and �′ is linearly independent

of {0, 1}*2 + {0, 1}*3

. Thus “adding” �*1
to all three “sums,” increases the dimension of each

“sum” by precisely dim(�′). Thus

dim(!2 +�*1
+�*2

+�*3
) = dim(!3 +�*1

+�*2
+�*3

) = dim(!2 + !3 +�*1
+�*2

+�*3
) − 1 .

Using Equation (7.1) and “substituting,” we get

dim(!1 +�*1
+�*2

+�*3
) = dim(!3 +�*1

+�*2
+�*3

) = dim(!1 + !3 +�*1
+�*2

+�*3
) − 1 .

Now, arguing as earlier again, we “remove” �*2
from all three “sums.” One can write

�*2
= � ⊕ �, � ∩ � = {0} where � ⊆ �*1

+ �*3
and � intersects !1 + !3 + �*1

+ �*3
only at

{0}. Thus “removing” �*2
from all three “sums,” decreases the dimension of each “sum” by

precisely dim(�). Thus

dim(!1 + �*1
+ �*3

) = dim(!3 + �*1
+ �*3

) = dim(!1 + !3 + �*1
+ �*3

) − 1 ,

implying that there is a 2-to-2 constraint between !1 ⊕ �*1
and !3 ⊕ �*3

. �

Lemma 7.2. Let B1 = !1 ⊕ �*1
, B2 = !2 ⊕ �*2

, B3 = !3 ⊕ �*3
be vertices in �2:2 such that there is

1-to-1 constraint between (B1 , B2) and a constraint between (B2 , B3). Then the constraint between (B1 , B3)
(as guaranteed by Lemma 7.1) is a composition of the constraints between (B1 , B2) and (B2 , B3).

Specifically, if linear functions (respecting relevant side conditions) 5 on !1 ⊕ �*1
, , on !2 ⊕ �*2

,
and ℎ on !3 ⊕ �*3

are such that ( 5 , ,) satisfy (B1 , B2) and (, , ℎ) satisfy (B2 , B3), then ( 5 , ℎ) satisfy
(B1 , B3).

Proof. In the following, whenever we construct a linear function on a certain space, it will always

respect the side condition contained in that space. Since (, , ℎ) satisfy the constraint (B2 , B3),
there is a linear function � on, = !2 + !3 +�*2

+�*3
that respects side conditions on �*2

and

�*3
and

, = � |!2⊕�*
2

, ℎ = � |!3⊕�*
3

.

Let / =, + �*1
and extend the linear function � on, uniquely to a linear function � on / so

as to respect the side condition �*1
. This is possible because every equation in*1 that does not

appear in*2 or*3 has a “private variable,” as in the proof of the previous lemma. We note that

� |!2⊕�*
2

= (� |, )|!2⊕�*
2

= � |!2⊕�*
2

= , ,

� |!3⊕�*
3

= (� |, )|!3⊕�*
3

= � |!3⊕�*
3

= ℎ .
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Since there is a 1-to-1 constraint (B1 , B2), we have

!1 + �*1
+ �*2

= !2 + �*1
+ �*2

.

It therefore holds that

/ = !2 + !3 + �*1
+ �*2

+ �*3
⊇ !2 + �*1

+ �*2
= !1 + �*1

+ �*2
⊇ !1 ⊕ �*1

.

Since � is an assignment on /, by Remark 4.1, � |!1⊕�*
1

and � |!2⊕�*
2

= , satisfy the constraint

(B1 , B2). However ( 5 , ,) is supposed to satisfy this 1-to-1 constraint, and hence we must have

5 = � |!1⊕�*
1

. Now we have 5 = � |!1⊕�*
1

and ℎ = � |!3⊕�*
3

and by Remark 4.1, ( 5 , ℎ) satisfy the

constraint (B1 , B3). �

8 Covering property

The goal of this section is to prove the covering property, namely Lemmas 4.6 and 4.7.

Proof of Lemma 4.7 from Lemma 4.6

Let *,+, :, �, ℓ ,ℒ ,ℒ′, @, &,ℒ& ,ℒ′& be as in Definition 4.5 and Lemmas 4.6 as in 4.7. Let

Q ,Q′ be distributions over @-dimensional subspaces of {0, 1}* that are analogous to ℒ ,ℒ′,
respectively (i. e., as in Definition 4.5, with parameter @ instead of ℓ ). It is easily observed that an

equivalent way to sample from Q and Q′) is to sample an ℓ -space ! from ℒ and ℒ′), respectively,
and then sample a uniformly random @-dimensional subspace of !. We stress that Q and ℒ are

uniform distributions on @-dimensional and ℓ -dimensional subspaces of {0, 1}* , respectively.
We have the sequence of arguments

E
&∼Q

[
SD(ℒ& ,ℒ′&)

]
=

∑
&

Pr [Q = &]
∑
!⊇&

���Pr

[
ℒ& = !

]
− Pr

[
ℒ′& = !

] ���
=

∑
&

∑
!⊇&

���Pr [Q = &] · Pr

[
ℒ& = !

]
− Pr [Q = &] · Pr

[
ℒ′& = !

] ���
6

∑
&

∑
!⊇&

���Pr [Q = &] · Pr

[
ℒ& = !

]
− Pr [Q′ = &] · Pr

[
ℒ′& = !

] ��� +∑
&

∑
!⊇&

���Pr [Q′ = &] · Pr

[
ℒ′& = !

]
− Pr [Q = &] · Pr

[
ℒ′& = !

] ���
=

∑
!

���Pr [ℒ = !] − Pr [ℒ′ = !]
��� +∑

&

���Pr [Q′ = &] − Pr [Q = &]
��� ∑
!⊇&

Pr

[
ℒ′& = !

]
= SD(ℒ ,ℒ′) + SD(Q ,Q′) ,
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where we used triangle inequality and the fact that sampling & ∈ Q and then ! ∼ ℒ& is

equivalent to sampling ! ∼ ℒ and similarly, sampling & ∈ Q′ and then ! ∼ ℒ′
&
is equivalent to

sampling ! ∼ ℒ′. Now Lemma 4.6 upper bounds both SD(ℒ ,ℒ′) and SD(Q ,Q′) by �
√
: · 2ℓ+4

and hence

E
&∼Q

[
SD(ℒ& ,ℒ′&)

]
6 �
√
: · 2ℓ+5 .

Lemma 4.7 now follows by Markov’s inequality.

Proof of Lemma 4.6

We recall that*, |* | = 3: is a set of 3: variables in : equations. A subset + ⊆ * is chosen by

choosing independently for each equation, one of the variables in the equation with probability

� and all three variables in the equation with probability 1− �. The expected size of+ is 3:−2�:
and except with probability 2

−Ω(:)
, we have |+ | > 2:.

We note that choosing a uniformly random ℓ -subspace ! of {0, 1}* (resp. {0, 1}+ ) is
equivalent to choosing uniformly a sequence of points G1 , . . . , Gℓ in {0, 1}* (resp. {0, 1}+ ) that
are linearly independent and letting ! = Span(G1 , . . . , Gℓ ). Since a uniformly random and

independent sequence of points G1 , . . . , Gℓ in {0, 1}* (resp. in {0, 1}+ ) is linearly independent

except with probability 6 2
ℓ−dim(*)

(resp. 6 2
ℓ−dim(+)

, see Fact C.4), we might as well focus on

such sequences of points. It is thus enough to bound the statistical distance between distributions

D ,D′ over ({0, 1}* )ℓ sampled as:

• D: Choose uniformly and independently G1 , . . . , Gℓ ∈ {0, 1}* .

• D′: Choose + ⊆ * , choose uniformly and independently G′
1
, . . . , G′

ℓ
∈ {0, 1}+ and regard

them as points in {0, 1}* (by appending 0 in coordinates* \+).

We now observe that since the process of choosing + ⊆ * is independent over the : equations,

D = S: and D′ = S′: where S ,S′ are the “basic” distributions exactly as above, but with

: = 1, |* | = 3. A bound on the statistical distance between D ,D′ now follows in the same

manner as in [34, Lemma 3.1], by bounding the Hellinger distance between S ,S′, using the

multiplicativity of the Hellinger distance to bound the Hellinger distance between D ,D′
and finally, bounding the Hellinger distance in terms of the statistical distance. We observe

how a bound on Hellinger distance between S ,S′ also follows already from the proof of [34,

Lemma 3.1]. Re-writing the sampling process for S ,S′ for convenience (this is the special case
: = 1, |* | = 3):

• S: Choose uniformly at random G1 , . . . , Gℓ ∈ {0, 1}3.

• S′: With probability 1 − �, choose uniformly at random G1 , . . . , Gℓ ∈ {0, 1}3. Otherwise:

Choose uniformly at random 11 , . . . , 1ℓ ∈ {0, 1}. Output with probability
�
3
each,

1100, . . . , 1ℓ00, or 0110, . . . , 01ℓ0, or 0011 , . . . , 001ℓ .
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The distributions S ,S′ are over ({0, 1}3)ℓ which is equivalent to Σ3
with Σ = {0, 1}ℓ , where the

first, second, and third coordinate in Σ3
correspond to the concatenation of the first, second, and

third coordinate, respectively, in the ℓ output triplets. Note that 0
ℓ ∈ Σ. Denoting the uniform

distribution over Σ by Uniform(Σ), it is seen that

S = (Uniform(Σ),Uniform(Σ),Uniform(Σ)) ,

i. e., three independent and uniform copies of Σ, whereas,

S′ = (1 − �) (Uniform(Σ),Uniform(Σ),Uniform(Σ)) +
�

3

(
Uniform(Σ), 0ℓ , 0ℓ

)
+ �

3

(
0
ℓ ,Uniform(Σ), 0ℓ

)
+ �

3

(
0
ℓ , 0ℓ ,Uniform(Σ)

)
.

With this viewpoint, the Hellinger distance between S ,S′ is calculated to be at most 4�2 |Σ|2 in
the proof of [34, Lemma 3.1]. The statistical distance betweenD ,D′ is then at most 16�

√
: · |Σ|.

Appendix

A Reduction from 2-to-2 Games to the Independent Set Problem

In this section, we present a reduction from the (Transitive) 2-to-2 Games problem to the

Independent Set problem, proving Theorem 1.7. The reduction is along the lines of [14, 26, 33],

using the Biased Long Code and analytic theorems of Russo, Margulis and Friedgut, introduced

in [14]. Some care is required to handle the transitivity feature.

A.1 Biased Long Code

While the Biased Long Code can be viewed as an encoding scheme, it is more convenient to

take a combinatorial view and treat it as a weighted Kneser graph. The valid codewords then

amount to certain large (in fact the largest) independent sets in this graph. The analysis of the

Biased Long Code amounts to a structural theorem about independent sets of moderately large

(= linear) size.

Definition A.1. For a bias parameter ? ∈ (0, 1) and alphabet Σ, the vertex set of weighted

Kneser graph �?[Σ] is P(Σ), the family of all subsets of Σ. The weight of a vertex � ⊆ Σ is

�?(�) = ? |�|(1 − ?)|Σ|−|�|. The edge set is { (�, �) | �, � ⊆ Σ, � ∩ � = ∅}.

It can be shown easily that the largest independent sets in �?[Σ] have weight ?. These are

precisely the sets ��0
= {� | �0 ∈ �} for any fixed �0 ∈ Σ.

Definition A.2. For a set family ℱ ⊆ P(Σ), let �?(ℱ ) denote its weight under �? . Let � ∼ �?
denote the process of picking a set � ⊆ Σ according to the distribution �? . For a fixed element

� ∈ Σ, let Infl�(ℱ ) denote its influence on the family ℱ defined as

Infl�(ℱ ) = Pr

�∼�?

[
Exactly one of the pair � and �Δ{�} is in ℱ

]
.
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The average sensitivity of a family as?(ℱ ) is the sum of all influences, i. e.,

as?(ℱ ) =
∑
�∈Σ

Infl�(ℱ ) .

A.2 The reduction

Let � = (+, �,Φ,Σ) be the instance of a Transitive 2-to-2 Game as in Conjecture 1.6. The

parameters 9 and � therein will be chosen later. The Independent Set instance �′ = (+′, �′) is
defined as follows. Set the parameter ? = 1 − 1√

2

− �. The vertex set of the instance is

+′ = { (G, �) | G ∈ +, � ⊆ Σ} .

The weight of the vertex (G, �) is 1

|+ | · �?(�), so that the total weight of all the vertices is 1. The

edge set is

�′ = { ((G1 , �1), (G2 , �2)) | (G1 , G2) ∈ � ∧ ∀ �1 ∈ �1 , �2 ∈ �2 , (�1 , �2) ∉ Φ(G1 , G2)} .

In words, there is a cloud of vertices for every G ∈ + . For every constraint (G1 , G2) ∈ �, there
are cross edges between the respective clouds. There is an edge between (G1 , �1), (G2 , �2) if
there is no pair of colors in the sets �1 , �2 that satisfy the constraint on (G1 , G2). 20

A.3 Completeness

Let C : - → Σ be a (1, 1−�)-coloring of the game � = (+, �,Φ,Σ)where - ⊆ + , |- | = (1−�)|+ |.
The coloring satisfies all the constraints inside -. Consider the set of vertices in �′(+′, �′),

�
34 5
= { (G, �) | G ∈ -, C(G) ∈ �} .

Clearly, the set � includes a weight ? of the vertices inside the cloud for every G ∈ -. Hence

the weight of � is (1 − �)? > 1 − 1√
2

− 2�. We observe that � is an independent set. For every

pair of vertices (G, �), (G′, �′) ∈ �, we show that there is no edge between them in �′. Since the
coloring C satisfies the constraint (G, G′), we have (C(G), C(G′)) ∈ Φ(G, G′). By definition of the

set �, we have C(G) ∈ �, C(G′) ∈ �′. Thus �, �′ contain a consistent pair of colors, so there is no

edge between (G, �) and (G′, �′).

A.4 Soundness

We begin by stating two auxiliary lemmas towards the soundness analysis. The relevance of the

2-to-2-ness of the constraints and the choice of ? ≈ 1 − 1√
2

is apparent from the statements of

these lemmas. Let Σ and Γ be alphabets such that |Γ| = |Σ|
2
and � : Σ→ Γ be a 2-to-1 map. For

� ⊆ Σ, its projection �(�) ⊆ Γ is defined naturally as {�(�)|� ∈ �}. For a family ℱ ⊆ P(Σ), the
projected family �(ℱ ) ⊆ P(Γ) is defined naturally as {�(�)|� ∈ ℱ }. For a subset � ⊆ Γ, the set
�−1(�), |�−1(�)| = 2|� | is defined naturally as {� |� ∈ Σ, �(�) ∈ �}.

20One could add edges inside each cloud according to the Kneser graph. The reduction does not need it though.
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Lemma A.3. For @ ∈ (0, 1), �
1−(1−@)2(�(ℱ )) > �@(ℱ ).

Proof. For every � ⊆ Γ, we define �↑(�) = {� ⊆ Σ|�(�) = �}. We observe that

• �
1−(1−@)2(�) = �@(�↑(�)).

• The families �↑(�) over all � ⊆ Γ form a partition of the family P(Σ).

The lemma follows by noting that

�
1−(1−@)2(�(ℱ )) =

∑
�∈�(ℱ )

�
1−(1−@)2(�) =

∑
�∈�(ℱ )

�@(�↑(�)) >
∑

�∈�(ℱ )
�@(�↑(�) ∩ ℱ ) = �@(ℱ ) . �

Lemma A.4. Let ℱ ⊆ P(Σ), ℱ ′ ⊆ P(Σ′) be two families, each of weight strictly larger than 1

2
under

the distribution �@ with @ = 1 − 1√
2

. Let � : Σ→ Γ, �′ : Σ′→ Γ be 2-to-1 maps (so |Σ| = |Σ′ | = 2|Γ|).
Then there exist � ∈ ℱ , �′ ∈ ℱ ′ such that �(�) ∩ �′(�′) = ∅.

Proof. We note that 1 − (1 − @)2 = 1

2
and from Lemma A.3, � 1

2

(�(ℱ )) > �@(ℱ ) > 1

2
and similarly

� 1

2

(�′(ℱ ′)) > 1

2
. Thus �(ℱ ) and �′(ℱ ′) are families, each containing more than half (in the usual

counting sense) of the sets from P(Γ). Hence there must exist � ∈ �(ℱ ), �′ ∈ �′(ℱ ′) that are
complements of each other and in particular � ∩ �′ = ∅. �

We now present the soundness analysis. Given a maximal independent set � of weight at

least � in �′, we show how to construct a (9 , �)-coloring for � = (+, �,Φ,Σ)where 9 , � depend

only on �. For every G ∈ �, consider the part of � inside the cloud of G,

ℱG = {� | � ⊆ Σ, (G, �) ∈ �} .

Claim A.5. The family ℱG is monotone.

Proof. Otherwise, there are � ⊆ � such that � ∈ ℱG and � ∉ ℱG . Then � ∪ {(G, �)} is an

independent set larger than �, contradicting the maximality of �. �

Since the independent set � has weight �, by an averaging argument, there is a set - ⊆
+, |- | > �

2
· |+ | such that � includes a weight > �

2
of vertices from the cloud of G, i. e., �?(ℱG) > �

2

for G ∈ -.

Theorem A.6 (Russo – Margulis [40, 35]). Suppose ℱ is a monotone family. Then �@(ℱ ) is an
increasing function of @ and

3�@(ℱ )
3@

= as@(ℱ ) .

Claim A.7. There exists ?′ ∈ (?, ? + �) such that

E
G∈-

[
as?′(ℱG)

]
6

1

�
.
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Proof. By Lagrange’s mean value theorem, it follows that there exists ?′ ∈ (?, ? + �) such that

E
G∈-

[
as?′(ℱG)

]
=

3

3@

(
E
G∈-

[
�@(ℱG)

] )���
@=?′

=
EG∈-

[
�?+�(ℱG)

]
− EG∈-

[
�?(ℱG)

]
�

6
1

�
. �

From Claim A.7 and an averaging argument, there is a set -′ ⊆ -, |-′ | > |- |
2

such that

for all G ∈ -′, as?′(ℱG) 6 2

� . A theorem of Friedgut states that families with bounded average

sensitivity are well-approximated by “juntas.”

Definition A.8 (Junta). A family ℱ ⊆ P(Σ) is called a 9-junta, if there exists � ⊆ Σ, |� | = 9 such

that the membership of a set � in ℱ is determined by only � ∩ �.

Theorem A.9 (Friedgut [17]). There exists �(@) > 1 such that for every ℱ ⊆ %(Σ) and every accuracy
parameter � > 0, there exists ℱ ′ ⊆ %(Σ) that is a 9-junta and

• 9 = �(@)as@(ℱ )/� .

• �@(ℱ Δℱ ′) 6 �.

Fix G ∈ -′ and set �
34 5
= �

20
. Since as?′(ℱG) 6 2

� , it follows from Friedgut’s Theorem that ℱG
is �-close to a :-junta with : = �(?′)2/(��). Let �G ⊆ Σ denote the set of elements on which the

junta depends. Clearly, the set-family that is a junta on �G and is closest to ℱG is the “majority

vote” on each setting of �G , namely

[ℱG] 1
2

34 5
=

{
� ∪ �′ | � ⊆ Σ \ �G , �′ ⊆ �G , Pr

�⊆Σ\�G , �∼�?′
[� ∪ �′ ∈ ℱG] >

1

2

}
.

The following claim shows that the family [ℱG] 3
4

is also close to ℱG (and will be more useful to

work with):

[ℱG] 3
4

34 5
=

{
� ∪ �′ | � ⊆ Σ \ �G , �′ ⊆ �G Pr

�⊆Σ\�G , �∼�?′
[� ∪ �′ ∈ ℱG] >

3

4

}
.

Claim A.10. �?′(ℱGΔ[ℱG] 3
4

) 6 5�.

Proof. Let ℱ ∗ ⊆ P(�G) be the family of subsets � ⊆ �G such that

1

2

< Pr

�⊆Σ\�G , �∼�?′
[� ∪ � ∈ ℱG] 6

3

4

.

Notice that for each such � (a) at least
1

4
(weighted) fraction of its extensions to Σ are not in ℱG

(b) each extension is in [ℱG] 1
2

(c) no extension is in [ℱG] 3
4

. Hence

1

4

· Pr

�⊆�G , �∼�?′
[� ∈ ℱ ∗] 6 �?′(ℱGΔ[ℱG] 1

2

) 6 � .
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It follows that

�([ℱG] 1
2

Δ[ℱG] 3
4

) = Pr

�⊆�G , �∼�?′
[� ∈ ℱ ∗] 6 4� .

We finish the proof using the triangle inequality,

�?′(ℱGΔ[ℱG] 3
4

) 6 �?′(ℱGΔ[ℱG] 1
2

) + �?′([ℱG] 1
2

Δ[ℱG] 3
4

) 6 5� . �

Claim A.11. [ℱG] 3
4

≠ ∅.

Proof. Using the triangle inequality, the previous claim, and that � = �
20
,

�?′([ℱG] 3
4

) > �?′(ℱG) − �?′(ℱGΔ[ℱG] 3
4

) > �
2

− 5� > 0 . �

Definition A.12. The extended junta ��(G) of G is defined by

��(G) = �G ∪
{
� ∈ Σ | Infl�(ℱG) > 2

−10:
}
.

We note that for G ∈ -′, as?′(ℱG) 6 2

� and since the average sensitivity is the sum of all

influences, |��(G)| 6 9 = : + 2·210:

� . Our coloring to the game � = (+, �,Φ,Σ) will assign, to

every G ∈ -′, a set of at most 9 colors ��(G). We now show that this is indeed a (9 , �)-coloring.
Firstly,

|-′ | > |- |
2

>
�
4

|+ | > � |+ |

as � will be chosen accordingly. Secondly, we need to show that every constraint (G1 , G2) inside
-′ is satisfied in the sense of Definition 1.5. Fix any such constraint. It is a 2-to-2 or a 1-to-1

constraint. Our main soundness lemma below takes care of the 2-to-2 case, and the 1-to-1 case

then follows directly from the transitivity of the game.

Lemma A.13. Suppose G1 , G2 ∈ -′ are such that (G1 , G2) is a 2-to-2 constraint. Then there exist
consistent colors for G1 , G2 in their respective extended juntas. i. e., there exist �1 ∈ ��(G1), �2 ∈ ��(G2)
such that (�1 , �2) ∈ Φ(G1 , G2).

Proof. It will be convenient to think of the 2-to-2 constraint in terms of a pair of 2-to-1 maps

�1 : Σ1 → Γ,�2 : Σ2 → Γ. Here Σ1 = Σ2 = Σ are the same alphabet, but it will be convenient to

think of them as separate. A coloring (01 , 02) to vertices (G1 , G2) satisfies the 2-to-2 constraint if

and only if �1(01) = �2(02). Assume towards a contradiction that there is no pair of consistent

colors in the extended juntas for G1 and G2. The assumption can be stated as

�1(��(G1)) ∩ �2(��(G2)) = ∅ .

Note in particular that �G2
⊆ ��(G2) and hence

�1(��(G1)) ∩ �2(�G2
) = ∅ . (A.1)
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Our goal is to exhibit �1 ∈ ℱG1
, �2 ∈ ℱG2

such that �1(�1) ∩ �2(�2) = ∅. We will zero in on such

�1 , �2 in progressive manner. We consider the case of �1, the other case being similar. We zero

in on a sequence of sets,

�1 ⊆ �1 ⊆ �1 ⊆ �1 ,

that are contained, respectively, in a progressively expanding “universe of focus”

�G1
⊆ �−1

1
(�1(�G1

)) ⊆ �−1

1
(�1(�G1

)) ∪ �−1

1
(�2(�G2

)) ⊆ Σ1 .

We clarify that the set �−1

1
(�1(�G1

)) is a superset of �G1
and can have size up to 2|�G1

| since that map

�1 is 2-to-1. The weights (sizes) of set-families are with respect to �?′, unless stated otherwise.

• Recalling the definition of [ℱG1
] 3

4

and using Claim A.11, there is �1 ⊆ �G1
such that at least

3

4
of its extensions outside �G1

are in ℱG1
.

• We let �1 = �1 ∪
(
�−1

1
(�1(�G1

)) \ �G1

)
. Due to monotonicity of ℱG1

, at least
3

4
of extensions

of �1 outside �−1

1
(�1(�G1

)) are in ℱG1
.

• We now retain �1 as is, but consider it as subset of enlarged universe �−1

1
(�1(�G1

)) ∪
�−1

1
(�2(�G2

)). The elements added to the enlarged universe, namely �−1

1
(�2(�G2

)) are
outside of ��(G1) (using Equation (A.1)), hence have influence at most 2

−10:
, and are at

most 2: in number. The fraction of extensions of �1 outside �−1

1
(�1(�G1

)) ∪ �−1

1
(�2(�G2

))
remains at least

3

4

− 2
−10: · ?′−2:−1(1 − ?′)−2:−1 >

5

8

.

Using a similar argument for G2, to summarize, there exist

�1 ⊆ �1 = �−1

1
(�1(�G1

)) ∪ �−1

1
(�2(�G2

)), �2 ⊆ �2 = �−1

2
(�1(�G1

)) ∪ �−1

2
(�2(�G2

))

such that at least
5

8
of their extensions outside �1 and �2 are in ℱG1

and ℱG2
, respectively. Note

that

�1(�1) ∩ �2(�2) = ∅ . (A.2)

We are almost done. Denote

ℱ1 = {(1 ⊆ Σ1 \ �1 | �1 ∪ (1 ∈ ℱG1
}, ℱ2 = {(2 ⊆ Σ2 \ �2 | �2 ∪ (2 ∈ ℱG2

} ,

so that �?′(ℱ1) > 5

8
and due to monotonicity, letting @ = 1 − 1√

2

> ?′, �@(ℱ1) > 5

8
, and similarly

�@(ℱ2) > 5

8
. Applying LemmaA.4 to ℱ1 , ℱ2 along with 2-to-1 maps �1 : Σ1 \�1 → Γ\�1(�1) and

�2 : Σ2 \ �2 → Γ \ �2(�2) (we have �1(�1) = �2(�2) = �G1
∪ �G2

), there exist �∗
1
⊆ Σ1 \ �1 , �

∗
2
⊆

Σ2 \ �2 such that

�1(�∗
1
) ∩ �2(�∗

2
) = ∅ . (A.3)

Finally, letting �1 = �1 ∪ �∗
1
and �2 = �2 ∪ �∗

2
, and using Equations (A.2) and (A.3), we conclude

that �1 ∈ ℱG1
, �2 ∈ ℱG2

, �1(�1) ∩ �2(�2) = ∅ as desired. �
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Finally, we handle the 1-to-1 constraints inside -′. Let �-′ be the subgraph of �(+, �,Φ,Σ)
induced on -′. The transitivity of the game, as per Definition 1.4, then implies that � |-′ can be

partitioned into cliques C1 , . . . , C< such that

• All constraints inside a clique CA are 1-to-1, i. e., matchings on Σ × Σ. For any G, H, I ∈ CA ,
the matchings between (G, H), (H, I) can be composed to derive the matching between

(G, I).

• For A ≠ B, either there is no edge between CA , CB or there is a complete bipartite graph

between CA , CB with all constraints being 2-to-2. In the latter case, for any G, H ∈ CA and
I ∈ CB , the 2-to-2 constraint (G, I) is a composition of the 1-to-1 constraint (G, H) and the

2-to-2 constraint (H, I).
These considerations show that all vertices inside a clique �A play an essentially identical

role. Therefore, in a maximal independent set �, for any G, H ∈ CA , the families ℱG , ℱH ⊆ P(Σ)
are identical up to the permutation of Σ that defines the 1-to-1 constraint (G, H), and hence

the color-sets ��(G), ��(H) are identical up to the (same) permutation. This shows that 1-to-1

constraints are satisfied in the sense of Definition 1.5.

B “ℓ -space vs 1-space” Linearity Test

In this section, we present and analyze “ℓ -space vs 1-space” linearity test. The analysis is Fourier

analytic and, as is standard, it is convenient to think of boolean values as {−1, 1} and replace

addition over F2 by product of the signs {−1, 1}. A function 5 : Ω = {−1, 1}= → {−1, 1} is linear
if 5 (G) 5 (H) = 5 (G · H) for all G, H ∈ Ω and G · H denotes the coordinatewise product of G, H.

The ℓ -space vs 1-space Linearity Test

For Ω = {−1, 1}= , let ℬ and ℒ denote the set of all 1-dimensional and ℓ -dimensional subspaces

ofΩ. Let � and � be tables that assign, for � ∈ ℬ and ! ∈ ℒ, linear functions �[�] : �→ {−1, 1}
and �[!] : ! → {−1, 1} on the respective subspaces. The test picks a pair (�, !) uniformly at

random with � ⊆ !, � ∈ ℬ , ! ∈ ℒ and accepts if

�[!]|� ≡ �[�] .
Our result is the following:

Theorem B.1. LetΩ,ℬ ,ℒ and parameters =, ℓ , 1 6 1 6 ℓ
4
be as in the description of the test above. Let

� and � be tables that assign linear functions to � ∈ ℬ and ! ∈ ℒ, respectively. Suppose the tables pass
the linearity test with probability at least 1

2
1 + � where � > 2

2−1/4, i. e.,

Pr

�⊆!,�∈ℬ ,!∈ℒ
[�[!]|� ≡ �[�]] >

1

2
1
+ � .

Then there exists a global linear function , : Ω→ {−1, 1} that agrees with at least �3

300
fraction of the

ℓ -spaces, that is

Pr

!∈ℒ
[�[!] ≡ , |!] >

�3

300

.
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The rest of the section is devoted to proving Theorem B.1. We start by viewing the entire

table �[·] as a function 5 : {−1, 1}=1 → {−1, 1}1 as follows. In notation, for (E1 , . . . , E1) ∈
({−1, 1}=)1 = {−1, 1}=1 ,

5 (E1 , . . . , E1) = (�[Span(E1 , . . . , E1)](E1), . . . , �[Span(E1 , . . . , E1)](E1)) .

In words, to evaluate 5 (E1 , . . . , E1), one considers the 1-space � = Span(E1 , . . . , E1), and the

linear function �[�] on �. The linear function assigns, in particular, {−1, 1}-values to the vectors

E1 , . . . , E1 . The list of these 1 values is defined to be 5 (E1 , . . . , E1). Since the output of 5 is a

string of length 1, we can think of 5 as a collection of {−1, 1}-valued functions, 51 , . . . , 51 , one

for each output coordinate. In notation, 58 : {−1, 1}=1 → {−1, 1} is defined as

58(E1 , . . . , E1) = �[Span(E1 , . . . , E1)](E8) .

Wemustmake a couple of clarifying remarks. First, when the input vectors {E1 , ..., E1} are linearly
dependent, then their span � has dimension less than 1 and �[�] is undefined. However the

fraction of such inputs is negligible (at most 2
1−=

) and on those inputs 5 can be defined arbitrarily

without affecting the analysis. Second, since the same 1-space may have different bases, 5 has

many symmetries, e. g., 51(E1 , ..., E1) = 52(E2 , E1 , ..., E1). We will use these symmetries, but not

in any explicit manner.

B.1 The Gowers Test

The main idea behind the analysis is to use a “Gowers Test” as an auxiliary tool. We can relate

the acceptance probability of the ℓ -space vs 1-space test to that of the acceptance probability of

the Gowers Test. The Gowers Test allows us to conveniently switch from local considerations to

global considerations. Let
®
1 denote a 1-dimensional vector with all coordinates 1.

Definition B.2. [The Gowers Test] Given ℎ : {−1, 1}=1 → {−1, 1}1 , pick G, H, I ∈ {−1, 1}=1
randomly and check if

ℎ(G)ℎ(H)ℎ(I)ℎ(G · H · I) = ®1 .

Represent a function ℎ : {−1, 1}=1 → {−1, 1}1 as ℎ = (ℎ1 , . . . , ℎ1) where ℎ8 are the coordi-

natewise functions. For ) ⊆ [1], let ℎ) =
∏

8∈) ℎ8 be the product functions. The lemma below

expresses the probability of ℎ passing the Gowers Test in terms of the Fourier coefficients of

products of functions ℎ) .

Lemma B.3. The probability that ℎ : {−1, 1}=1 → {−1, 1}1 passes the Gowers Test is:

Pr

G,H,I∈{−1,1}=1

[
ℎ(G)ℎ(H)ℎ(I)ℎ(G · H · I) = ®1

]
=

1

2
1
+ 1

2
1

∑
)⊆[1],)≠∅

∑
(⊆[=1]

ℎ̂4

)(() .
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Proof. For the test to pass, it must pass on every coordinate. Thus,

Pr

G,H,I∈{−1,1}=1

[
ℎ(G)ℎ(H)ℎ(I)ℎ(G · H · I) = ®1

]
= E
G,H,I∈{−1,1}=1

[
1∏
8=1

1 + ℎ8(G)ℎ8(H)ℎ8(I)ℎ8(G · H · I)
2

]
=

1

2
1
+ 1

2
1

∑
)⊆[1],)≠∅

E
G,H,I∈{−1,1}=1

[ℎ)(G)ℎ)(H)ℎ)(I)ℎ)(G · H · I)]

=
1

2
1
+ 1

2
1

∑
)⊆[1],)≠∅

∑
(⊆[=1]

ℎ̂4

)(() . �

Themain trick is that LemmaB.3 is applied globally aswell as locally and then the information

gained from the two applications is combined. Globally, the lemma is applied to the function

5 : {−1, 1}=1 → {−1, 1}1 that (essentially) represents the entire assignment {�[�]|� ∈ ℬ}.
Locally, for a fixed ℓ -space !, the lemma is applied to the function , : {−1, 1}ℓ1 → {−1, 1}1
that represents, in a similar manner, the assignment {�[�]|� ⊆ !} (i. e., only the assignment to

1-spaces that are contained in !). We present the local application first.

Fix an ℓ -space !. Locally, ! can be identified with {−1, 1}ℓ and the linear function �[!] on it

can be identified with a Fourier character "( for some ( ⊆ [ℓ ]. The assignment {�[�]|� ⊆ !}
can be represented, in a similar manner as before, by a function , : {−1, 1}ℓ1 → {−1, 1}1 ,
, = (,1 , . . . , ,1)where for (F1 , . . . , F1) ∈ ({−1, 1}ℓ )1 = {−1, 1}ℓ1 ,

,8(F1 , . . . , F1) = �[Span(F1 , . . . , F1)](F8) .
We note that , really is the restriction of 5 to !1 . As before, for ) ⊆ [1], let ,) =

∏
8∈) ,8 be

the product functions. We now relate the probability that , passes the Gowers Test with the

probability that the linearity test passes for the fixed !, i. e., the probability that �[!]|� = �[�]
for a random � ⊆ !. Let 1 − � be the probability that random vectors F1 , . . . , F1 ∈ {−1, 1}ℓ are
linearly independent, so that � 6 2

1−ℓ
is negligible. Thus choosing a random 1-dimensional

subspace of ! is essentially same as choosing 1 random vectors from ! = {−1, 1}ℓ . We now have

(1 − �) · Pr

�⊆!
[�[!]|� = �[�]] 6 Pr

F1 ,...,F1∈{−1,1}ℓ

[
∧18=1

�[!](F8) = �[Span(F1 , . . . , F1)](F8)
]

= Pr

F1 ,...,F1∈{−1,1}ℓ

[
∧18=1

"((F8) = ,8(F1 , . . . , F1)
]

= E
F1 ,...,F1∈{−1,1}ℓ

[
1∏
8=1

1 + "((F8),8(F1 , . . . , F1)
2

]
=

1

2
1
+ 1

2
1

∑
)⊆[1],)≠∅

E
F1 ,...,F1∈{−1,1}ℓ

[
,)(F1 , . . . , F1)

∏
8∈)

"((F8)
]

=
1

2
1
+ 1

2
1

∑
)⊆[1],)≠∅

,̂)(()) ,
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where () ⊆ [ℓ1] is defined as (()(1), . . . , ()(1)) and ()(8) ⊆ [ℓ ] equals ( if 8 ∈ ) and equals ∅ if
8 ∉ ). Hence noting that � 6 2

1−ℓ
,

Pr

�⊆!
[�[!]|� = �[�]] 6

1

2
1
+ 2 · 21−ℓ + 1

2
1

∑
)⊆[1],)≠∅

,̂)(()) .

Now we take average of this inequality over the choice of ! ∈ ℒ and note that the L.H.S. then

equals the probability that the linearity test accepts (which is > 1

2
1 + �). This gives

�
2

6 � − 2 · 21−ℓ 6 E
!∈ℒ

 1

2
1

∑
)⊆[1],)≠∅

,̂)(())
 .

We keep in mind that , and ( depend on the choice of !. Using convexity of the function G → G4
,

we get

�4

16

6 E
!∈ℒ

 1

2
1

∑
)⊆[1],)≠∅

,̂4

)(())
 .

Applying Lemma B.3 to , : {−1, 1}1ℓ → {−1, 1}1 , we get

�4

16

6 E
!∈ℒ

[
Pr

[
, passes Gowers Test

] ]
.

Now we relate the R.H.S. to the probability that 5 passes the Gowers Test, using the fact that ,
really is the restriction of 5 to !1 . Let G = (G1 , . . . , G1), H = (H1 , . . . , H1), I = (I1 , . . . , I1) where

G8 , H8 , I8 are either in ! or in the global space {−1, 1}= , as understood from the context. We

would like to argue as

�4

16

6 E
!∈ℒ

[
Pr

[
, passes the Gowers Test

] ]
= Pr

!∈ℒ , G8 ,H8 ,I8∈!

[
,(G),(H),(I),(G · H · I) = ®1

]
≈ Pr

G8 ,H8 ,I8∈{−1,1}=

[
5 (G) 5 (H) 5 (I) 5 (G · H · I) = ®1

]
= Pr

[
5 passes the Gowers Test

]
.

This is an almost correct argument, except that the distribution D of G8 , H8 , I8 ∈ {−1, 1}= is

slightly different from the distributionD′ of ! ∈ ℒ , G8 , H8 , I8 ∈ ! = {−1, 1}ℓ (i. e., first choosing
! at random and then choosing G8 , H8 , I8 from inside !). The distributions are identical however

if conditioned on the 31 vectors G8 , H8 , I8 being linearly independent. The probability of this

happening is at least 1 − 2
31−=

and 1 − 2
31−ℓ

depending on the space they are chosen from. It
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follows that the statistical distance between the distributions is at most 3 · 231−ℓ
and the argument

above is correct up to that much error. It follows that (provided � > 4 · 2−1/4)

�4

24

6 Pr

[
5 passes the Gowers Test

]
.

Applying Lemma B.3 to 5 ,

1

2
1
+ 1

2
1

∑
)⊆[1],)≠∅

∑
(⊆[=1]

5̂ 4

) (() >
�4

24

.

Noting that the sum of squares of Fourier coefficients of a boolean function equals 1, we see that

there exists ) ⊆ [1], ) ≠ ∅ and ( ⊆ [=1] such that 5̂ 2

)
(() > �4

32
. We are almost done, by inspecting

the coefficient 5̂)((). Let ( = ((1 , . . . , (1), (8 ⊆ [=], and denote � = Span(E1 , . . . , E1) below. By
definition of Fourier coefficients and of the functions 5 , 5) ,

5̂)(() = E
E1 ,...,E1∈{−1,1}=

[
5)(E1 , . . . , E1) ·

1∏
8=1

"(8 (E8)
]

= E
E1 ,...,E1∈{−1,1}=

[∏
8∈)

�[�](E8) ·
1∏
8=1

"(8 (E8)
]

= E
�, dim(�)=1, E

1
,...,E1∈�,

Rank(E
1
,...,E1 )=1

[∏
8∈)

�[�](E8) ·
1∏
8=1

"(8 (E8)
]
± 2

1−= ,

where while choosing E1 , . . . , E1 ∈ {−1, 1}= , they are assumed to be linearly independent

(introducing the negligible error term 2
1−=

) and then their choice is same as first choosing a

random 1-space � and then letting E1 , . . . , E1 be a random basis of �. Regard � = {−1, 1}1
and �[�] as the linear function "([�] for ([�] ⊆ [1]. The global function "(8 (E8) where

(8 ⊆ [=], E8 ∈ {−1, 1}= , after restricting to E8 ∈ �, amounts to a linear function on �, say "(8↓�
with (8 ↓ � ⊆ [1]. Thus

5̂)(() = E
�, dim(�)=1, E

1
,...,E1∈�,

Rank(E
1
,...,E1 )=1


∏
8∈)

"([�]Δ(8↓�(E8) ·
∏
8∈[1]\)

"(8↓�(E8)
 ± 2

1−= .

Let us look at the expectation for a fixed �. Call � good if

∀ 8 ∈ ), (8 ↓ � = ([�], ∀ 8 ∈ [1] \ ), (8 ↓ � = ∅ , (B.1)

and let ℬ′ be the set of such good �. For a good �, the expectation equals 1 and from Lemma C.3,

the expectation is bounded by 2
−1+2

in magnitude for a bad �. Thus

5̂)(() = Pr

�
[� ∈ ℬ′] ± 2

−1+2 ± 2
1−= .
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Since | 5̂)(()| > �2

6
, it follows that Pr� [� ∈ ℬ′] > �2

10
(since � > 2

2−1/4 > 2
3−1/2

). Now we show

that in fact for some (∗ ⊆ [=], for all 8 ∈ ), (8 = (∗ and for all 8 ∈ [1] \), (8 = ∅. This is because if
this were not the case, for a random 1-space �, Condition (B.1) holds with probability at most 2

−1
,

upper bounding Pr� [� ∈ ℬ′] by 2
−1
, a contradiction. It follows that "(∗ : {−1, 1}= → {−1, 1}

is a global linear function that agrees with the given linear function �[�] on > �2

10
fraction of

�, dim(�) = 1.

B.2 Agreement with ℓ -spaces

What we have concluded so far is that if tables �, � pass the ℓ -space vs 1-space linearity test with

probability > 1

2
1 + �, then there is a global linear function , : {−1, 1}= → {−1, 1}= that agrees

with �[�] for > �2

10
fraction of 1-spaces �. Theorem B.1 however demands a good agreement

with �[!] for ℓ -spaces !. This is easy to fix. Let

ℬ∗ =
{
� | Pr

!:�⊆!
[�[!]|� = �[�]] >

�
2

}
.

Since the linearity test succeeds with probability > 1

2
1 + �, by an averaging argument,

|ℬ∗ | > �
2
· |ℬ|. Now modify the table �[·] to table �′[·] so that �′[�] = �[�] for � ∈ ℬ∗ and

�′[�] is a random linear function on � otherwise. Clearly, the tables �, �′ still pass the linearity
test with probability > 2

−1 + �
2
and by the analysis so far, there is a global linear function , that

agrees with �′[�] for > �2

40
fraction of � ∈ ℬ. Since �′[�] for � ∉ ℬ∗ was defined at random,

their contribution to consistency with , is negligible, i. e., at most 2
−1
. Thus we have

Pr

�
[, |� = �[�] ∧ � ∈ �∗] > �2

80

.

For every � ∈ ℬ∗, by definition, �[�] is consistent with �[!] for at least �
2
fraction of ! containing

�. Hence,

Pr

�⊆!
[, |� = �[�] ∧ � ∈ �∗ ∧ �[!]� = �[�]] >

�3

160

.

In particular,

E
!

[
Pr

�⊆!
[�[!]|� = , |�]

]
>

�3

160

.

This implies immediately that , |! = �[!] for at least �3

160
− 2

1 > �3

300
fraction of !, since for ! not

satisfying this, the inside probability is at most 2
−1
.

C Missing proofs

C.1 Hypothesis 2.5 implies Hypothesis 2.12

Let �(+, ℓ ), dim(+) = = and the side condition {ℎ8}A8=1
, {18}A8=1

, A 6 =
3
be as in Hypothesis 2.12.

Let � = Span(ℎ1 , . . . , ℎA), dim(�) = A. Let,[�] be any “complementing space” to � so that
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+ = � ⊕,[�], �∩,[�] = {0}. We identify linear functions on subspaces of+ that respect the

side condition � with their restrictions to,[�], move to the “lower order” Grassmann graph

�(,[�], ℓ ), apply Hypothesis 2.5, and then “pull-back” the function on,[�] guaranteed by

Hypothesis 2.5 to a function on + that respects the side condition.

Formally, let @, 
(·), � be as in Hypothesis 2.5 given (9 , �
2
) and = sufficiently large. Let & ⊆ +

be a random @-dimensional space. With probability at least 1 − 2
A+@−=

(see Fact C.5), we have

& ∩ � = {0} and we condition on this event henceforth.

Claim C.1. ,[&] 34 5= (& ⊕ �) ∩,[�] is a random @-dimensional subspace of,[�].

Proof. Firstly, the dimension consideration shows that

dim(,[&]) = dim(,[�]) + dim(& ⊕ �) − dim(,[�] ⊕ & ⊕ �) = (= − A) + (@ + A) − = = @ .

Also, it is easily seen that each @-dimensional subspace of,[�] has equally many pre-images

under the mapping & → (& ⊕ �) ∩,[�]. �

Let �[·] be the (9 , �)-assignment to �(+, ℓ ) respecting the side condition � and ( be the

set of its vertices that have been assigned. We “move” to the lower order Grassmann graph

�(,[�], ℓ ) and define a (9 , �)-assignment �̃[·] to it as (denoting the set of its vertices assigned

as (̃)

(̃ = {! ∈ �(,[�], ℓ ) | ! ⊕ � ∈ (} .

�̃[!] = �[! ⊕ �]|! .

By Hypothesis 2.12, with probability at least 
(ℓ ) over the choice of &, there exists ,& : ,[�] →
{0, 1} such that

Pr

!:&⊆!⊆,[�]

[
,& |! ∈ �̃[!]

]
> � .

Define ,′
&
to be the unique extension of ,& to + respecting the side condition. Since spaces

! ⊆ ,[�] can be pulled back to !⊕�, ,′
&
satisfies Equation (2.2) of Hypothesis 2.12 as required.

C.2 Proof of Theorem 2.6

Denote by # the size of ℒ 34 5
= {! ∈ �(+, ℓ ) |& ⊆ !} and let 51 , ..., 5< be all functions agreeing

with �[·] on at least � fraction of ! ∈ ℒ. We construct a bipartite graph, where the left side

consists of 51 , ..., 5< and the right side consists of pairs { (!, �) | ! ∈ ℒ , � ∈ �[!]}. We connect 58
and (!, �) by an edge if 58 |! ≡ �. Then the degree of each 58 is at least � · # and the number of

vertices on the right side is at most 9# . Let us remove edges if necessary so that the degree of

each 58 is exactly � · # .

Denote by 3(!, �) the degree of (!, �) and let us count the triples { 58 , 59 , (!, �)} where 8 ≠ 9

and ( 58 , (!, �)), ( 59 , (!, �)) are both edges in the bipartite graph. Using Cauchy–Schwarz and
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noting that the number of vertices on the right side is at most 9# and

∑
!∈ℒ ,�∈�[!] 3(!, �) = �<# ,

the number of such triples is at least

∑
!∈ℒ ,
�∈�[!]

(
3(!, �)

2

)
=

∑
!∈ℒ ,
�∈�[!]

3(!, �)2
2

− 3(!, �)
2

> 9# ·

(
�<#
9#

)
2

2

− �<#
2

=
�2<2#

29
− �<#

2

.

On the other hand, since any distinct pair of functions 58 , 59 agree on at most 2
@−ℓ

fraction of

! ∈ ℒ, the number of such triples is at most

(<
2

)
2
@−ℓ# 6 <2

2
@−ℓ#
2

. Combining the two bounds

gives < 6
9�

�2−92@−ℓ .

C.3 Auxiliary lemmas and facts

Claim C.2. Let - be a real random variable such that |- | 6 1 always, and let � be an event. Then
|E [-] − E [- | �]| 6 2Pr

[
�̄
]
.

Proof. Let / = 1� be the random variable indicating if � occurred. Then by the law of total

expectation we have

E [-] = E
/
[E [- | /]] = Pr [�]E [- | �] + Pr

[
�̄
]
E

[
- | �̄

]
.

Thus E [-] − E [- | �] = Pr

[
�̄
]
(E

[
- | �̄

]
− E [- | �]), and the claim follows. �

Lemma C.3. Let B1 , . . . , B1 ∈ F 1
2
such that at least one of them is non-zero. Let E1 , . . . , E1 ∈ F 1

2
be

chosen at random. Then the following conditional expectation is bounded as:����� E
E1 ,...,E1

[
1∏
8=1

(−1)〈B8 ,E8〉 | Rank(E1 , . . . , E1) = 1
] ����� 6 2

−1+2 .

Proof. Note that without the conditioning, the expectation is clearly zero. The point is to prove

the upper bound conditional on the event that E1 , . . . , E1 are linearly independent (and hence

form a basis of F 1
2
). Assume w.l.o.g. that B1 is non-zero. Let

A = {� = (E1 , . . . , E1) | Rank(�) = 1} ,

so that we are interested in the expectation

E
�

[
1∏
8=1

(−1)〈B8 ,E8〉 | � ∈ A
]
.

Let

A′ = {� = (E1 , . . . , E1) | Rank(�) = 1, ∀ 2 6 8 6 1, 〈B1 , E8〉 = 0} .

THEORY OF COMPUTING, Volume 21 (10), 2025, pp. 1–55 49

http://dx.doi.org/10.4086/toc


SUBHASH KHOT, DOR MINZER, AND MULI SAFRA

It is easily seen that |A′ | 6 2
−1+1 · |A|. Indeed, imagine choosing E2 , E3 , . . . , E1 so that every E8

is outside the span of the previously chosen ones. If we require (in addition) that every E8 also

lies in the hyperplane defined by the equation 〈B1 , G〉 = 0, then at each step, this happens with

probability at most
1

2
, showing the desired upper bound on |A′ |. It follows from Claim C.2 that

E
�

[
1∏
8=1

(−1)〈B8 ,E8〉 | � ∈ A
]
, E

�

[
1∏
8=1

(−1)〈B8 ,E8〉 | � ∈ A \ A′
]

differ by at most 2
−1+2

. We show that the latter is zero. For fixed 
2 , 
3 , . . . , 
1 ∈ F2, consider

the following bĳection onA \A′ (that adds to the first vector, a linear combination of others):

(E1 , E2 , E3 , . . . , E1) → (E1 +
1∑
8=2


8E8 , E2 , E3 , . . . , E1) .

The quantity of interest changes as follows:

1∏
8=1

(−1)〈B8 ,E8〉 → (−1)
∑1
8=2


8 〈B1 ,E8〉 ·
1∏
8=1

(−1)〈B8 ,E8〉 .

Now take expectation of L.H.S. over the choice of � = (E1 , . . . , E1) ∈ A \ A′ and expectation

of R.H.S. over the choice of � ∈ A \ A′ as well as over a random choice of 
2 , . . . , 
1 . The

two expectations are equal (due to bĳectivity) and the expectation of the L.H.S. is what we are

interested in. Since 〈B1 , E8〉 ≠ 0 for some 2 6 8 6 1, the expectation over the R.H.S. is zero and

we are done. �

Fact C.4. Let + be an =-dimensional vector space over F2, and 1 6 ℓ 6 = − 1. Let G1 , . . . , Gℓ ∈ +
be chosen randomly and independently. Then G1 , . . . , Gℓ are linearly independent with probability
> 1 − 2

ℓ−= .

Proof. If G1 , . . . , Gℓ are linearly dependent, then for some 1 6 8 6 ℓ , G8 is in the span of G1 , . . . , G8−1.

Hence the probability that these ℓ vectors are linearly dependent is at most

ℓ∑
8=1

Pr

G1 ,...,G8∈+
[G8 ∈ Span{G1 , ..., G8−1}] 6

ℓ∑
8=1

2
8−1

2
=
6 2

ℓ−= . �

Fact C.5. Let + be an =-dimensional vector space over F2, � ⊆ * be a subspace of dimension A, and
1 6 ℓ 6 = − ℓ . Let G1 , . . . , Gℓ ∈ + be chosen randomly and independently. Then

Pr

G1 ,...,Gℓ∈+
[Span({G1 , ...Gℓ }) ∩ � = {0}] > 1 − 2

A+ℓ−= .

Proof. If Span({G1 , . . . , Gℓ }) ∩ � ≠ {0}, then for some 1 6 8 6 ℓ , G8 is in the span of � ∪
{G1 , . . . , G8−1}. Hence the probability that Span({G1 , . . . , Gℓ }) ∩ � ≠ {0} is at most

ℓ∑
8=1

Pr

G1 ,...,Gℓ∈+
[G8 ∈ � ⊕ Span({G1 , ..., G8−1})] 6

ℓ∑
8=1

2
A+8−1

2
=
6 2

A+ℓ−= . �
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Fact C.6. Let �, �′, � be subspaces of a vector space + over F2 such that � ⊕ � = �′ ⊕ � and
(� ⊕ �′) ∩ � = {0}. Then � = �′.

Proof. By symmetry, it suffices to show that � ⊆ �′. Let 0 ∈ �. Then 0 ∈ � ⊕ � = �′ ⊕ � and so

there are 0′ ∈ �′, 1 ∈ � such that 0 = 0′ ⊕ 1. Hence 1 = 0 ⊕ 0′ ∈ � ⊕ �′, and 1 must be 0. �
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