
THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29
www.theoryofcomputing.org

Polynomial Calculus Space and

Resolution Width

Nicola Galesi
∗

Leszek A. Kołodziejczyk
†

Neil Thapen
‡

Received December 11, 2020; Revised May 26, 2022; Published September 15, 2025

Abstract. We show that if a :-CNF requires width F to refute in resolution, then it

requires space

√
F to refute in polynomial calculus, where the space of a polynomial

calculus refutation is the number of monomials that must be kept in memory when

working through the proof. This is the first analogue, in polynomial calculus, of

Atserias and Dalmau’s result that, in resolution, width is a lower bound on clause

space.

As a by-product of our new approach to space lower bounds we give a simple

proof of Bonacina’s recent result that total space in resolution (the total number of

variable occurrences that must be kept in memory) is at least the width squared.

As corollaries of the main result we obtain some new lower bounds on the PCR

space needed to refute specific formulas, as well as partial answers to some open

problems about relations between space, size, and degree for polynomial calculus.

A conference version of this paper appeared in the Proceedings of the 60th Annual Symposium on Foundations

of Computer Science (FOCS’19) [19].

∗
Research supported by PRIN 2022 project “Logical methods in combinatorics”, 2022BXH4R5, MIUR, (Italian

Ministry of Education and Research).

†
Partially supported by grant 2017/27/B/ST1/01951 of the National Science Centre, Poland.

‡
Supported by the Institute of Mathematics, Czech Academy of Sciences (RVO 67985840) and by GA ČR project

23-04825S.

ACM Classification: F.2.2, F.4.1

AMS Classification: 03F20, 68Q17

Key words and phrases: proof complexity, resolution, polynomial calculus, space, width

© 2025 Nicola Galesi, Leszek A. Kołodziejczyk, and Neil Thapen
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2025.v021a006

http://dx.doi.org/10.4086/toc
https://doi.org/10.1109/FOCS44581.2019
https://doi.org/10.1109/FOCS44581.2019
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2025.v021a006

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

1 Introduction

Propositional proof complexity studies the complexity of finding efficiently verifiable proofs,

that is, polynomial-time checkable certificates that propositional formulas are unsatisfiable.

Research in this area started with the work of Cook and Reckhow [14] and was originally viewed

as a gradual advance towards showing that NP≠co-NP. The main focus was on proving upper

and lower bounds on proof size. The most well-studied proof system in proof complexity is

resolution, for which numerous exponential size lower bounds have been shown. By a result of

Ben-Sasson and Wigderson [6], to show that a CNF requires large size in resolution it is usually

enough to show that it requires large width, where the width of a proof is the size of its largest

clause.

Naturally other complexity measures for proofs have also been investigated, often revealing

interesting connections. A recent line of research has looked at the spacemeasure, motivated

by an analogy between proofs and boolean circuits or Turing machines, and more recently by

applied SAT solving, where efficient memory access and management is a major concern. The

study of space in resolution was initiated by Esteban and Torán [15], who defined the space

of a resolution proof as the maximal number of clauses to be kept simultaneously in memory

during verification of the proof. This definition was later generalized to other proof systems

by Alekhnovich et al. [1]. As proved in [15], a CNF formula over = variables can be refuted in

space = + 1, even in resolution. Tight lower bounds for resolution proof space were proved in a

series of papers [15, 5, 1], and Atserias and Dalmau [3] established the general result that for

resolution, width is a lower bound on space.

Together with resolution, the main focus of this paper is polynomial calculus resolution (PCR),

an algebraic proof system extending resolution by the capacity to reason about polynomial

equations. Polynomial calculus (PC) was introduced by Clegg et al. [13] and was later extended

by Alekhnovich et al. [1] to the more general system PCR. On the surface, PC and PCR are

systems for proving membership in ideals of multivariate polynomials. However, they can also

be viewed as refutational proof systems for CNF formulas: clauses are translated to multilinear

monomials over some (fixed) field F , and a CNF formula � is shown to be unsatisfiable by

proving that the constant 1 is in the ideal generated by polynomials representing clauses of �

together with polynomials enforcing that variables take only boolean values. In PC and PCR the

main proof complexity measure studied is degree, that is, the maximal degree of a polynomial

used in the proof. A connection between degree and the size of a proof (that is, the number of

monomials used) was proved for PC in [13, 22], which inspired the similar connection between

width and size for resolution of [6]. This result made it possible to lift most of the known degree

lower bounds for PCR to size bounds [30, 22, 2, 21, 20, 26].

We define the space of a PCR proof to be the maximum number of distinctmonomials that

must be simultaneously in memory during a verification of the proof. It is also common in

the literature to define space by counting the total number of monomials in memory, including

repetitions; clearly any lower bound on our notion of PCR space will also hold for this measure.

The study of PCR space started in [1], and grew in importance due to the fact that PCR underlies

SAT-solvers based on Gröbner algorithms. In [1] it was shown that PCR is strictly more powerful

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 2

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

than resolution in terms of space, though the separation proved there is relatively modest and

witnessed by rather artificial formulas (and it is open whether there is a separation if we count

PCR space with repetitions). Eventually, research on limitations of proof space in PCR led to

several lower bounds [1, 9, 18, 7, 17] and to a framework to prove them [9].

An important open problem raised several times (see [27, 9, 18, 7, 17, 16]) is to determine

whether the elegant relation between width and space for resolution given in [3] has an analogy

in a relation between PCR degree and space, or even between resolution width and PCR space.

This is relevant to the more fundamental issue: how far-reaching is the analogy between proof

complexity for resolution and for PCR, two systems that have several common features but are

of different computational nature?

1.1 Contributions

We give the less-expected answer to this open problem, by showing a connection between PCR

space and resolution width. The optimal result, consistent with present knowledge about PCR

space bounds and resolution width bounds, would be that a CNF that can be refuted in PCR

space B can also be refuted in resolution using width linear in B. We are not able to prove this,

but we show a weaker, quadratic bound. Our main result is the following theorem.

Theorem 6.4. Let � be a :-CNF. If � has a PCR refutation in space B over some field F , then � has a
resolution refutation of width B2 − B + :.

Since width F resolution can easily be simulated by degree F + 1 PCR, this also shows that

PCR refutations in space B can be transformed into PCR refutations of degree $(B2).
Theorem 6.4 can be understood as a general lower bound on PCR space: as long as : is small,

if a :-CNF requires width F to refute in resolution, then it requires space

√
F to refute in PCR.

An earlier result in this direction appeared in [17], building on the framework of [1, 9], showing

a relation between the resolution width of a formula � and the PCR space of a lifted version of �.

Precisely, if � requires resolution width F then its XOR-ified version requires PCR space Ω(F).
The previous PCR space lower bounds of which we are aware all ultimately rely on a

combinatorial argument from [1]. Our approach, which we outline in the next subsection, is

quite different. Using it, we also get a very simple proof of Bonacina’s recent result [8] that, in

resolution, total space is lower bounded bywidth squared. Our proof of that result (Theorem 3.4)

in particular does not use any technical notion such as that of asymmetric width required in [8].

As is typical for PCR space lower bounds, our main theorem depends very little on the

particular rules of PCR. It only uses that the rules are sound, and that at each step we either add

terms to the memory or delete them, (but not both at once). To study term space in a general

setting we describe a class of configurational proof systems, in which we are only guaranteed

soundness, and show that in such systems we get the weaker bound of 2B2 + : on resolution

width (Theorem 6.1). This class is similar in spirit to, and includes, the semantic functional
calculus system of [1].

As a consequence of Theorem 6.4 we answer some open questions about the relation between

space, size, and degree in PCR. Since our bound is quadratic, in some cases the answers are not

tight. A brief discussion of these follows.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 3

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

New space lower bounds for PCR. The framework developed in [9] can be used to derive all

space lower bounds for PCR known until now. However, as observed in [17], there are CNF

formulas for which PCR space lower bounds appear likely to hold, but this framework seems not

to work. These include the linear ordering principle and functional pigeonhole principle formulas, as

well as versions of them with constant initial width. Using well-known width lower bounds for

these formulas [11, 21, 32, 34, 26] and Theorem 6.4 we are now able to prove PCR space lower

bounds.

Simplification and generalization of a previous lower bound. Space lower bounds of the

order Ω(
√
=) for the well-known Tseitin formulas Ts(�) are shown in [17]. These bounds are for

families of random graphs � over = nodes admitting two properties: good expansion and that

the edges of � can be partitioned into small cycles. Applying Theorem 6.4 and the linear width

lower bound for Ts(�) proved for expander graphs in [6], we simplify and asymptotically match

the space lower bound in [17] using only an expansion property.

Separations independent of characteristic. It is left open in [17] whether there are formulas

separating PCR size and degree from space for all fields at once, independently of the charac-

teristic. We obtain some such examples, though due to the quadratic term in Theorem 6.4 the

separations are not as strong as the characteristic-dependent ones from [17].

Our space lower bounds for linear ordering principles give a characteristic-independent

example separating PCR size from space. A further example is provided by a variant of the

bĳective (both functional and onto) pigeonhole principle. Riis ([33, 31]) proved that the bĳective

pigeonhole principle formulas for = + 1 pigeons and = holes have small PCR refutations

in constant degree, over any field. Riis’ result concerned a version of the principle where

translations of wide clauses are replaced by certain sums, but we check that it also holds for the

usual formulation of bĳective PHP restricted to bounded-degree graphs. On the other hand,

it is known that bĳective PHP restricted to certain bounded-degree expanders requires Ω(=)
width to refute in resolution. Hence, Theorem 6.4 gives us a separation of PCR size and degree

from space independent of characteristic.

1.2 Outline of technique

Consider presenting a refutation of a CNF � on a blackboard. At each step we either write a

clause of � on the board (“upload it to memory"), or do some logical manipulation of formulas

already on the board, or erase a formula to make room. The presentation ends when we are

able to write down a predetermined contradiction, such as 1 = 0 (see Section 2.1). With this in

mind, our model of a refutation is a sequence of memory configurations "0 , . . . , "C , where "8

describes the contents of the blackboard at time 8. The space required by the refutation is the

size of the largest configuration, measured in some appropriate way.

Proof space lower bounds typically have the form: under the assumption that a refutation

uses small memory, work forward through the refutation, at each step building a small partial

assignment which semantically implies every formula inmemory; but this is impossible, because

the last step of the refutation contains an unsatisfiable formula. A dual argument also appears

in proof complexity, in proofs of resolution width lower bounds: work backwards through the

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 4

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

refutation from the end, maintaining a small assignment which falsifies one of the clauses in

memory (a related construction was used in [16] for an alternate proof of the Atserias–Dalmau

result [3] that space is lower bounded by width).

Our new idea for proving space lower bounds is to combine these forms of argument and

pass backwards and forwards through the refutation possibly several times, satisfying part of

the memory as we go down, and dually falsifying part as we go up. Our method is inspired by a

propositional version of an argument of Buss in bounded arithmetic, showing that mathematical

induction for NP properties is enough to prove induction for boolean combinations of NP

properties [12, Corollary 4]. Buss’ proof uses the Hausdorff difference hierarchy, which we do

not use explicitly but which, in our setting, tells us that at each step the contents of the memory

can potentially be written in an alternating fashion, with positive and negative subformulas

appearing in a controllable way.

We first apply this idea to give a simplified proof of Bonacina’s lower bound on total space in
resolution in terms of resolution width [8, 10], where total space counts the total number of

symbols simultaneously on the blackboard. Given a formula �, we letℋ be an Atserias–Dalmau
family for �. This is a family of partial assignments “locally" satisfying �, and is guaranteed to

exist if � requires large resolution width [3]. Given a refutation of � in small total space, we find

the first step 9 at which some assignment
 ∈ ℋ falsifies some narrow clause in memory; then

we find the last step 8 < 9 at which some � ⊇
 inℋ satisfies all wide clauses in memory; then

we reach a contradiction by considering the steps in the interval [8 , 9] under �.
A key point in the argument for resolution is that we can satisfy high-width clauses in

memory using a restricted-size assignment from the class ℋ . To apply a similar argument

for PCR space we have to understand how to determine the value of a high-degree monomial

using a small assignment
 ∈ ℋ . We use a very simple version of the forcing method known,

e. g., from set theory, which has already appeared in various guises in proof complexity. The

idea is that
 forces a monomial to a value if no extension of
 will ever give the monomial a

different value, as long as we only consider extensions withinℋ . In the case of PCR, the simple

one-interval construction used in our proof of Bonacina’s result sketched above is not enough

to obtain a contradiction. Instead, we have to iterate the construction, refining the interval

and extending the assignment
 some number of times bounded by the space B used in the

PCR refutation. Each time,
 grows by at most $(B) literals, and after at most B iterations the

restricted refutation becomes trivial. We reach a contradiction as long as the resolution width

required to prove � is larger than $(B2); this gives our bound.

1.3 Organization

Section 2 contains some preliminary definitions. In Section 3 we discuss width and space in

resolution, introduce the Atserias–Dalmau characterization of width and prove our simple lower

bound on total space in resolution. In Section 4 we define our forcing relation and prove some

properties of it. In Section 5 we prove a simple version of our main theorem, with a 2B(B + 1) + :
bound on width (Theorem 5.6). In Section 6 we extend this argument to give our main results, a

2B2 + : bound for any configurational system (Theorem 6.1) and an B2 − B + : bound for PCR

(Theorem 6.4). Section 7 describes some consequences of our results for the relations between

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 5

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

space, size and degree. In Section 8 we mention some open problems.

2 Preliminary definitions

A literal is either a boolean variable G or its negation Ḡ. Boolean variables will take 0/1 values,

identified with⊥/>. A term is a set of literals, treated as a conjunction. A clause is a set of literals,
treated as a disjunction. The width of a clause is the number of literals in it. A clause of width at

most : is called a :-clause. A CNF formula is a conjunction of clauses. A :-CNF formula is a

CNF formula consisting of :-clauses.

A partial assignment is a partial function from the set of boolean variables to {0, 1}. For us
assignment will always mean partial assignment unless we specify otherwise. When convenient,

we will identify an assignment with the set of literals which it makes true. We write dom(
) for
the domain of an assignment
 and write |
 | for |dom(
)|.

Resolution is a refutational propositional system for CNF formulas based on the resolution
rule, which allows us to derive the clause � ∨� from the clauses � ∨ G and � ∨ Ḡ. A resolution

refutation of a CNF � is a sequence of clauses �0 . . . , �< ending with the empty clause and such

that each �8 is either a clause in � or is obtained from earlier clauses by resolution. The size of a
resolution refutation is the number of clauses in it. The width of a resolution refutation is the

maximum width of a clause in it.

Polynomial calculus (PC) is an algebraic proof system defined in [13], which can be used to

witness that a set of polynomials has no solution. A PC proof works over a fixed field F and

proof lines in it are polynomials in F [G1 , . . . , G=]. We will not work with PC but instead with a

refinement of it, polynomial calculus with resolution (PCR), introduced in [1]. In PCR, proof lines

are polynomials in F [G1 , . . . , G= , Ḡ1 , . . . , Ḡ=], with a formal algebraic variable for every boolean

literal, not just for every boolean variable. This has the advantage that a term, even with negative

literals, can be written as a single monomial rather than as a sum of possibly exponentially

many monomials, as would happen if we had to write 1 − G to express Ḡ. We will always have

the axiom Ḡ = 1 − G available and will treat Ḡ semantically as the negation of G. That is, in any

assignment
, if either
(G) or
(Ḡ) is defined then both are and
(Ḡ) = 1 −
(G).
A monomial < over F is a product of literals together with a coefficient from F . The term

represented by < is the conjunction of the literals appearing in <. The degree of a literal in < will

never matter in this paper, so it is safe to think of a monomial as a term with a coefficient in

front of it. A polynomial is a formal sum of monomials.

A PCR refutation of a set of polynomials % is a sequence ?0 , . . . , ?C of polynomials, ending

with the constant polynomial 1, where we interpret a proof-line ?8 as asserting that ?8 = 0. Each

?8 either comes from % or is obtained by one of the rules of PCR applied to earlier lines. The

rules are

boolean axioms: G2 − G complementarity axioms: G + Ḡ − 1

linear combination:
? @

0? + 1@ multiplication:
?

G?

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 6

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

where ?, @ are any polynomials, G is any literal, and 0, 1 ∈ F . The size of a PCR refutation is

the total number of monomials appearing in it, and the degree of a refutation is the maximum

degree of any monomial in it.

We can translate a clause

∨
8 H8 in literals H8 into the semantically equivalent polynomial

equation

∏
8 H̄8 = 0. Thus an unsatisfiable CNF translates into a set of polynomials with no

solutions over {0, 1}, and it makes sense to view PCR as a refutational system for CNFs. There

is then a simple, direct simulation of resolution by PCR, and we see that degree in PCR is an

analogous measure to width in resolution.

2.1 Space measures

As is usual when studying space in a refutational system, we require a refutation of a CNF � to

be written in a special form, as a sequence of configurations "0 , . . . , "C .

In resolution, a configuration is a set of clauses and a refutation "0 , . . . , "C is such that

the first configuration is empty, the last one contains the empty clause, and for each 8 < C,

configuration "8+1 is obtained from "8 by one of the rules

(1) axiom download: a clause of � is downloaded into "8+1 ,

(2) deletion: "8+1 is obtained from "8 deleting one or more clauses,

(3) inference: "8+1 is obtained from"8 by adding the conclusion of the resolution rule applied

to two clauses in "8 .

Definition 2.1. The clause space, or simply space, of such a resolution refutation is the maximum

number of clauses appearing in any"8 . The total space of a configuration"8 is the total number

of variable instances appearing in"8 , or equivalently the sum of the width of the clauses in"8 .

The total space of a refutation is the maximum total space of any "8 .

In PCR, a configuration is a set of polynomials and a configurational PCR refutation of a CNF

� is a sequence"0 , . . . , "C where"0 is empty,"C contains the polynomial 1, and for each 8 < C,

configuration "8+1 is obtained from "8 by the rules (1)-(3) above, adapted to PCR. So in rule (1)

the axioms we can download are polynomials translating the clauses of � and instances of the

boolean and complementarity axioms, and in rule (3) we can infer new polynomials by linear

combination or multiplication. There are several possible definitions of the “monomial space” of

a PCR configuration. We could count monomials or just count terms (that is, ignore coefficients),

and we could count them with or without repetitions. We choose to ignore coefficients and

count without repetitions, that is, to work with what we call term space, as defined below. In

particular this is always less than or equal to the other measures, so our lower bounds will carry

across.

Definition 2.2. The term space of a PCR configuration "8 is the number of distinct terms

represented by the monomials in "8 . The term space, or simply space, of a PCR refutation is the

maximum term space of any configuration "8 in the refutation.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 7

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

It is natural to think of a configuration as a formula, namely a CNF in the case of resolution

or a conjunction of polynomial equations in the case of PCR, and to think of rules (1)-(3) as rules

for deriving a new formula. To state our most general results, let us use this idea and define

a configurational proof system to be specified by a class Γ of formulas and a set of rules. Each

rule is sound (over 0/1 assignments) and takes as premises either a single formula from Γ, or a

formula from Γ together with a clause; its conclusion is a formula from Γ. A simple example

of such a rule is “from ! and a clause � derive ! ∧ �,” but if we replaced ! ∧ � with any

logical consequence of ! ∧ � in Γ, this would also be a valid rule. A refutation of a CNF �

in the system is a sequence "0 , . . . , "C of formulas from Γ, called configurations. "0 is the

constant >,"C is the constant ⊥, and each"8+1 is obtained from applying a rule to the previous

configuration "8 , possibly together with some initial clause � of �. Configurational resolution

and PCR, as described above, are examples of such systems, if we understand > as the empty

conjunction and ⊥ as the empty clause or the equation 1 = 0.

Notice that each formula in such a refutation (not counting initial clauses) is used at most

once, so in this sense the refutation is treelike. In fact it is “pathlike,” since every formula is

derived from exactly one premise (again if we do not count premises which are initial clauses).

We can study the complexity of such a systemby studying the complexity of its configurations.

Suppose that each configuration is labelled with a set of terms and is semantically equivalent,

over 0/1 assignments, to a boolean function of those terms. Then we can define the term space
of a configuration to be the number of terms labelling it, and the term space of a refutation to

be the maximum term space of its configurations. This measure (which could just as well be

called “clause space”) is a lower bound for both clause space for resolution and monomial space

for PCR, if we understand them as configurational systems and label configurations with the

clauses or terms that appear in them. Our argument gives a lower bound for term space in any
configurational system, even the “semantic” one in which configurations can be any formula

and all sound rules are allowed – this is essentially the same as the functional calculus system
defined in [1]. We prove a better bound, by a factor of two, in the specific case of PCR.

3 Width, space, and total space in resolution

We will make heavy use of a characterization of resolution width given by Atserias and

Dalmau [3]. There, the family ℋ defined below is referred to as a winning strategy for the

Duplicator in a certain kind of pebble game.

Definition 3.1 ([3]). Let � be a :-CNF. A width-F Atserias–Dalmau family for � is a nonempty

familyℋ of partial assignments to the variables of � such that for each
 ∈ ℋ ,

(i) |
 | ≤ F,

(ii) if � ⊆
 then � ∈ ℋ ,

(iii) if |
 | < F and G is a variable of �, then there is � ⊇
 inℋ with G ∈ dom(�),

(iv)
 does not falsify any clause of �.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 8

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

Lemma 3.2 ([3]). Let F ≥ :. If � is a :-CNF with no resolution refutation of width F, then there exists
a width-(F + 1) Atserias–Dalmau family for �.

In fact most of the time (except for Section 6.2) we prefer to use a weaker version of this

lemma, which gives only a family of width F. Using the full version would involve improving

many bounds by 1, which would be messy to write. This weaker version has a simple and

intuitive proof which we now sketch.

The width-F Prover–Adversary game on � is played between an Adversary, who claims she

knows a total assignment satisfying �, and a Prover, who maintains a partial assignment
 (his

memory) of size at most F and who in each round either asks the Adversary the value of a

variable and adds the answer to
, or forgets variables from
 to free some memory. The Prover

wins when
 falsifies some clause from �.

Let us say that the starting position of the game is the initial content
 of the Prover’s memory.

By replacing each clause in a refutation with the partial assignment negating it, and flipping the

direction of the edges in the underlying graph, we can identify width-F resolution refutations

of � with winning strategies for the Prover in the game whose starting position is the empty

partial assignment. If there is no such Prover strategy (equivalently, if there is no width-F

refutation of �), then it is not hard to show that the set of starting positions for which the

Adversary has a winning strategy satisfies (i)-(iv) above.

Theorem 3.3 ([3]). Let � be a :-CNF. If � has a resolution refutation in space B, then it has a resolution
refutation in width B + :.

Proof. Let"0 , . . . , "C be the sequence of configurations forming the space-B refutation. Suppose

there is no refutation of � in width B + :. Letℋ be a width-(B + : + 1) Atserias–Dalmau family

for �. We will inductively show that for each 8 there is
 ∈ ℋ which satisfies every clause in"8 .

This is trivial for "0 and a contradiction for "C .

Suppose it is true for "8 . Since it takes only one literal to satisfy a clause, we may

assume |
 | ≤ B. The only interesting case is axiom download, where "8+1 is "8 ∧ � for some

initial clause � from �. By part (iii) of Definition 3.1 we can extend
 in : steps to some � ∈ ℋ
which sets all variables in �. By part (iv), � must satisfy �, so we are done. �

Notice that the Prover strategy corresponding to a small-width refutation in Lemma 3.2

starts at the bottom of the proof and works up, trying to falsify clauses. An alternative proof of

Theorem 3.3 would be to construct a small-width refutation directly as a Prover strategy, where

this time the Prover starts at the top of the configurational proof and works down, trying to

satisfy clauses. In the next theorem we combine both kinds of strategy, first going up and then

down. We can think of the theorem as a lower bound on a space measure in which narrow

clauses do not count towards the space of a configuration.

Theorem 3.4. Let � be a :-CNF. Let <, B ∈ ℕ with < ≥ :. Suppose that � has a configurational
resolution refutation in which each configuration contains at most B clauses of width greater than <.
Then � has a resolution refutation of width 2< + B.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 9

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

Proof. Let "0 , . . . , "C be the configurational resolution refutation. Each "8 contains some

number @ of narrow clauses �1 , . . . , �@ of width at most <, and A ≤ B many wide clauses

�1 , . . . , �A of width greater than <. Suppose for a contradiction that � has no resolution

refutation of width 2< + B. Letℋ be an Atserias–Dalmau family for � of width 2< + B + 1.

The configuration"C contains the empty clause, which is narrow and falsified by any assign-

ment. Let 9 be least such that some narrow clause � in" 9 is falsified by some assignment
 ∈ ℋ .

Fix such a � and
. Without loss of generality, |
 | ≤ <. Since � is falsified by
, it cannot have
been introduced by axiom download. So we must have � = � ∨� for clauses � ∨ G and � ∨ Ḡ in

" 9−1. Extend
 to
′ ∈ ℋ which gives a value to G, with |
′ | ≤ < + 1. Without loss of generality

′(G) = 1. Hence
′ falsifies � ∨ Ḡ, and by minimality of 9, we know that � ∨ Ḡ is a wide clause.

Now let 8 < 9 be greatest such that there is some � ⊇
′ in ℋ which satisfies every wide

clause in"8 . Fix such a �. Without loss of generality, |� | ≤ |
′ | + B ≤ < + B + 1. Since
′ falsifies
� ∨ Ḡ, we cannot have 8 = 9 − 1. Therefore maximality of 8 implies that "8+1 extends "8 by

adding a wide clause � which is not satisfied by any � ⊇ � in ℋ . Axioms are narrow, so �

cannot be an axiom. Thus we have � = � ∨ � for two clauses � ∨ H and � ∨ H̄ in "8 . Extend �
to �′ ∈ ℋ which gives a value to H, with |�′ | ≤ < + B + 2. Without loss of generality �′(H) = 1,

and we look at the clause � ∨ H̄. If this clause is wide, then � satisfies it, which means that �
satisfies � and hence �, which is impossible. If it is narrow, then we can extend �′ to � ∈ ℋ
such that |� | ≤ |�′ | + < − 1 ≤ 2< + B + 1 and � sets all variables in � ∨ H̄. The minimality of 9

implies that � satisfies � ∨ H̄. We know that �(H) = 1, so � satisfies � and thus �, which is

impossible. �

Theorem 3.4 has the following consequence, which is essentially the main result of [8] with

the constant improved by a factor of two.

Corollary 3.5. Let � be a :-CNF and F ≥ :. Suppose � has no resolution refutation in width F. Then
it has no resolution refutation in total space F2/8.
Proof. Suppose that there is a refutation Π in total space F2/8. Then, if we set < = F/4 and

B = F/2, no configuration in Π can contain more than B many clauses of width more than <.

Hence we can apply the lemma to find a resolution refutation of width 2< + B = F. �

4 Forcing with an Atserias–Dalmau family

In this section, we explain how to use the structure of an Atserias–Dalmau familyℋ to define

the relation “
 forces the term C to a certain value,” which we will use in the next section to prove

our main result. This is in fact a very simple version of a forcing relation as used in set theory

and other areas of logic. Definitions in a similar spirit are common in proof complexity, where

we often want to “evaluate” complex formulas over families of partial assignments. See for

example the evaluation of formulas as decision trees in lower-bound proofs for constant-depth

Frege [28, 25], and see [29, 24] for a recent application of essentially Definition 4.1 below. We

present the constructions and proofs here for PCR, but will explain in Section 6 how they can be

generalized to an arbitrary configurational proof system.

Fix a :-CNF � and a width-F Atserias–Dalmau familyℋ for �, for some :, F ∈ ℕ.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 10

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

Definition 4.1. For an assignment
 ∈ ℋ and a term C, we define

(i)
 forces C = 0 if
 sets some literal in C to 0,

(ii)
 forces C = 1 if no � ∈ ℋ with � ⊇
 sets any literal in C to 0.

If either holds, we say that
 decides C. (In [19, 29] this relation is called “
 fixes C.”)

We write (i) as

 C = 0 and (ii) as

 C = 1. Note that although (i) and (ii) appear rather

different from each other, they both have the effect that no extension of
 will ever give C a

different value, as long as we only consider extensions withinℋ . We now extend the definition

to polynomials and configurations. We will treat polynomials as linear combinations of terms

over our field F .

Definition 4.2. For an assignment
 ∈ ℋ and a polynomial ? =
∑
8 08C8 , we say that
 decides ?

if it decides every term C8 in ?. We say that
 decides a configuration " if it decides every term

in " or, equivalently, decides every polynomial in ".

If
 decides ? then, for each term C8 in ?, there is a 0/1 value 18 such that

 C8 = 18 ; implicitly,

 assigns value 18 to C8 . We say that
 forces ? = 0 if ?, considered as a linear combination of

terms, evaluates to 0 under this assignment. More formally,
 forces ? = 0 if
 decides ? and∑
8 0818 = 0. We say that
 forces ? ≠ 0 if
 decides ? and

∑
8 0818 ≠ 0.

For a configuration ", we say that
 forces " if
 decides " and forces ? = 0 for every

polynomial ? in ". We say that
 forces ¬" if
 decides " and forces ? ≠ 0 for some ? in ".

We write these relations as

 ? = 0,

 ? ≠ 0,

 ",

 ¬". Note that they are all

preserved under extending
 within the familyℋ .

The intuitive meaning of

 ? = 0 is that, if we consider only assignments in ℋ , then

the equation ? = 0 “holds” in every extension of
, and this is extended to negations and

configurations in the natural way. Notice that whether a term is forced to some value depends

on the structure ofℋ in a potentially nontrivial way, but for polynomials and configurations,

nothing new happens. This is because our application is to prove lower bounds on term space.

In this context terms can be very big, and the concept of forcing allows us to set their value

without setting many variables. On the other hand, polynomials and configurations contain few

terms, so they can be decided simply by deciding those few terms.

In the following lemmas we show that the
 relation usually behaves in an intuitive way,

after first giving an example of how this can break down when
 is very large.

Example 4.3. Assume that
 ∈ ℋ , |
 | = F, and that G ∉ dom(
). Then, since
 has no proper

extensions inℋ , we have both

 G = 1 and

 Ḡ = 1.

Lemma 4.4. Let
 ∈ ℋ and " be a configuration. We cannot have both

 " and

 ¬".

Proof. This is immediate from the definitions. �

Lemma 4.5. Let
 ∈ ℋ and let C1 , . . . , CB be terms. Then there is � ⊇
 in ℋ such that � decides
C1 , . . . , CB and |� | ≤ |
 | + B.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 11

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

Proof. It is enough to show this for B = 1. If there is some � ⊇
 inℋ which sets a literal G in C1
to 0, we put � =
∪ {G := 0} so that �
 C1 = 0. We have � ∈ ℋ , since � ⊆ �. If there is no such �
then by definition

 C1 = 1 and we put � =
. �

Lemma 4.6. Let
 ∈ ℋ with |
 | < F. Let C1 , . . . , CA be terms and 11 , . . . , 1A be boolean values such that

 C8 = 18 for each 8. Then
 can be extended to a total assignment � such that �(C8) = 18 for each 8.

Proof. To construct �, start with
 and then, for each C8 forced to 1 by
, set all literals in C8 to 1.

Set all remaining variables arbitrarily. The only way this construction can fail is if some variable

G appears positively in a term C8 and negatively in a term C 9 , where
 forces both C8 and C 9 to 1.

But this cannot happen, since |
 | < F implies that
 has an extension inℋ setting either G or Ḡ

to 0. �

Lemma 4.7. Assume : ≥ 2 and let
 ∈ ℋ with |
 | ≤ F− :. Let" and"′ be successive configurations
in a PCR refutation of �. Then it cannot be the case that

 " and

 ¬"′.

Proof. The configuration "′ is semantically implied by " or by " ∧ � for some clause � of �.

We may assume that we are in the latter case. Let

 " and

 ¬"′.
We first extend
 in : steps to � ∈ ℋ which sets all variables in �. By part (iv) of Definition 3.1,

� satisfies a literal in �. We let
′ ∈ ℋ be
 plus this literal. Notice that |
′ | < F, due to the

assumption that : ≥ 2. List all terms in " and "′ as C1 , . . . , CA . Since
′ decides all these terms,

there exist boolean values 11 , . . . , 1A such that
′
 C 9 = 1 9 for each 9. We use Lemma 4.6 to obtain

a total assignment � extending
′ which sets each C 9 to 1 9 . Then � satisfies " since
′
 " and

falsifies "′ since
′
 ¬"′. Also � satisfies � by construction of
′. This contradicts the fact
that " ∧ � semantically implies "′. �

Corollary 4.8. Assume : ≥ 2 and let " and "′ be successive configurations in a PCR refutation
of � with term space B. Let
 ∈ ℋ with |
 | ≤ F − : − B. If

 ", then there is � ⊇
 in ℋ with
|� | ≤ |
 | + B such that �
 "′.

Proof. This is immediate from Lemmas 4.5 and 4.7. �

This suggests a possible approach to proving PCR space lower bounds. Given a refutation

"0 , . . . , "C with space B, use Corollary 4.8 to inductively find
0 , . . . ,
C inℋ such that
8
 "8 ,

reaching a contradiction at "C . However this does not work, since
8 may grow in size by B at

each step, quickly reaching our limit F − :.
What is missing is a lemma saying that if
8
 "8 , then we can find � ⊆
8 such that �
 "8

and |� | is bounded by a function of the space of"8 . This is called a locality lemma in the literature

on space [1, 5, 9]. We do not expect a general lemma of this form to hold here, because, for

example, it is easy to envisage a large assignment
 and a term C such that

 C = 1 but this is

not preserved in any smaller � ⊆
. Lemma 5.4 below is a kind of locality lemma, but has the

limitation that it only controls the size of extensions of some fixed assignment
 (
 itself does

not get smaller). We only apply it $(B) times, and use it to control how fast our assignment

grows.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 12

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

5 Proof of main result – initial version

This section is devoted to a proof of an initial, somewhat simpler, version of our main result

giving a width bound of 2B(B + 1) + :. In the next section we will use essentially the same proof,

but with more careful counting, to get improved bounds of 2B2 + : for a general configurational

system and B(B − 1) + : for PCR in particular.

Here we assume that � is a :-CNF with a PCR refutation in space B over some fixed field F .

Let "0 , . . . , "C be the sequence of configurations forming the refutation of �. For 0 ≤ 8 ≤ 9 ≤ C,
the proof interval [8 , 9] is the sequence of configurations "8 , . . . , " 9 . We may assume without

loss of generality that : ≥ 3, since if : is 1 or 2 then � always has a width-: refutation.

We letℋ be a width-F Atserias–Dalmau family for �, with the value of F to be fixed later,

and use the notion of forcing overℋ from the previous section. We will be interested in how

many terms in a given configuration " are forced to 0 by an assignment from ℋ , or more

precisely, in how many terms are not forced to 0. Given " and
, we write Z(",
) for the set
of terms in " which are forced to 0 by
, and we write NZ(",
) for the remaining terms.

Definition 5.1. Let < ≥ 0. An assignment
 ∈ ℋ guarantees < non-zeroes in " if for all � ⊇

inℋ , we have |NZ(", �)| ≥ <. We say that
 guarantees < non-zeroes in the proof interval [8 , 9] if
for each ℓ ∈ [8 , 9],
 guarantees < non-zeroes in "ℓ .

Clearly the property of guaranteeing< non-zeroes is preserved under extending assignments

within the familyℋ . The next lemma is a useful interaction of this property with forcing.

Lemma 5.2. Suppose that |NZ(",
)| = < and that
 guarantees < non-zeroes in ". Then

decides ".

Proof. List NZ(",
) as C1 , . . . , C< . The remaining terms in" are forced to 0 by
, meaning that

they each contain a literal set to 0 by
. Therefore, since
 guarantees < non-zeroes in ", no

� ⊇
 in ℋ can force any C8 to 0, and so by definition
 forces each C8 to 1. It follows that

decides each term in " and thus decides ". �

We now prove two simple lemmas, allowing us to grow and shrink assignments, and then

use these in the main lemma from which the space lower bound will follow.

Lemma 5.3. Let " contain at most B terms and let
 ∈ ℋ guarantee < non-zeroes in ". Then there is
� ⊇
 inℋ such that � decides " and |� | ≤ |
 | + B − <.

Proof. Repeat the proof of Lemma 4.5, and observe that at most B −< terms can be made zero in

this process. �

Lemma 5.4. Let " contain at most B terms and let
 ∈ ℋ . Suppose there is � ⊇
 in ℋ such that
|NZ(", �)| = <. Then there is � with
 ⊆ � ⊆ � such that |NZ(", �)| = < and |� | ≤ |
 | + B − <.

Suppose furthermore that
 guarantees < non-zeroes in". Then � decides", and either both � and
� force " or both � and � force ¬".

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 13

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

Proof. List the terms in " as C1 , . . . , CA with A ≤ B. Suppose NZ(", �) is C1 , . . . , C< and Z(", �)
is C<+1 , . . . , CA . We define � by starting with
 and adding, for each term C8 among C<+1 , . . . , CA ,

one literal from � which sets C8 to 0. Then |NZ(", �)| = |NZ(", �)| = < and |� | ≤ |
 | + B − <.

In the “furthermore” part, �, and hence also �, decides " by Lemma 5.2. The reason why

� and � force the same value for " is that � ⊆ � and forcing is preserved under extensions

withinℋ . �

Lemma 5.5 (Main Lemma). Let � be a :-CNF with a PCR refutation"0 , . . . , "C in term space B, and
letℋ be a width-F Atserias–Dalmau family for �. Suppose F ≥ 2B(B + 1) + :. Then for each < ≤ B
there is
 ∈ ℋ and a proof interval [8 , 9] such that

(i)

 "8 and

 ¬" 9 ,

(ii)
 guarantees < non-zeroes in [8 , 9],

(iii) |
 | ≤ 4

<−1∑
A=0

(B − A).

Proof. We use induction on <. The base case for < = 0 is immediate, taking
 = ∅ and [8 , 9] to
be the whole refutation [0, C]. As "0 has no terms and the last configuration "C only contains

the polynomial 1, the empty assignment ∅ forces "0 and ¬"C and the other two conditions are

trivial.

Now suppose that
 and [8 , 9] are such that conditions (i)–(iii) hold for <, where < < B. We

will find a proof interval [8′, 9′] ⊆ [8 , 9] and an assignment
′′ satisfying (i)–(iii) for < + 1. Note

that condition (iii) implies

|
 | + 4(B − <) ≤ F − :
since |
 | + 4(B − <) ≤ 4[B + (B − 1) + · · · + 1] = 2B(B + 1) ≤ F − :. We will extend
 first to an

assignment
′ with |
′ | + 2(B − <) ≤ F − :, then to the required
′′, using the size bounds to

make sure that the assignments we construct are well-behaved.

We work separately on the two ends of the proof interval. We first deal with the left end,

distinguishing two cases:

(a) there is ℓ ∈ [8 , 9] such that for some � ⊇
 inℋ it holds that |NZ("ℓ , �)| = < and �
 "ℓ ,

(b) no such ℓ exists.

In case (a) we consider the largest such ℓ and a corresponding �; by Lemma 4.4 and condition (i),

it must be the case that ℓ < 9. By condition (ii) and Lemma 5.4, we may assume without loss of

generality that |� | ≤ |
 | + B − <. By condition (ii) and Lemma 5.3, we may extend � to
′ ∈ ℋ
with |
′ | ≤ |
 | + 2(B − <) such that
′ decides "ℓ+1. Since �
 "ℓ , it follows from Lemma 4.7

and the bound on |
′ | that
′
 "ℓ+1. We set 8′ := ℓ + 1. In case (b) we set
′ :=
 and 8′ := 8. In

both cases, we have |
′ | ≤ |
 | + 2(B − <) and
′
 "8′.

We now move to the right end of the interval and again distinguish two cases:

(c) there is ℓ ∈ [8′, 9] such that for some � ⊇
′ inℋ it holds that |NZ("ℓ , �)| = <,

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 14

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

(d) no such ℓ exists.

In case (c) we consider the smallest such ℓ and a corresponding �. By Lemma 5.4 we may assume

|� | ≤ |
′ | + B − <. By condition (ii) and Lemma 5.2, � decides "ℓ . Therefore �
 ¬"ℓ , since if

�
 "ℓ then ℓ and � satisfy the conditions of case (a), which is impossible by the choice of 8′. It
follows that ℓ > 8′. Using Lemma 5.3, we extend � to
′′ ∈ ℋ with |
′′ | ≤ |
′ | + 2(B −<) ≤ F − :
such that
′′ decides "ℓ−1. We cannot have
′′
 "ℓ−1 , by Lemma 4.7. Therefore
′′
 ¬"ℓ−1

and we set 9′ := ℓ − 1. In case (d) we set
′′ :=
′ and 9′ := 9. In both cases, |
′′ | ≤ |
 | + 4(B − <)
and
′′
 ¬" 9′.

This completes the construction. We have shown condition (i), and condition (iii) holds

inductively. Finally, by condition (ii) for < we know that
′′ guarantees < non-zeroes in [8′, 9′],
since
′′ ⊇
. Furthermore, by the choice of 9′ we know that ifℋ 3 � ⊇
′′ and 8′ ≤ ℓ ≤ 9′, then
|NZ("ℓ , �)| ≠ <. Thus
′′ in fact guarantees < + 1 non-zeroes in [8′, 9′]. �

Theorem 5.6. Let � be a :-CNF. If � has a PCR refutation in term space B over some field F , then � has
a resolution refutation of width 2B(B + 1) + :.

Proof. Suppose there is no such resolution refutation. Then we can choose our family ℋ to

have width F = 2B(B + 1) + :, and it is enough to show that Lemma 5.5 leads to a contradiction

for < = B. The lemma gives us a proof interval [8 , 9] and
 ∈ ℋ with |
 | ≤ F − : such

that

 "8 ,

 ¬" 9 and
 guarantees B non-zeroes in [8 , 9]. For each ℓ ∈ [8 , 9], Lemma 5.2

shows that
 decides "ℓ . Using the fact that

 "8 and applying Lemma 4.7 to "8+1 , . . . , " 9

in turn, we conclude that

 " 9 . But this is impossible. �

6 Improved bounds

In this section, we present two refined versions of our main result. First, we show that the bound

from Theorem 5.6 works, even in a slightly stronger form, in any configurational proof system,

not just in PCR. Then we improve the bound for PCR by roughly a factor of two.

6.1 A bound for general configurational systems

Recall from Section 2.1 that in general a configuration " with term space B is a formula !
labelled with a sequence of terms C1 , . . . , CB , such that ! is semantically equivalent to ,(C1 , . . . , CB)
where , is a boolean function. Given
 ∈ ℋ , we say that
 decides" if it decides all terms, fixing

their values to say 11 , . . . , 1B . We say that
 forces" or forces ¬" if ,(11 , . . . , 1B) is respectively 1

or 0.

Using these definitions, all the arguments about PCR in Section 4 and Section 5 go through

for any configurational system, as we did not use any properties of PCR except for soundness of

the rules. Thus, the bound of 2B2+ 2B + : from Theorem 5.6 holds for all configurational systems,

with the same proof. In fact, we now show that the 2B term can be removed from the bound by

means of a more careful argument (readers who are not interested in this improvement can skip

ahead to Section 6.2).

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 15

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

Theorem 6.1. Let � be a :-CNF. If � has a refutation in term space B in any configurational proof system,
then � has a resolution refutation of width 2B2 + :.

The rest of this subsection is devoted to a proof of Theorem 6.1. We argue as follows.

Suppose � is a :-CNF with a space B refutation in a configurational system, but without a

resolution refutation of width 2B2 + :. Then there is an Atserias–Dalmau family ℋ for � of

width F = 2B2 + :. The theorem is now proved using the argument from Section 5 and the

following strengthened version of Lemma 5.5.

Lemma 6.2. Let � be a :-CNF with a refutation"0 , . . . , "C in term space B in a configurational system,
and letℋ be a width-F Atserias–Dalmau family for �. Suppose F ≥ 2B2 + :. Then for each < ≤ B there
is
 ∈ ℋ and a proof interval [8 , 9] in the configurational refutation such that

(i)

 "8 and

 ¬" 9 ,

(ii)
 guarantees < non-zeroes in [8 , 9],

(iii) |
 | ≤ 4

∑<−1

A=0
(B − A) − 2<.

To prove Lemma 6.2, we need the following more precise version of Lemma 5.3.

Lemma 6.3. Let
 ∈ ℋ and let " be a configuration. Then there is � ⊇
 inℋ which decides " with
|� | ≤ |
 | + |NZ(",
)| − |NZ(", �)|.

Proof. List NZ(",
) as C1 , . . . , C? . Consider each C8 in turn and, if possible in ℋ , add one

literal to
 to make C8 zero. As in Lemma 4.5, this gives � ⊇
 in ℋ which decides ". The

number of literals added is bounded above by the number of terms made 0, which is precisely

|NZ(",
)| − |NZ(", �)|. �

Proof of Lemma 6.2. In the proof of Lemma 5.5, at each induction step from < to < + 1 we grew

our assignment
 in four stages. That is, it gained up to B − < bits twice in case (a), and again

up to B − < bits twice in case (c). Thus it increased by at most 4(B − <) bits in total, giving the

bound |
 | ≤ 4

∑<−1

A=0
(B − A) in item (iii) at stage < of Lemma 5.5. We will show here that we can

save two bits in each induction step, leading to the bound in the current lemma. Precisely, in

case (a) we will grow
 by first B − < and then B − < − 1 bits, and then the same in case (c). As

in Lemma 5.5, in case (b) or case (d) we do not need to grow
 and the requirement on its size

becomes more relaxed.

So let < < B and suppose we have the inductive hypothesis for < and want to prove it

for < + 1. We plan to grow
 by at most 4(B − <) − 2 bits, and we observe

|
 | + 4(B − <) − 2 ≤ 4

<∑
A=0

(B − A) − 2< − 2 = 2

<∑
A=0

(B − A) + 2

<∑
A=0

(B − A − 1)

≤ 2

B∑
A=0

(B − A) + 2

B−1∑
A=0

(B − A − 1)

= B(B + 1) + B(B − 1) = 2B2 ≤ F − :.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 16

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

Imitating the proof of Lemma 5.5, suppose we are in case (a) at the left end of our current

proof interval. We have ℓ ∈ [8 , 9] such that for some � ⊇
 inℋ it holds that |NZ("ℓ , �)| = <
and �
 "ℓ , and we have chosen ℓ maximal, so that there is no such � for"ℓ+1. Furthermore,

guarantees < non-zeroes at "ℓ+1 , and |� | ≤ |
 | + B − <.

In Lemma 5.5, we extended � to
′ ∈ ℋ with
′
 "ℓ+1 and |
′ | ≤ |� | + B − <. We want

to improve this bound to |
′ | ≤ |� | + B − < − 1. By Lemma 6.3 there is
′ ⊇ � in ℋ which

decides "ℓ+1 with

|
′ | ≤ |� | + |NZ("ℓ+1 , �)| − |NZ("ℓ+1 ,

′)|. (★)

We have |NZ("ℓ+1 , �)| ≤ B and |NZ("ℓ+1 ,
′)| ≥ < so |
′ | ≤ |� | + B − <. Thus |
′ | ≤
|
 | + 2(B − <) ≤ |
 | + 4(B − <) − 2 ≤ F − :, using the assumption that < < B. Hence we can

apply Lemma 4.7 to get that
′
 "ℓ+1. This in turn implies that |NZ("ℓ+1 ,
′)| ≥ < + 1 by

maximality of ℓ . Putting this improved bound on |NZ("ℓ+1 ,
′)| back into Inequality (★) gives
us the stronger bound on |
′ |.

Now suppose we are in case (c) at the right end of the proof interval. We have ℓ ∈ [8′, 9]
such that for some � ⊇
′ inℋ it holds that |NZ("ℓ , �)| = <, and we have chosen ℓ minimal,

so that there is no such � for "ℓ−1. Again
′ guarantees < non-zeroes at "ℓ−1 and now we

have the bounds |
′ | + 2(B − <) − 1 ≤ F − : and |� | ≤ |
′ | + B − <. We know that �
 ¬"ℓ

and thus that ℓ > 8′. By Lemma 6.3 there is
′′ ⊇ � in ℋ deciding "ℓ−1 with |
′′ | ≤
|� | + |NZ("ℓ−1 , �)| − |NZ("ℓ−1 ,
′′)|. By the minimality of ℓ , we have |NZ("ℓ−1 ,
′′)| ≥ < + 1.

As before, we also have |NZ("ℓ−1 , �)| ≤ B, so |
′′ | ≤ |� | + B − < − 1. Thus |
′′ | ≤ F − :, so we

can apply Lemma 4.7 and the fact that �
 ¬"ℓ to conclude that
′′
 ¬"ℓ−1. This completes

the induction step. �

6.2 A stronger bound for PCR

We now show how to improve the bound by a factor of two in the case of PCR.

Theorem 6.4. Let � be a :-CNF. If � has a PCR refutation in term space B over some field F , then � has
a resolution refutation of width B2 − B + :.

The only specific property of PCR used in the proof is that if "ℓ and "ℓ+1 are successive

configurations in a PCR refutation, then either all the terms in "ℓ+1 appear in "ℓ or all the

terms in "ℓ appear in "ℓ+1. Thus, if the PCR refutation has space B, we can always list the

terms in "ℓ as C1 , . . . , C? and the terms in "ℓ+1 as C1 , . . . , C@ for some ?, @ ≤ B; it will depend on

the rule used to derive "ℓ+1 whether ? ≤ @ or vice versa. The reason why this can be helpful is

that when we are trying to build an assignment deciding both "ℓ and "ℓ+1 , and we have first

built one deciding the terms C1 , . . . , Cmin(?,@) from the smaller of the two configurations, then we

only have to decide the remaining terms in the larger configuration. The whole process will

therefore require deciding at most max(?, @) ≤ B terms, and not up to 2B terms as would be the

case if the configurations were more loosely related. This lets us obtain a version of Lemma 5.5

with better bounds.

The strengthening of Lemma 5.5 that we use is as follows.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 17

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

Lemma 6.5. Let � be a :-CNF with a PCR refutation "0 , . . . , "C in term space B, and let ℋ be a
width-F Atserias–Dalmau family for �. Suppose F ≥ B(B − 1) + :. Then for each < ≤ B − 1 there
is
 ∈ ℋ and a proof interval [8 , 9] in the PCR refutation such that

(i)

 "8 and

 ¬" 9 ,

(ii)
 guarantees < non-zeroes in [8 , 9],

(iii) |
 | ≤ 2

<−1∑
A=0

(B − 1 − A).

Proof. We use the same structure as the proofs of Lemmas 5.5 and 6.2, but with induction only

up to < = B − 1. As before, in the induction step we only have to consider cases (a) and (c),

because (b) and (d) are trivial.

So, suppose that < < B − 1 and that we are in case (a) at the left end of the proof interval. We

have ℓ ∈ [8 , 9] such that for some � ⊇
 inℋ it holds that |NZ("ℓ , �)| = < and �
 "ℓ , and we

have chosen ℓ maximal, so that there is no such � for "ℓ+1. Furthermore,
 guarantees < non-

zeroes at"ℓ and"ℓ+1 , andwehave the bound |
 |+2(B−<−1) ≤ 2

∑<
A=0
(B−1−A) ≤ B(B−1) ≤ F−:.

In Lemma 5.5, we used � to find
′ ⊇
 inℋ with
′
 "ℓ+1 and |
′ | ≤ |
 | + 2(B − <). We now

want to improve this bound to |
′ | ≤ |
 | + B − < − 1.

By the properties of PCR, we may list the terms in "ℓ as C1 , . . . , C? and the terms in "ℓ+1

as C1 , . . . , C@ for some ?, @ ≤ B. By Lemma 5.4 we may assume |� | ≤ |
 | + ? − <. If @ ≤ ?, then
all terms in "ℓ+1 appear in "ℓ , so already � decides "ℓ+1 , and thus �
 "ℓ+1 by Lemma 4.7.

Moreover, in this case |NZ("ℓ+1 , �)| ≤ |NZ("ℓ , �)| = <, which contradicts the maximality of ℓ .

So we must have @ > ?.

We apply the proof of Lemma 4.5 carefully to extend � to
′ ∈ ℋ which decides the

remaining terms C?+1 , . . . , C@ in "ℓ+1. That is, for each of these terms C8 we add, if we can,

a literal which sets C8 to 0, and otherwise do nothing. The resulting
′ has size at most

|� | + (@ − ?) ≤ |
 | + ? − < + (@ − ?) ≤ F − :, and thus
′
 "ℓ+1 by Lemma 4.7. Hence
′

cannot set all of the terms C?+1 , . . . , C@ to 0, or we would have |NZ("ℓ+1 ,
′)| = |NZ("ℓ , �)| = <,

contradicting the maximality of ℓ . Therefore for at least one C8 we did not add a literal, which

gives |
′ | ≤ |
 | + ? − < + (@ − ? − 1) ≤ |
 | + B − < − 1.

Now suppose we are in case (c) at the right end of the proof interval. We have ℓ ∈ [8′, 9]
such that for some � ⊇
′ inℋ it holds that |NZ("ℓ , �)| = < and we have chosen ℓ minimal, so

that there is no such � for "ℓ−1. Again
′ guarantees < non-zeroes at "ℓ and "ℓ−1, and now

we have the bound |
′ | + B − < − 1 ≤ F − :. As in the proof of Lemma 5.5, we must have that

�
 ¬"ℓ and ℓ > 8′. We list the terms in"ℓ−1 as C1 , . . . , C? and the terms in"ℓ as C1 , . . . , C@ , and

by Lemma 5.4 without loss of generality may assume |� | ≤ |
′ | + @ − <.

Arguing as before, we see that now we it must be the case that ? > @, since ? ≤ @ would

imply |NZ("ℓ−1 , �)| ≤ |NZ("ℓ , �)| ≤ <, contradicting the minimality of ℓ . By adding at most

one literal to � for each term C@+1 , . . . , C? , we extend � to
′′which decides all these terms. Again,

′′ cannot set all of the terms C@+1 , . . . , C? to 0 or it would contradict the minimality of ℓ . So, we

we have |
′′ | ≤ |� | + ?− @−1 ≤ |
′ | + ?−<−1 ≤ F− :. This means that we can apply Lemma 4.7

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 18

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

and the fact that �
 ¬"ℓ to conclude that
′′
 ¬"ℓ−1. Also, |
′′ | ≤ |
 | + 2(B − < − 1). This
completes the induction step. �

Proof of Theorem 6.4. If there is no such resolution refutation, then � has an Atserias–Dalmau

familyℋ of width F = B2 − B + : + 1, by Lemma 3.2. We apply Lemma 6.5 for < = B − 1. This

gives us a proof interval [8 , 9] and
 ∈ ℋ with |
 | ≤ B(B − 1) ≤ F − : − 1 such that

 "8 ,

 ¬" 9 and
 guarantees B − 1 non-zeroes in [8 , 9]. We will show inductively that for each ℓ in

this interval there is � ⊇
 inℋ with |� | ≤ |
 | + 1 such that �
 "ℓ . This gives a contradiction

for ℓ = 9.

Suppose this holds for ℓ . Necessarily every configuration in [8 , 9] has either B − 1 or B terms.

If "ℓ has B terms, then the terms in "ℓ+1 are a subset of the terms in "ℓ and thus �
 "ℓ+1 by

Lemma 4.7. If "ℓ has B − 1 terms, then by Lemma 5.2, already

 "ℓ . We can extend
 to
′

which decides "ℓ+1 by adding at most one literal, and then again apply Lemma 4.7. �

7 Consequences of the main result

In this section we describe some consequences of our result, as outlined in Section 1.1.

7.1 New space lower bounds for PCR

As mentioned in the introduction, there are some CNF formulas for which it has seemed

reasonable to expect PCR space lower bounds but, by [17], the general framework for proving

such bounds developed in [9] either provably does not work or seems not to. Examples include

the linear ordering principle and the functional pigeonhole principle.

7.1.1 Linear ordering principle

The linear ordering principle encodes the property that a finite linearly ordered set of = elements

must have a maximal element. An unsatisfiable CNF formula expressing this principle, LOP= ,

uses variables G8 9 , for 8 ≠ 9 ∈ [=], and consists of the clauses:
G8 9 ∨ G 98 8 , 9 ∈ [=] 8 ≠ 9

Ḡ8 9 ∨ Ḡ 98 8 , 9 ∈ [=] 8 ≠ 9

Ḡ8 9 ∨ Ḡ 9: ∨ G8: 8 , 9 , : ∈ [=] 8 ≠ 9 ≠ : ≠ 8∨
9∈[=],8≠9 G8 9 8 ∈ [=].

The idea is that the variables describe an ordering of [=] and that G8 9 holds when 8 is below 9

in the ordering. Thus, the first three groups of clauses correspond respectively to linearity,

antisymmetry, and transitivity. The final group consists of wide clauses expressing that there is

no maximal element.

First we consider the graph version of this principle, GOP(�), introduced in [34]. For this we

use a slightly different encoding of an ordering into propositional variables, since we will use a

degree lower bound for PCR from [21] that works with this new encoding. But we will show

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 19

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

that our result transfers back to LOP= as written above. Let � = (+, �) be a simple undirected

graph over = nodes, that is, + = [=]. Let Γ(8) be the set of neighbours of 8 in �. The variables
of GOP(�) are G8 9 for 8 < 9 ∈ [=], with the role of G 98 played by Ḡ8 9 . GOP(�) is defined as the

conjunction of the following clauses:
G8 9 ∨ G 9: ∨ Ḡ8: 8 , 9 , : ∈ [=] 8 < 9 < :

Ḡ8 9 ∨ Ḡ 9: ∨ G8: 8 , 9 , : ∈ [=] 8 < 9 < :∨
9∈Γ(8),8< 9 G8 9 ∨

∨
9∈Γ(8),8> 9 Ḡ8 9 8 ∈ [=].

Note that because of the different choice of variables, the linearity and antisymmetry axioms

are not needed, and the transitivity axioms have turned into two groups of axioms together

asserting that there is no 3-cycle in the relation described by the variables.

Theorem 7.1. There are simple undirected constant-degree graphs � over = nodes such that refuting
GOP(�) requires PCR space Ω(

√
=) over any field.

Proof. It was proved in [21] that there is a family G= of simple constant-degree graphs over =

nodes such that for any � ∈ G= refuting (the polynomial translation of) GOP(�) in PCR over

any field requires degree Ω(=). The result follows using our main Theorem 6.4. �

We can also lift the lower bound to LOP= .

Corollary 7.2. Over any field, refuting LOP= requires PCR space Ω(
√
=).

Proof (sketch). Let � = ([=], �) be as in Theorem 7.1. Consider the following substitution �,
which maps literals of LOP= to literals of GOP(�). For 8 < 9, � maps G 98 ↦→ Ḡ8 9 and Ḡ 98 ↦→ G8 9 ,

and � is otherwise the identity. It is not difficult to see that after applying �, the linearity and

antisymmetry axioms of LOP= become tautologies of the form G8 9 ∨ Ḡ8 9 , the transitivity axioms

of LOP= become transitivity axioms of GOP(�), and the wide clauses of LOP= become derivable

from the corresponding axioms of GOP(�) by weakening the disjunction “some neighbour of 8

in � is above 8 in the ordering” to “some element of � is above 8 in the ordering.”

Now assume that LOP= has a PCR refutation in space B. We obtain a PCR refutation of

GOP(�) in space B + $(1) as follows. First apply � to the whole refutation. To turn this into a

valid PCR refutation of GOP(�), whenever the original refutation downloaded a linearity or

antisymmetry axiom of LOP= , we now need to derive themonomial Ḡ8 9G8 9 (recall that Ḡ8 9G8 9 is the

translation of the tautology G8 9 ∨ Ḡ8 9 into the algebraic syntax of PCR). This derivation is possible

in a constant amount of space, which we can re-use for every such axiom. Whenever the original

refutation downloaded an LOP= axiom of the form

∨
9∈[=],8≠9 G8 9 , we download the corresponding

axiom of GOP(�) and obtain the axiom of LOP= by a version of weakening appropriate for

PCR – we repeatedly multiply the monomial by a single variable and immediately delete the

old monomial, keeping only the result of multiplication. Again this process takes a constant

amount of space, which can be re-used. For transitivity axioms, there is nothing to change.

It is not difficult to see that the result is a valid proof of GOP(�) of space B + $(1). By

Theorem 7.1, this completes the argument. �

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 20

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

7.1.2 Functional pigeonhole principle

The functional pigeonhole principle FPHP
<
= , for < > =, expresses that there cannot exist a total

injective function mapping < pigeons into = holes. Its encoding as an unsatisfiable CNF, built

using variables G8 9 for 8 ∈ [<] and 9 ∈ [=], is the following:
∨
9∈[=] G8 9 8 ∈ [<]

Ḡ8 9 ∨ Ḡ8′ 9 8 ≠ 8′ ∈ [<], 9 ∈ [=]
Ḡ8 9 ∨ Ḡ8 9′ 8 ∈ [<], 9 ≠ 9′ ∈ [=].

The variable G8 9 stands for “pigeon 8 goes to hole 9.” The first group of clauses asserts that

the map taking pigeons to holes is total, while the last two groups assert respectively that it is

injective and well-defined.

No nontrivial PCR space lower bounds for FPHP
<
= were previously known, and, as proved

in [17], the framework for obtaining lower bounds developed in [9] could not be used in this

case.

We consider two constant-width versions of the functional pigeonhole principle. The extended
version of FPHP

<
= , eFPHP

<
= , is obtained by introducing <= new variables H8 9 for 8 ∈ [<], 9 ∈ [=]

and replacing each large initial clause

∨
9∈[=] G8 9 for 8 ∈ [<]with the CNF

(H81 ∨ G81) ∧
∧

1≤ 9≤=−1

(H̄8 9 ∨ G8 9 ∨ H8(9+1)) ∧ (H̄8= ∨ G8=).

Width lower bounds of Ω(=) for eFPHP
<
= in resolution can be easily obtained by modifying

a routine Prover–Adversary argument proving a width lower bound for FPHP
<
= [3]. Hence

Theorem 6.4 implies lower bounds of Ω(
√
=) on the space needed to refute eFPHP

<
= in PCR.

The functional pigeonhole principle is an example of formula which is weight-constrained in the

terminology of [18] (see Definition 7.1 in [18]). As such it was shown in [18, Theorem 1.5] that

the PCR space needed to refute FPHP
<
= and eFPHP

<
= can differ by at most a constant factor.

Hence Theorem 6.4 implies PCR space lower bounds for FPHP
<
= as well.

Corollary 7.3. Over any field, refuting FPHP
<
= in PCR requires space Ω(

√
=).

A different constant-width version of the functional pigeonhole principle is the functional

pigeonhole principle over constant-degree bipartite graphs �, as defined in [26]. Using known

width and degree lower bounds, we get a similar PCR space lower bound for this family of

formulas when � is a suitable graph. Let � = (*,+, �) be a bipartite graph. FPHP(�) is defined
using variables GDE , for D ∈ * , E ∈ Γ(D), as

∨
E∈Γ(D) GDE D ∈ *

ḠDE ∨ ḠD′E E ∈ +, D ≠ D′ ∈ Γ(E)
ḠDE ∨ ḠDE′ D ∈ *, E ≠ E′ ∈ Γ(D).

Definition 7.4. ([26, Definition 3.1]) A bipartite graph � = (*,+, �) is an (A, 2)-boundary expander
if for each*′ ⊆ * with |*′ | ≤ A, it holds that |%(*′)| ≥ 2 |*′ |, where the boundary %(*′) of*′ is
{E ∈ + : |Γ(E) ∩*′ | = 1}.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 21

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

Theorem 7.5 ([26, Theorem 5.8]). Let � = (*,+, �) be a bipartite graph which is an (A, 2)-boundary
expander with left-degree bounded by 3. Refuting FPHP(�) in PCR over any field requires degree strictly
greater than 2A/23.

Hence FPHP(�) also requires width 2A/23 in resolution. From Theorem 6.4 we conclude:

Theorem 7.6. Let � = (*,+, �) be a bipartite graph which is an (A, 2)-boundary expander with
left-degree bounded by 3. Refuting FPHP(�) in PCR requires space Ω(

√
2A/3).

Since, as mentioned in [26], there exist bipartite graphs with |* | = = + 1, |+ | = = and with

left-degree 3 which are (�=, 2)-boundary expanders for �, 2 > 0, we can conclude:

Corollary 7.7. There exist constant left-degree bipartite graphs � with |* | = = + 1 and |+ | = = such
that refuting FPHP(�) in PCR requires space Ω(

√
=).

Note that this gives an alternative proof of the < = = + 1 case of Corollary 7.3 above, since

this FPHP(�) is a restriction of FPHP
=+1

= .

7.2 Separations independent of characteristic

Showing a separation between two measures means finding a family of formulas which has

small proofs by one measure but requires large proofs by the other. We use this notion rather

informally, not least because “small” and “large” mean different things for different measures.

In [17], a separation of size and degree from space was proved for PCR, namely that for

each characteristic ? > 0, there is a family of constant-width CNFs that have small low-degree

refutations in PCR over characteristic ? but require large PCR space over any field. However,

it was left as an open problem whether there are formulas witnessing this sort of separation

independently of the characteristic of the field.

Theorem 6.4, together with some earlier results, makes it possible to prove characteristic-

independent separations of PCR space from other measures of proof complexity. However,

it has to be noted that, due to the quadratic term in the statement of Theorem 6.4, the lower

bounds on space we obtain can be no better thanΩ(
√
=), where = is the size of the formula; they

are not as strong as the Ω(=) lower bounds obtained in the separations of size and degree from

space from [17].

7.2.1 Separation of size from space

Theorem 6.4, the degree lower bound of [21] (which holds for any field), and the polynomial size

resolution proofs for GOP(�) (see [21]) immediately give a separation of PCR size and space

independent of characteristic for GOP(�). We write = for the number of vertices in �.

Theorem 7.8. Over any field, there are PCR refutations of size $(=3) of GOP(�) for any �. If � is
the constant-degree vertex-expander graph with expansion Ω(=) of [21], then, over any field, refuting
GOP(�) requires PCR space Ω(

√
=).

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 22

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

7.2.2 Separation of size and degree from space

To separate both size and degree from space in a way that works over any characteristic, we turn

to a version of the bĳective (or functional onto) pigeonhole principle, which asserts that there cannot

exist a bĳection between < pigeons and = holes (assuming < ≠ =). The formula bij-PHP
<
= itself

is obtained from the functional pigeonhole principle FPHP
<
= by adding clauses saying that each

hole is occupied by a pigeon. Thus, bij-PHP
<
= consists of the clauses:

∨
9∈[=] G8 9 8 ∈ [<]∨
8∈[<] G8 9 8 ∈ [=]

Ḡ8 9 ∨ Ḡ8′ 9 8 ≠ 8′ ∈ [<], 9 ∈ [=]
Ḡ8 9 ∨ Ḡ8 9′ 8 ∈ [<], 9 ≠ 9′ ∈ [=].

For a bipartite graph � = (*,+, �), the formula bij-PHP(�) is, as in previous examples,

obtained by restricting bij-PHP
<
= for the appropriate <, = to variables GDE for D ∈ *, E ∈ Γ(D).

In other words, bij-PHP(�) contains the clauses:
∨
E∈Γ(D) GDE D ∈ *∨
D∈Γ(E) GDE E ∈ +

ḠDE ∨ ḠD′E E ∈ +, D ≠ D′ ∈ Γ(E)
ḠDE ∨ ḠDE′ D ∈ *, E ≠ E′ ∈ Γ(D).

This is sometimes called the perfect matching principle, PMP(�).

Theorem 7.9. For every =, there exists a bipartite graph � with |* | = = + 1, |+ | = = such that the
formula bij-PHP(�) has size $(=) and has a polynomial-size, constant-degree PCR refutation over any
field, but requires space Ω(

√
=) to refute in PCR.

Proof. Using suitable boundary expanders, it is shown in [23, Section 4] that for every =,

there exists a bounded-degree bipartite graph � = (*,+, �) with |* | = = + 1, |+ | = = such

that refuting bij-PHP(�) in resolution requires width Ω(=). Fix such a graph �. Due to the

fixed bound on the degree, bij-PHP(�) is a constant-width CNF of size $(=). It follows from

Theorem 6.4 and the width lower bound that refuting bij-PHP(�) in PCR requires space Ω(
√
=).

To prove the existence of the polynomial-size, constant-degree refutations of bij-PHP(�),
consider the version of the bĳective pigeonhole principle in which the variables are GDE for

all D ∈ *, E ∈ + , but the statements that each pigeon goes to some hole and that each hole is

occupied are expressed by means of sums rather than wide clauses:{
1 −∑

D∈+ GDE D ∈ *
1 −∑

E∈* GDE E ∈ +.

It is well-known that over any field this sum version of the bĳective pigeonhole principle has

a polynomial-size, constant-degree PC refutation [33]. The idea is that adding up the axioms

pigeon-by-pigeon gives

∑
DE GDE = = + 1, and adding them hole-by-hole gives

∑
DE GDE = =.

This implies 1 = 0 over any field. Of course, this refutation still works if we substitute 0 for

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 23

http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

each GDE with (D, E) ∉ �, which gives us a polynomial-size, constant-degree refutation of the

“sum version” of bij-PHP(�).
It remains to argue that there is a polynomial-size, constant-degree PCR derivation of the

“sum version” of bij-PHP(�) from bij-PHP(�) itself. In fact, for each fixed D we can derive

1 − ∑
E∈Γ(D) GDE from bij-PHP(�) in constant size. First, use the axiom

∏
E∈Γ(D) ḠDE to derive∏

E∈Γ(D)(1 − GDE). Then, kill off each term of degree at least 2 using the axioms GDEGDE′ and,

if necessary, multiplications. This leaves 1 − ∑
E∈Γ(D) GDE . An analogous argument works to

derive 1 −∑
D∈Γ(E) GDE , for fixed E. �

7.3 Space lower bounds for Tseitin formulas over expanders

Let � = (+, �) be an undirected graph. Let " : + → {0, 1} be a function, which we call an

odd-charging of � if

∑
E∈+ "(E) is an odd number. Consider variables G4 for 4 ∈ � and define

Par(E, ") to be the CNF expressing that the parity of edges incident with E is exactly "(E), that is,
that

⊕
E∈4 G4 = "(E). The Tseitin formula Ts(�, ") over � and an odd-charging " of � is defined

as

Ts(�, ") :=
∧
E∈+

Par(E, ")

Notice that if the maximal degree of a vertex in � is 3 then the size of Ts(�, ") is at most |+ |23−1
.

In [17], lower bounds on the PCR space needed to refute Ts(�, ") for some � are proved

using the following notion of graph expansion, introduced in [1].

Definition 7.10. The connectivity expansion 2(�) of a graph � = (+, �) is the largest 2 such that

for every �′ ⊆ � with |�′ | ≤ 2, the graph �′ = (+, � \ �′) has a connected component of size

strictly greater than |+ |/2.

Theorem 7.11. ([17]) Let � = (+, �) be a connected graph of degree bounded by 3 such that � can be
partitioned into cycles of length at most 1. Let " be an odd-charging of �. Then, over any field, refuting
Ts(�, ") in PCR requires space at least 2(�)/41 − 3/8.

In [17], Theorem 7.11 is used to show that if 3 ≥ 4, then with high probability refuting

Ts(�, ") for a random 3-regular � with = nodes requires PCR space Ω(
√
=). This involves

showing that, for a suitable model of random bounded-degree graphs, with high probability a

random graph has both strong enough connectivity expansion and the property that the set of

edges can be partitioned into small cycles. The authors of [17] raise the question of whether

PCR space lower bounds for Tseitin formulas can be proved using expansion alone.

We are able to answer this question positively, albeit using a different notion of expansion

than in [17]. We use a theorem from [6]: for a suitable notion of expansion 4(�) (see [6] for a
precise definition), refuting Ts(�, ") for a connected graph � requires resolution width 4(�).
Theorem 6.4 thus gives:

Theorem 7.12. Let � = (+, �) be connected, and let " be an odd-charging of �. Then, over any field,
refuting Ts(�, ") in PCR requires space Ω(

√
4(�)).

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 24

http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

It is known that for arbitrarily large =, there are constant-degree graphs � with = nodes and

expansion 4(�) = Ω(=) (for a discussion, refer, e. g., to [35]).

Finally we remark that recently P. Austrin and K. Risse in [4] proved a Ω(=/log =) lower

bound for the space of refuting Ts(�, ") in PCR, for certain random constant-degree graphs �.

8 Open problems

A natural question is whether older PCR space lower bounds can be reproved (or extended) in

our framework. For example, [9] defines an <-winning strategy, which is something like a more

elaborate Atserias–Dalmau family, and shows that a CNF with such a strategy requires PCR

space linear in <; can this be reproved using the methods of this paper? These older bounds are

typically linear in resolution width, so this could potentially be a route to strengthening our

result to a general linear lower bound on PCR space in resolution width, matching the bound

on resolution space in [3]. This would be consistent with what is known.

In the other direction, it is possible that the results proved in this paper are already tight

up to a constant factor. Showing this means finding a formula � which requires width F in

resolution but which has a PCR refutation in space $(
√
F).

The intriguing possibility that our bounds are essentially tight for general configurational

systems but not for PC or PCR has also not been ruled out.

Acknowledgements. We are grateful to Ilario Bonacina for discussions about the relation

between our results and older PCR space lower bound techniques, and to Jakob Nordström for

helpful comments on an earlier version of this paper, in particular for suggesting bij-PHP(�)
as a replacement for the more complicated formula we originally used to give a characteristic-

independent separation of size and degree from space. We also thank Jakob for very kindly

helping us with the conference presentation of [19], which we missed due to last-minute health

problems of the speaker.

References

[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson: Space

complexity in propositional calculus. SIAM J. Comput., 31(4):1184–1211, 2002. Preliminary

version in STOC’00. [doi:10.1137/S0097539700366735] 2, 3, 6, 8, 12, 24

[2] Michael Alekhnovich and Alexander A. Razborov: Lower bounds for polynomial calculus:

Non-binomial case. Proc. Steklov Inst. Math., 242:18–35, 2003. Available at Math-Net.Ru

(Russianwith English home page) and at author’s home page (English). Preliminary version

in FOCS’01. 2

[3] Albert Atserias and Víctor Dalmau: A combinatorial characterization of resolution

width. J. Comput. System Sci., 74(3):323–334, 2008. Preliminary version in CCC’03.

[doi:10.1016/j.jcss.2007.06.025] 2, 3, 5, 8, 9, 21, 25

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 25

https://doi.org/10.1145/335305.335347
http://dx.doi.org/10.1137/S0097539700366735
https://www.mathnet.ru/eng/tm403
http://people.cs.uchicago.edu/~razborov/files/misha.pdf
https://doi.org/10.1109/SFCS.2001.959893
https://doi.org/10.1109/CCC.2003.1214424
http://dx.doi.org/10.1016/j.jcss.2007.06.025
http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

[4] Per Austrin and Kilian Risse: Perfect matching in random graphs is as hard as Tseitin.

TheoretiCS, 1(2):1–47, 2022. Preliminary version in SODA’22. [doi:10.46298/theoretics.22.2]

25

[5] Eli Ben-Sasson and Nicola Galesi: Space complexity of random formulae in res-

olution. Random Struct. Algor., 23(1):92–109, 2003. Preliminary version in CCC’01.

[doi:10.1002/rsa.10089] 2, 12

[6] Eli Ben-Sasson and Avi Wigderson: Short proofs are narrow—resolution made simple. J.
ACM, 48(2):149–169, 2001. Preliminary version in STOC’99. [doi:10.1145/375827.375835] 2,

4, 24

[7] Christoph Berkholz and Jakob Nordström: Supercritical space-width trade-offs for

resolution. SIAM J. Comput., 49(1):98–118, 2020. Preliminary version in ICALP’16.

[doi:10.1137/16M1109072] 3

[8] Ilario Bonacina: Total space in resolution is at least width squared. In Proc. 43rd Internat.
Colloq. on Automata, Languages, and Programming (ICALP’16), pp. 56:1–13. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2016. [doi:10.4230/LIPIcs.ICALP.2016.56] 3, 5, 10

[9] Ilario Bonacina and Nicola Galesi: A framework for space complexity in algebraic proof

systems. J. ACM, 62(3):23:1–20, 2015. Preliminary version in ITCS’13. [doi:10.1145/2699438]

3, 4, 12, 19, 21, 25

[10] Ilario Bonacina, Nicola Galesi, and Neil Thapen: Total space in resolution. SIAM J.
Comput., 45(5):1894–1909, 2016. Preliminary version in FOCS’14. [doi:10.1137/15M1023269]

5

[11] Maria Luisa Bonet and Nicola Galesi: Optimality of size-width tradeoffs for resolution.

Comput. Complexity, 10(4):261–276, 2001. [doi:10.1007/s000370100000] 4

[12] Sam Buss: Axiomatizations and conservation results for fragments of bounded arith-

metic. In Wilfried Sieg, editor, Logic and Computation, volume 106, pp. 57–84, 1990.

[doi:10.1090/conm/106/1057816] 5

[13] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo: Using the Groebner basis

algorithm to find proofs of unsatisfiability. In Proc. 28th STOC, pp. 174–183. ACM Press,

1996. [doi:10.1145/237814.237860] 2, 6

[14] Stephen A. Cook and Robert A. Reckhow: The relative efficiency of propositional

proof systems. J. Symbolic Logic, 44(1):36–50, 1979. Preliminary version in STOC’74.

[doi:10.2307/2273702] 2

[15] Juan Luis Esteban and Jacobo Torán: Space bounds for resolution. In-
form. Comput., 171(1):84–97, 2001. Preliminary version in STACS’99 and CSL’99.

[doi:10.1006/inco.2001.2921] 2

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 26

https://doi.org/10.1137/1.9781611977073.43
http://dx.doi.org/10.46298/theoretics.22.2
https://doi.org/10.1109/CCC.2001.933871
http://dx.doi.org/10.1002/rsa.10089
https://doi.org/10.1145/301250.301392
http://dx.doi.org/10.1145/375827.375835
https://doi.org/10.4230/LIPIcs.ICALP.2016.57
http://dx.doi.org/10.1137/16M1109072
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.56
https://doi.org/10.1145/2422436.2422486
http://dx.doi.org/10.1145/2699438
https://doi.org/10.1109/FOCS.2014.74
http://dx.doi.org/10.1137/15M1023269
http://dx.doi.org/10.1007/s000370100000
http://dx.doi.org/10.1090/conm/106/1057816
http://dx.doi.org/10.1145/237814.237860
https://dl.acm.org/doi/10.1145/800119.803893
http://dx.doi.org/10.2307/2273702
https://doi.org/10.1007/3-540-49116-3_52
https://doi.org/10.1007/3-540-48168-0_26
http://dx.doi.org/10.1006/inco.2001.2921
http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

[16] Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals:

From small space to small width in resolution. ACM Trans. Comput. Logic, 16(4):28:1–15,
2015. Preliminary version in STACS’14. [doi:10.1145/2746339] 3, 5

[17] Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals:

Towards an understanding of polynomial calculus: New separations and lower

bounds. Theory of Computing, 21(4):1–48, 2025. Preliminary version in ICALP’13.

[doi:10.4086/toc.2025.v021a004] 3, 4, 19, 21, 22, 24

[18] Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, and Neil Thapen: Space

complexity in polynomial calculus. SIAM J. Comput., 44(4):1119–1153, 2015. Preliminary

version in CCC’12. [doi:10.1137/120895950] 3, 21

[19] Nicola Galesi, Leszek Aleksander Kołodziejczyk, and Neil Thapen: Polynomial calculus

space and resolution width. In Proc. 60th FOCS, pp. 1325–1337. IEEE Comp. Soc., 2019.

[doi:10.1109/FOCS.2019.00081] 1, 11, 25

[20] Nicola Galesi and Massimo Lauria: On the automatizability of polynomial calculus.

Theory Computing Sys., 47(2):491–506, 2010. [doi:10.1007/s00224-009-9195-5] 2

[21] Nicola Galesi and Massimo Lauria: Optimality of size-degree tradeoffs for polynomial

calculus. ACM Trans. Comput. Logic, 12(1):4:1–22, 2010. [doi:10.1145/1838552.1838556] 2, 4,
19, 20, 22

[22] Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall: Lower bounds for the polyno-

mial calculus and the Gröbner basis algorithm. Comput. Complexity, 8(2):127–144, 1999.
[doi:10.1007/s000370050024] 2

[23] Dmitry Itsykson, Vsevolod Oparin, Mikhail Slabodkin, and Dmitry Sokolov: Tight lower

bounds on the resolution complexity of perfect matching principles. Fundam. Informaticae,
145(3):229–242, 2016. [doi:10.3233/FI-2016-1358] 23

[24] Leszek Aleksander Kołodziejczyk and Neil Thapen: Approximate counting and NP search

problems. J. Math. Logic, 22(3):2250012:1–31, 2022. [doi:10.1142/S021906132250012X] 10

[25] Jan Krajíček, Pavel Pudlák, and Alan Woods: An exponential lower bound to the size of

bounded depth Frege proofs of the pigeonhole principle. Random Struct. Algor., 7(1):15–39,
1995. Preliminary version in STOC’92. [doi:10.1002/rsa.3240070103] 10

[26] Mladen Mikša and Jakob Nordström: A generalized method for proving polynomial

calculus degree lower bounds. J. ACM, 71(6/37):1–43, 2024. Preliminary version in CCC’15.

[doi:10.1145/3675668] 2, 4, 21, 22

[27] Jakob Nordström: On the interplay between proof complexity and SAT solving. ACM
SIGLOG News, 2(3):19–44, 2015. [doi:10.1145/2815493.2815497] 3

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 27

https://doi.org/10.4230/LIPIcs.STACS.2014.300
http://dx.doi.org/10.1145/2746339
https://doi.org/10.1007/978-3-642-39206-1_37
http://dx.doi.org/10.4086/toc.2025.v021a004
https://doi.org/10.1109/CCC.2012.27
http://dx.doi.org/10.1137/120895950
http://dx.doi.org/10.1109/FOCS.2019.00081
http://dx.doi.org/10.1007/s00224-009-9195-5
http://dx.doi.org/10.1145/1838552.1838556
http://dx.doi.org/10.1007/s000370050024
http://dx.doi.org/10.3233/FI-2016-1358
http://dx.doi.org/10.1142/S021906132250012X
https://doi.org/10.1145/129712.129733
http://dx.doi.org/10.1002/rsa.3240070103
https://doi.org/10.4230/LIPIcs.CCC.2015.467
http://dx.doi.org/10.1145/3675668
http://dx.doi.org/10.1145/2815493.2815497
http://dx.doi.org/10.4086/toc

NICOLA GALESI, LESZEK A. KOŁODZIEJCZYK, AND NEIL THAPEN

[28] Toniann Pitassi, Paul Beame, and Russell Impagliazzo: Exponential lower bounds for the

pigeonhole principle. Comput. Complexity, 3:97–140, 1993. Preliminary version in STOC’92.

See also author’s home page. [doi:10.1007/BF01200117] 10

[29] Pavel Pudlák and Neil Thapen: Random resolution refutations. Comput. Complexity,
28(2):185–239, 2019. Preliminary version in CCC’17. [doi:10.1007/s00037-019-00182-7] 10,

11

[30] Alexander A. Razborov: Lower bounds for the polynomial calculus. Comput. Complexity,
7(4):291–324, 1998. [doi:10.1007/s000370050013] 2

[31] Alexander A. Razborov: Proof complexity of pigeonhole principles. In Proc. 5th Internat.
Conf. on Developments in Language Theory (DLT’01), pp. 100–116, 2001. [doi:10.1007/3-540-
46011-X_8] 4

[32] Alexander A. Razborov: Resolution lower bounds for the weak functional pigeonhole

principle. Theoret. Comput. Sci., 303(1):233–243, 2003. [doi:10.1016/S0304-3975(02)00453-X]
4

[33] Søren Riis: Independence in Bounded Arithmetic. Ph.D. thesis, The University of Oxford,

1993. LINK: Google Books. 4, 23

[34] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo: A switching lemma for small

restrictions and lower bounds for :-DNF resolution. SIAM J. Comput., 33(5):1171–1200,
2004. Preliminary version in FOCS’02. [doi:10.1137/S0097539703428555] 4, 19

[35] Alasdair Urquhart: Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

[doi:10.1145/7531.8928] 25

AUTHORS

Nicola Galesi

Department of Computer, Control and Management Engineering

Sapienza University Rome

nicola galesi uniroma1 it

http://wwwusers.di.uniroma1.it/~galesi/

Leszek A. Kołodziejczyk

Institute of Mathematics

University of Warsaw

lak mimuw edu pl

https://www.mimuw.edu.pl/~lak/

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 28

https://doi.org/10.1145/129712.129733
https://homes.cs.washington.edu/~beame/papers/php.pdf
http://dx.doi.org/10.1007/BF01200117
https://doi.org/10.4230/LIPIcs.CCC.2017.1
http://dx.doi.org/10.1007/s00037-019-00182-7
http://dx.doi.org/10.1007/s000370050013
http://dx.doi.org/10.1007/3-540-46011-X_8
http://dx.doi.org/10.1007/3-540-46011-X_8
http://dx.doi.org/10.1016/S0304-3975(02)00453-X
https://books.google.com/books?id=aLy1PAAACAAJ
doi:10.1109/SFCS.2002.1181984
http://dx.doi.org/10.1137/S0097539703428555
http://dx.doi.org/10.1145/7531.8928
http://wwwusers.di.uniroma1.it/~galesi/
https://www.mimuw.edu.pl/~lak/
http://dx.doi.org/10.4086/toc

POLYNOMIAL CALCULUS SPACE AND RESOLUTION WIDTH

Neil Thapen

Institute of Mathematics

Czech Academy of Sciences

thapen math cas cz

https://users.math.cas.cz/~thapen/

ABOUT THE AUTHORS

Nicola Galesi was born in Bari, the capital of Puglia, a beautiful region in the south

of Italy. He has one daughter, Eva. He holds a Ph.D. in Computer Science with

focus on Complexity Theory, obtained in 2000 under the supervision of Maria

Luisa Bonet at the Universitat Politècnica de Catalunya, in Barcelona. Nicola’s

main research interests have always been in proof complexity, studying the limits

of feasible proofs and their relation with the limits of feasible computations.

In 2022 he started a new academic position focused on mathematics with the

Department of Computer, Control and Management Engineering “Antonio

Ruberti” at Sapienza. Nicola loves reading novels, listening to all kinds of live

music from classical to rock and practicing tai chi and table tennis.

Leszek Kołodziejczyk received his Ph.D. in philosophy in 2005, based on a thesis in

finite model theory, written under the supervision of Marcin Mostowski. Since

then, he has been working at the Institute of Mathematics of the University of

Warsaw, with breaks for postdocs in Prague and San Diego. He is a mathematical

logician with eclectic research interests that include bounded arithmetic, non-

standard models of arithmetic, and reverse mathematics. When not working, he

enjoys reading, walking in the woods, and spending time with his family.

Neil Thapen received his doctorate in 2002 from the University of Oxford, where his

supervisor was Alex Wilkie. He works in mathematical logic, in particular on

bounded arithmetic and related things in proof complexity, and sometimes on

games. He has been at the Institute of Mathematics in Prague since 2005.

THEORY OF COMPUTING, Volume 21 (6), 2025, pp. 1–29 29

https://users.math.cas.cz/~thapen/
http://venuspatrol.nfshost.com/
http://dx.doi.org/10.4086/toc

	Introduction
	Contributions
	Outline of technique
	Organization

	Preliminary definitions
	Space measures

	Width, space, and total space in resolution
	Forcing with an Atserias–Dalmau family
	Proof of main result – initial version
	Improved bounds
	A bound for general configurational systems
	A stronger bound for PCR

	Consequences of the main result
	New space lower bounds for PCR
	Linear ordering principle
	Functional pigeonhole principle

	Separations independent of characteristic
	Separation of size from space
	 Separation of size and degree from space

	Space lower bounds for Tseitin formulas over expanders

	Open problems
	References

