Tight Bounds for Monotone Switching Networks via Fourier Analysis

Siu Man Chan* Aaron Potechin†

Received July 21, 2012; Revised January 22, 2013; Published November 4, 2014

Abstract: We prove tight size bounds on monotone switching networks for the NP-complete problem of k-clique, and for an explicit monotone problem by analyzing a pyramid structure of height h for the P-complete problem of generation. This gives alternative proofs of the separations of m-NC from m-P and of m-NC^{i} from m-NC^{i+1}, different from Raz–McKenzie (Combinatorica 1999). The enumerative-combinatorial and Fourier analytic techniques in this paper are very different from a large body of work on circuit depth lower bounds, and may be of independent interest.

ACM Classification: F.1.3

AMS Classification: 68Q17, 68Q15, 68Q10

Key words and phrases: lower bounds, space complexity, parallel complexity, monotone complexity, switching networks, Fourier analysis

1 Introduction

To study parallel time and memory usage complexity, lower bounds are sought in different models of computation. For example, parallel time is captured by the depth of Boolean circuits of bounded fan-in,
and memory usage (i.e., space complexity) is captured by the size of switching networks. It is therefore of interest to prove lower bounds for the depth of Boolean circuits of bounded fan-in, and for the size of switching networks, for an explicit Boolean function. Unfortunately, lower bounds that separate complexity classes have not been proved without certain restrictions on the computation.

To prove some lower bounds, researchers often restrict computation to be monotone (i.e., to disallow logical negations in computation) when computing monotone Boolean functions. Improving on Razborov [48], Alon and Boppana [3] and Haken [26] proved that the clique problem requires polynomial ($n^{\Omega(1)}$) depth for monotone circuits.\(^1\) In terms of complexity classes, it says

$$\text{m-NC} \subseteq \text{m-P} \subsetneq \text{m-NP}.$$

This means the clique problem requires high parallel time when computed in a monotone fashion. As for the parallel time of efficiently computable functions, Karchmer and Wigderson [34] showed that the directed connectivity problem requires super-logarithmic ($\Omega(\log^2 n)$) depth for monotone circuits,\(^1\) implying

$$\text{m-NC}^1 \subseteq \text{m-NL} \subseteq \text{m-NC}^2.$$

For more separations, Raz and McKenzie [46] extended the lower bound framework of Karchmer and Wigderson [34], proving that a monotone circuit\(^1\) computing

1. the complete problem for NL, directed connectivity, requires $\Omega(\log^2 n)$ depth, reproving the tight bound of Karchmer and Wigderson [34];

2. the “complete problem for NC\(^i\),” the Generation problem with a pyramid structure of height h, requires $\Omega(h \log n)$ depth when $h \leq n^c$ for some constant $c > 0$, giving $\text{m-NC} \neq \text{m-P}$ and $\text{m-NC}^i \neq \text{m-NC}^{i+1}$ for all i by setting $h = \log^i n$; and

3. the complete problem for NP, the k-clique problem, requires $\Omega(k \log n)$ depth when $k \leq n^c$ for some constant $c > 0$, improving previous results on cliques for $\log n \ll k \ll n^c$.

Much less work has been done on switching networks, which is a combinatorial model capturing deterministic space-bounded computation (see Section 2 for a discussion). Most results are derived using the connection between circuits and switching networks. Namely, a circuit\(^1\) of depth d can be simulated by a switching network of size 2^d, while a switching network of size s can be simulated by a circuit of depth $O(\log^2 s)$ [16]. As far as lower bounds go, a bound of $\Omega(s)$ for switching network size translates to a bound of $\Omega(\log s)$ for circuit depth, and a bound of $\Omega(d)$ for circuit depth translates to a bound of $2^{\Omega(\sqrt{d})}$ for switching network size. The simulations preserve monotonicity, therefore, so do the translations of lower bounds.

In particular, from the best lower bounds for the depth of monotone circuits by Raz and McKenzie [46], it follows that a monotone switching network computing

1. directed connectivity requires $n^{\Omega(1)}$ size;

2. the Generation problem with a pyramid structure of height h requires $n^{\Omega(\sqrt{h / \log n})}$ size when $h \leq n^c$ for some constant $c > 0$; and

\(^1\)In this paper, we consider only Boolean circuits of fan-in at most two, even when we do not spell it out.
(3’) the k-clique problem requires $n^{\Omega(\sqrt{k/\log n})}$ size when $k \leq n^c$ for some constant $c > 0$.

Since a size bound of $s^{\Omega(1)}$ for switching networks is equivalent to a space bound of $\Omega(\log s)$ for Turing machines,\(^2\) item (1’) above is trivial and fails to separate m-L from m-NL for space complexity on the switching network model.\(^3\) Also, items (2’) and (3’) are not effective when, for example, h and k are $O(\log n)$. To match our intuition, we expect that a monotone switching network computing

(1’’) directed connectivity requires $n^{\Omega(\log n)}$ size;

(2’’) the Generation problem with a pyramid structure of height h requires $n^{\Omega(h)}$ size for $h \leq n^c$ for some constant $c > 0$;

(3’’) k-clique requires $n^{\Omega(k)}$ for $k \leq n^c$ for some constant $c > 0$.

Note that such bounds for monotone switching networks would in particular imply the above bounds for monotone circuits by the simulation argument (e.g., (1’’) implies (1)).

Recently, Potechin [45] indeed strengthened item (1) to item (1’’), i.e., showed that any monotone switching network solving directed connectivity has quasi-polynomial size, thereby giving m-L \neq m-NL “on monotone switching networks.”\(^4\) To avoid the loss in translation (e.g., from (1) to (1’), as opposed to (1’’)), it is necessary to depart from the circuit-depth lower bound framework of the communication game by Karchmer and Wigderson [34],\(^4\) which is the basis of most previous work on depth complexity of circuits [15, 19, 22, 25, 29, 33, 34, 46, 47]. Instead, Potechin [45] introduced a Fourier analytic framework for analyzing extremal instances (minterms and maxterms) of the monotone Boolean function of directed connectivity.

1.1 Our results

This work extends the Fourier analytic framework [45] to prove tight lower bounds, for (i) an explicit monotone problem by analyzing a pyramid structure of height h for the P-complete Generation problem, and for (ii) the NP-complete k-clique problem,\(^5\) and as a result strengthens item (2) to item (2’’), and item (3) to item (3’’). This strengthens the previous bounds in items (2’) and (3’) for that were translated from items (2) and (3).

\(^2\)Modulo uniformity, of course. The easy direction is folklore (e.g., see [45, §2]), and the hard direction is proved by Reingold [54].

\(^3\)It should be noted that there are at least two combinatorial models for (non-uniform) m-L in the literature: as monotone (Boolean) circuits (of bounded fan-in) of logarithmic width and polynomial size [24, 25], or as monotone switching networks of polynomial size [45, 52]. It appears that the two models are not comparable. This work focuses on monotone switching networks of polynomial size as the combinatorial model for (non-uniform) m-L, and does not imply results for monotone circuits of logarithmic width and polynomial size as (non-uniform) m-L.

\(^4\)Indeed, the Karchmer–Wigderson framework is unlikely to separate m-L from m-NL on monotone switching networks,\(^3\) since it is able to prove the same bound of $\Omega(\log^2 n)$ for the depth of monotone circuits solving undirected connectivity [34, 46], which is in L [54] and computable by monotone switching networks of size n^2. This shows that the quadratic relation between circuit-depth and (the logarithm of) switching-network-size in the simulation argument of Borodin [16] is tight.

\(^5\)To see the matching upper bounds, there are (uniform) monotone switching networks for (i) “the problem computed by the universal degree-\(h\) reversible pebbling switching network” of size $n^{O(h)}$ (see Section 3.3.5); and (ii) the k-clique problem of size $k^{O(1)} \cdot n^{O(k)}$.

THEORY OF COMPUTING, Volume 10 (15), 2014, pp. 389–419
In particular, this gives alternative proofs of the separations of monotone complexity classes like \(m-\text{NC} \neq m-\text{P} \) and \(m-\text{NC}^i \neq m-\text{NC}^{i+1} \), using very different arguments compared to Raz–McKenzie [46]. These monotone separations are necessary for the corresponding non-monotone separations, because a non-monotone separation (e.g., \(\text{NC} \neq \text{P} \)) implies the corresponding monotone separation (e.g., \(m-\text{NC} \neq m-\text{P} \)). To prove the lower bounds of items (2) and (3), this work simplifies the Fourier analytic framework of Potechin [45] used for analyzing the directed connectivity problem, by studying invariants in the Fourier domain (Lemma 3.44 for the generation problem), and by making explicit the role of the invariants as an inclusion-exclusion principle (see, e.g., Remark 3.39, Lemma 4.14, and Claims 4.16 and 4.17). Therefore, this work provides a combinatorial understanding of the Fourier analytic framework [45]. Perhaps, more previous results may be strengthened and other problems may be studied by extending this Fourier/combinatorial framework, as an alternative or a complement to the Karchmer–Wigderson framework, after three separation results (1), (2) and (3) on monotone circuit-depth are strengthened to (1’’), (2’’) and (3’’).

1.2 Other related work

We did not discuss other work less relevant to the results presented here, but suggesting lower bounds to space and parallel complexity [1, 2, 7–9, 18, 21, 39, 41, 43, 51, 53, 59, 60], or implying lower bounds to monotone depth in general [4, 5, 11, 14, 23, 27, 31, 32, 42, 49, 50, 55–57, 61, 62] or applying monotone depth to study other complexity measures [12, 13, 28, 35, 37]. For more discussion on the complexity of monotone Boolean circuits, the reader is referred to [46, §1], and [15, 24]. For more discussion on switching networks and other models of space-bounded computation, the reader is referred to [52].

We should briefly comment on branching programs, another (more popular) combinatorial model for studying deterministic space-bounded computation. Nonuniform space is linearly related to (is in \(\Theta \) relation with) the logarithm of the size of layered branching program (LBPs), as well as to the logarithm of the size of switching networks (SNs). (The latter statement depends on Reingold’s theorem [54].) It follows that for all Boolean functions, SN size and LBP size are polynomially related. However, no concept of monotone branching programs seems to be known, nor is there an agreed definition of monotone space complexity. Monotone SNs offer a plausible model of (nonuniform) monotone space complexity, hence our choice of the model. An alternative model would be width-bounded monotone circuits; as far as we know, the two models may not be comparable (cf. footnote 3).

1.3 Organization

Section 2 collects notions, notation, and conventions used in the introduction and common to Section 3 and Section 4. Section 3 treats the generation problem, whose lower bound (item (2’’)) is proved as Theorem 3.46. Section 4 treats the clique problem, whose lower bound (item (3’’)) is proved as Theorem 4.19.

6 This paper further simplifies the proof for the generation problem (item (2’’)) in the STOC’12 version.

7 And proving monotone lower bounds is in a sense sufficient, since non-monotone separations would follow from the monotone lower bounds of some variants of the problems, see, e.g., [21, §4.1].
2 Preliminaries

Recall the Iverson bracket notation: \([\text{condition}]\) to mean 1 if \(\text{condition}\) is TRUE, and 0 otherwise. Also, \([n] := \{0, 1, \ldots, n - 1\}\) for \(n \in \mathbb{N}\). For a Boolean function \(f: \{0, 1\}^n \rightarrow \{0, 1\}\), an instance \(y \in \{0, 1\}^n\) is a YES-instance if \(f(y) = 1\), and a NO-instance if \(f(y) = 0\). A Boolean function is monotone if \(f(x) \leq f(y)\) whenever \(x \preceq y\), i.e., whenever \(x_i \leq y_i\) for all \(i \in [n]\). For a monotone Boolean function \(f\), a minterm \(y\) is a \(\preceq\)-minimal YES-instance, i.e., \(f(y) = 1\) but \(f(x) = 0\) for all \(x \prec y\); a maxterm \(y\) is a \(\preceq\)-maximal NO-instance, i.e., \(f(y) = 0\) but \(f(x) = 1\) for all \(x \succ y\).

Following Potechin [45], we denote objects of instances (e.g., variable \(x_i\), element \(u\) for GEN, vertex \(v\) for CLIQUE) by unprimed letters, and objects of switching networks (e.g., node \(a'\) \(\in V'\), edge \(e' \in E'\)) primed letters.

Definition 2.1 (Switching Networks). Consider a collection \(x_1, x_2, \ldots, x_n\) of Boolean variables.

A switching network \(G'\) has data \((V', E', s', t', \lambda')\), where \(V'\) is the set of nodes and \(E'\) is the set of edges of an undirected (multi) graph with two distinguished nodes \(s', t' \in V'\). Each edge \(e' \in E'\) of \(G'\) is labeled with a literal \(x_i\) or \(\bar{x}_i\) with \(i \in [n]\), specified by \(\lambda'(e')\). A switching network is monotone if all edges are labeled with positive literals (for all \(e', \lambda'(e') = x_i\) for some \(i\)).

An instance \(y \in \{0, 1\}^n\) is accepted by \(G'\) if there is a path \(P'\) connecting \(s'\) and \(t'\) using edges labeled with literals in \(y\); namely, \(P' = (e'_1, e'_2, \ldots, e'_{\ell})\), where \(e'_j \in E'\) for \(1 \leq j \leq \ell\) connects \(v'_{j-1}\) and \(v'_{j}\), with \(v'_0 = s'\) and \(v'_{\ell} = t'\), satisfying (1) if \(\lambda'(e'_j) = x_i\) then \(y_i = 1\); or (2) \(\lambda'(e'_j) = \bar{x}_i\) then \(y_i = 0\). Otherwise, \(y\) is rejected by \(G'\). The Boolean function \(f_{G'}\) computed by \(G'\) is identified with the collection of accepted instances, so \(f_{G'}(y) = 1\) iff \(G'\) accepts \(y\).

We say that an instance \(y \in \{0, 1\}^n\) reaches a node \(a' \in V'\) if there is a path \(P'\) connecting \(s'\) and \(a'\) using edges labeled with literals in \(y\). The undirectedness of a switching network mirrors the reversibility in deterministic space-bounded computation [40, 54].\(^8\) Hence switching networks compute by reachability in a reversible way. The size of a switching network is the number of edges [52].\(^9\)

We need the following version of Nisan–Wigderson combinatorial design [44]. For a proof and further references, see [58, Lemma 8].

Lemma 2.2 (Combinatorial Design). For any positive integers \(q, m, k\) with \(k \leq m\), there exist \(q\) sets \(Q_1, Q_2, \ldots, Q_q \subseteq [N]\) where \(N := e^{1 + (\ln q)/k} \cdot (m^2/k)\), such that \(|Q_i| = m\) for \(1 \leq i \leq q\) and \(|Q_i \cap Q_j| \leq k\) for \(1 \leq i < j \leq q\).

3 Lower bound for generation

This section proves the lower bound for (the promise problem of) generation as Theorem 3.46, and uses it in establishing a tight bound for a monotone decision problem as Theorem 3.48. After defining the problem and the model below (Definitions 3.1 and 3.2), Section 3.1 introduces a semantic restriction

\(^8\)For non-deterministic space-bounded computation, the corresponding model is called a switching-and-rectifier network (see, e.g., [52]), whose underlying graph can be directed.

\(^9\)All lower bounds in this work concern the number of nodes, which is polynomially related to the number of edges here. Also, constants are not optimized.
based on reversible pebbling, and Section 3.2 proves an optimal lower bound for monotone switching networks with this restriction. Section 3.3 proves a lower bound without this restriction, by reducing the general case to the reversible pebbling case.

Definition 3.1 (Generation Problem). For a size parameter n, the generation problem (GEN) receives as input a function $e : [n] \times [n] \times [n] \rightarrow \{0, 1\}$. Let $s := 0$ and $t := n - 1$. We think of s as the source and t as the target. We say that s generates $v \in [n]$ if (1) v is s; or (2) s generates both w and u, and $e(w, u, v) = 1$.

The GEN problem is a monotone variant of the first P-complete problem called PATH SYSTEMS [17]. Subproblems of GEN with additional restrictions on e are complete for smaller complexity classes like non-deterministic logspace (NL) and Nick’s class (NC) [6, 30]. To specialize monotone switching networks (Definition 2.1) to GEN, we just need to specialize the labeling function λ'.

Definition 3.2 (Monotone Switching Networks for GEN). We say that a switching network is a monotone switching network for GEN (mGEN network), if each edge $e' \in E'$ is labeled with $\lambda'(e') = w \land u \rightarrow v$ for some $w, u, v \in [n]$. For an instance for GEN with input e, the literal $\lambda'(e') = w \land u \rightarrow v$ is in the instance if $e(w, u, v) = 1$.

3.1 Reversible pebbling switching networks for generation

As in [45], we begin by considering a simpler class of mGEN networks which are semantically restricted. In particular, we consider mGEN networks corresponding to the reversible pebble game [10, 38], which we call reversible pebbling mGEN networks (Definition 3.6). In this subsection (and henceforth in this paper), focus on triples $w \land u \rightarrow v$ where $v \neq w$ and $v \neq u$, so that a move allowed by $w \land u \rightarrow v$ (Remark 3.3) corresponds to a reversible pebble move.

Remark 3.3 (Reversible Pebbling for GEN). In the reversible pebble game for GEN, we start with a pebble on s and try to put a pebble on t. There is only one allowed move:

1. If $e(w, u, v) = 1$ and both w and u are pebbled, then we may pebble or unpebble v (i.e., add or remove a pebble on v).

A configuration $K \subseteq [n]$ of the reversible pebble game specifies the elements that are pebbled.

The idea is that each node $d' \in V(G')$ in a reversible pebbling mGEN network G' will correspond to a configuration $K_{d'}$ in the reversible pebble game, and each edge $e' \in E(G')$ in G' with label $\lambda'(e') = w \land u \rightarrow v$ will correspond to a move in the reversible pebble game which can be done when $e(w, u, v) = 1$. However, to make this precise we must first deal with two issues.

The first issue is that the reversible pebble game has many winning configurations (i.e., configurations in which t is pebbled), but a switching network G' has only one accepting state t'. To fix this, we modify the reversible pebble game so that all winning configurations are effectively the same.

10By contrast, any vertex can be unpebbled at any time in standard black pebbling, even when not all of its immediate predecessors (playing the role of w and u here) are pebbled.
Remark 3.4 (Modified Reversible Pebbling for GEN). In the modified reversible pebble game for GEN, we start with a pebble on s and try to put a pebble on t. There are two allowed moves:

1. If $e(w,u,v) = 1$ and both w and u are pebbled, then we may pebble or unpebble v; and
2. If t is pebbled then we may pebble or unpebble any other element $x \neq t \in [n]$.

The second issue is that if a sequence of moves can be done when $e(w,u,v) = 1$, and that sequence of moves can bring a configuration $K_{u'}$ to another configuration $K_{v'}$, then we may as well add an edge between a' and b' with label $w \land u \rightarrow v$. That is, it makes more sense for an edge e' in a reversible pebbling mGEN network G' with label $\lambda'(e') = w \land u \rightarrow v$ to correspond to a sequence of moves (rather than a single move) that can be done if $e(u,w,v) = 1$. This leads to the following definition.

Definition 3.5 (Reversible Pebbling Equivalence). We say that two configurations $K_1, K_2 \subseteq [n]$ are l-equivalent for $l := w \land u \rightarrow v$ if it is possible to bring configuration K_1 to configuration K_2 using a sequence of the following moves:

1. If w and u are pebbled, then we may pebble or unpebble v; and
2. If t is pebbled, then we may pebble or unpebble any other element $x \neq t \in [n]$.

We can now define reversible pebbling mGEN networks.

Definition 3.6 (Reversible Pebbling Networks). We say that an mGEN network G' is a reversible pebbling mGEN network if each node $a' \in V'$ can be associated with a reversible pebbling configuration $K_{u'} \subseteq [n]$ satisfying the following conditions:

1. $K_{u'} = \{s\}$ and $K_{u'} = [n]$; and
2. If there is an edge with label $l := w \land u \rightarrow v$ between nodes a' and b', then $K_{a'}$ and $K_{b'}$ are l-equivalent.

Since it is only possible to win the reversible pebble game when t can be generated from s, every reversible pebbling mGEN network G' is sound, i.e., if G' accepts an input e, then e is a Yes-instance for GEN. However, it need not compute GEN, since it need not be complete, i.e., accepting all Yes-instances of GEN.

Before moving on, we give a more convenient characterization of l-equivalence (Proposition 3.9). We can do this because the partial order (under set inclusion \subseteq) on configurations of the reversible pebble game for GEN respects l-equivalence, i.e., there is a unique maximal configuration in each l-equivalence class (Proposition 3.8).

Definition 3.7 (Maximal Configuration). For a configuration $K \subseteq [n]$ and a triple $l := w \land u \rightarrow v$, define $K + w \land u \rightarrow v$ to be the \subseteq-maximal configuration in the l-equivalence class containing K.

Proposition 3.8 (Maximal Configuration). $K + w \land u \rightarrow v$ is well-defined and

\[
K + w \land u \rightarrow v = \begin{cases}
K & \text{if } t \notin K, \text{ and also } w \notin K \text{ or } u \notin K, \\
K \cup \{v\} & \text{if } t \notin K, v \neq t, w \in K \text{ and } u \in K, \\
[n] & \text{if } t \in K, \text{ or } v = t \text{ and } w \in K \text{ and } u \in K.
\end{cases}
\]
Proposition 3.9 (Reversible Pebbling Equivalence). K_1 and K_2 are l-equivalent for $l := w \land u \rightarrow v$ if and only if $K_1 + l = K_2 + l$.

3.2 Pyramid YES-instances and reversible pebbling lower bound

Following Raz and McKenzie [46], consider those YES-instances of GEN having a structure of a pyramid graph.11 Pyramid YES-instances of GEN are analogous to path YES-instances of directed connectivity in [45]. In particular, they are minterms of the respective monotone Boolean functions, hence “hardest to accept.”

Definition 3.10 (Pyramid Graph and YES-Instance). For a parameter h, the pyramid graph of height h has $\binom{h+1}{2}$ vertices $V_h := \{v_{r,c}\}_{1 \leq r \leq h}$. The vertex $v_{r,c}$ is on the r^{th} row, and V_h is laid out row by row with the first row on top and the h^{th} row at the bottom. For $1 \leq r \leq h - 1$, the vertex $v_{r,c}$ has left child $v_{r+1,c}$ and right child $v_{r+1,c+1}$. The pyramid graph is also viewed as a directed graph with arcs pointing from children to their parents (from $v_{r+1,c}$ to $v_{r,c}$ and from $v_{r+1,c+1}$ to $v_{r,c}$).11

An instance of GEN forms a pyramid YES-instance if there exists $Q \subseteq [n] \setminus \{s,t\}$ and a bijective identification $P: Q \leftrightarrow V_h$ to vertices V_h of a pyramid graph, and $e(w,u,v) = 1$ iff (w,u,v) is a triple in $[n] \times [n] \times [n]$ consistent with P, meaning that

1. $w = u = s$ and $v \in Q$ and $P(v)$ is on the bottom row of V_h; or
2. $w = u \in Q$ and $P(w)$ is on the top row of V_h, and $v = t$; or
3. $w,u,v \in Q$ and $P(w)$ and $P(u)$ are different children of $P(v)$.

In this case, the YES-instance is simply called a pyramid, and is denoted by $G(P)$.

Note that the identification P specifies a structure of a pyramid graph over $V(P) := Q = P^{-1}(V_h) \subseteq [n] \setminus \{s,t\}$ in $G(P)$. Since a reversible pebbling switching network must “pebble vertices one at a time” (before pebbling t), on any computation path P' accepting a pyramid $G(P)$, there must be a node $b' \in V(P')$ mentioning lots of vertices of $V(P)$ exclusively, i.e., $K_{b'} \setminus \{s\} \subseteq V(P)$ and $|K_{b'} \setminus \{s\}| = h$ (Lemma 3.11).12 Formally, every path from s' to t' on a reversible pebbling mGEN network gives a reversible pebbling strategy to pebble t, starting from the initial configuration $K_{s'}$ (Remark 3.3). Since a reversible pebbling strategy is also a black pebbling strategy, the lower bound for black pebbling applies also to reversible pebbling.13

Lemma 3.11 (Barrier Size Bound). Fix a pyramid P of height h. Consider a path $P' := \langle e_1', e_2', \ldots, e_{\ell}' \rangle$ on a reversible pebbling mGEN network, where e_j' connects v_{j-1}' and v_j' and is labeled a positive literal $\lambda'(e_j') \in G(P)$, from $s' := v_0'$ to $t' := v_{\ell}'$. (Hence $K_{s'-1}$ and $K_{t'}$ are l_j-equivalent when $l_j := \lambda'(e_j')$ for $1 \leq j \leq \ell$.)

If $K_{s'} = \{s\}$ and $K_{t'} \ni t$, then P' has a node $b' \in V(P')$ with $K_{b'} \setminus \{s\} \subseteq Q$ and $|K_{b'} \setminus \{s\}| = h$.

11The pyramid graph is routinely used for studying space complexity, especially using pebbling games [17, 36]. We follow their convention that arcs point from the $(r+1)^{th}$ row to the r^{th} row.
12To prove Theorems 3.12 and 3.13, it suffices for b' to have $|K_{b'} \setminus \{s\}| \geq h$, instead of an exact equality.
13The converse (that reversible pebbling number is a lower bound on the black pebbling number) is not true in general. For example, the line graph (i.e., a single path) having ℓ edges requires two pebbles in black pebbling, but it takes $\Theta(\log \ell)$ pebbles in reversible pebbling [45].
TIGHT BOUNDS FOR MONOTONE SWITCHING NETWORKS VIA FOURIER ANALYSIS

Proof. By the proof of the black pebbling lower bound for a pyramid graph [17].

Such b' is a barrier node for P. Note that if two pyramids share less than h vertices, then they must have different barrier nodes. With this idea, we are ready to prove size lower bounds for reversible pebbling mGen networks (Theorems 3.12 and 3.13).

Theorem 3.12 (Reversible Pebbling Lower Bound for GEN). Any reversible pebbling mGen network G' having n' nodes and computing GEN of size n satisfies $n' \geq n^\Theta(h^{1/10})$.

Proof. Note that G' accepts all pyramid YES-instances. Apply Theorem 3.13.

Theorem 3.13 (Reversible Pebbling Lower Bound for Pyramids). For any $4 \leq h \leq n^{1/10}$, any reversible pebbling mGen network G' having n' nodes for GEN of size n, and accepting all pyramid YES-instances of height h, satisfies $n' \geq n^{h^{1/10}} = n^\Theta(h)$.

Proof. Fix h, let $m := \left(\frac{h+1}{2}\right), q := n^{h/10}, k := h - 1$. Then Lemma 2.2 gives q sets $Q_1, Q_2, \ldots, Q_q \subseteq [N]$ with $|Q_i| = m$ and $|Q_i \cap Q_j| \leq k$ for $1 \leq i \neq j \leq q$, where

$$N \leq \exp\left(\frac{h \ln n}{10(h-1)} + 1\right) h^4 \leq n^{1/3} h^4 \ll n.$$

For each Q_i, construct a pyramid P_i by identifying Q_i arbitrarily with a pyramid graph of height h. Now $G(P_i)$ is accepted by G', via some path P'_i labeled with positive literals in $G(P_i)$. Hence Lemma 3.11 gives a node b'_i whose reversible pebbling configuration satisfies $K_{b'_i} \setminus \{s\} \subseteq Q_i$ and $|K_{b'_i} \setminus \{s\}| = h$. Since $|Q_i \cap Q_j| \leq h - 1$, we have $b'_i \neq b'_j$ for $1 \leq i \neq j \leq q$. Hence $n' \geq q = n^{h/10}$.

3.3 Lower bound beyond reversible pebbling

For the general lower bound for mGen networks, we extend the Fourier analysis framework of [45] (summarized below as Lemma 3.29). Fourier analysis will be done over extremal No-instances (Definition 3.14) which can be identified with the Fourier basis (Definition 3.17).

It turns out that any mGen network computing the generation problem must do non-trivial work per individual pyramid, and the work will be visible in the Fourier spectrum. The work done for a pyramid P_1 will be orthogonal to the work done for a different pyramid P_2 if they are well-separated, i.e., P_1 and P_2 share less than h vertices. Since there are $n^{\Theta(h)}$ different pyramids that are pairwise well-separated, an mGen network must do an amount of work scaling with $n^{\Theta(h)}$, giving the size lower bound.

3.3.1 Fourier analysis of extremal No-instances

Let $\mathcal{K} := \{K \subseteq [n] : K \ni s\}$ be the collection of reversible pebbling configurations containing s. A reversible pebbling configuration $K_{b'}$ is proper if $K_{b'} \neq t$. Define $\bar{V} := [n] \setminus \{s, t\}$ and let

$$\mathcal{C} := \text{PowerSet}(\bar{V}) := \{C : C \subseteq \bar{V}\}$$

be the (bi-)colorings of \bar{V}. Any $C \in \mathcal{C}$ can be associated with a subset of $[n]$ containing s but excluding t by $C \mapsto C \cup \{s\}$. This association gives a bijection between \mathcal{C} and the sub-collection of the reversible
pebbling configurations in \mathcal{K} not containing t. While the objects in \mathcal{C} and \mathcal{K} are very different, it will be convenient to compare them via this bijection, i.e., when writing $K_{d'} = C$ or $K_{d'} \subseteq C$, we mean to test for the associated reversible pebbling configuration, e.g., $K_{d'} = C \cup \{s\}$ or $K_{d'} \subseteq C \cup \{s\}$.

Consider extremal No-instances for GEN that can be identified with some $C \in \mathcal{C}$. Extremal No-instances of GEN are analogous to cut No-instances of directed connectivity in $[45]$.

In particular, they are maxterms of respective monotone Boolean functions, hence “hardest to reject.”

Definition 3.14 (Extremal No-Instances). Any $C \in \mathcal{C}$ is associated with the extremal No-instance $G(C)$ where $e(w, u, v) = 0$ iff $w \in C \cup \{s\}$ and $u \in C \cup \{s\}$ and $v \notin C \cup \{s\}$ (recall the association mentioned above). Then the No-instance $G(C)$ generates $v \in [n]$ iff $v \in C \cup \{s\}$.

Proposition 3.15 (Extremal No-Instances). If $K_{d'} + l = K_{b'} + l$ and $l \in G(C)$, then $K_{d'} \subseteq C$ iff $K_{b'} \subseteq C$.

Proof. If $l \in G(C)$, then $K_{d'} \subseteq C$ iff $K_{a'} + l \subseteq C$.

The analysis will focus on the collection of extremal No-instances $G(\mathcal{C}) = \{G(C) : C \in \mathcal{C}\}$.

Definition 3.16 (Inner Product Space of Extremal No-Instances). A \mathcal{C}-vector is a real vector indexed by \mathcal{C}, equivalently a function from \mathcal{C} to \mathbb{R}. For two \mathcal{C}-vectors f and g, we define the inner product

$$\langle f, g \rangle := \frac{1}{|\mathcal{C}|} \sum_{C \in \mathcal{C}} f(C)g(C),$$

inducing a norm $\|f\| := \langle f, f \rangle^{1/2}$.

Definition 3.17 (Fourier Analysis). Given an extremal No-instance $U \in \mathcal{C}$, we define the \mathcal{C}-vector

$$\chi_U(C) := (-1)^{|U|}\sum_{C \in \mathcal{C}}[C \in U][v \in C].$$

Then the collection $\{\chi_U\}_{U \in \mathcal{C}}$ forms an orthonormal basis of the space of all \mathcal{C}-vectors, called the Fourier Basis. For a \mathcal{C}-vector g, its Fourier coefficient at $U \in \mathcal{C}$ is $\hat{g}(U) := \langle g, \chi_U \rangle$.

Let 1 denote the all-ones \mathcal{C}-vector: $1(C) = 1$ for all $C \in \mathcal{C}$; and similarly 0 the all-zeros \mathcal{C}-vector. Note that $\chi_{\{\}} = 1$.

3.3.2 Invariant cover for generation

This subsection shows how to use Fourier analysis to obtain size lower bounds on sound mGEN networks (Lemma 3.29). We begin by assigning \mathcal{C}-vectors to the nodes of mGEN networks.

14 Similar considerations of extremal No-instances appeared also in Raz–McKenzie [46], although the extremal No-instances they considered are not maxterms in their setting.

15 This implies that $G(\mathcal{C})$ are all maxterms of GEN. To see this, given any No-instance G of GEN, consider $C := \text{set of elements (except } s) \text{ generated by } G$, then $G \subseteq G(C)$ (when comparing the set of positive literals).

16 Recall that we write $K_{d'} = C$ and $K_{d'} \subseteq C$ to mean $K_{d'} = C \cup \{s\}$ and $K_{d'} \subseteq C \cup \{s\}$ when comparing a reversible pebbling configuration $K_{d'} \in \mathcal{K}$ with a bi-coloring $C \in \mathcal{C}$.

THEORY OF COMPUTING, Volume 10 (15), 2014, pp. 389–419 398
Definition 3.18 (Annotated mGen Networks). A function description of an mGen network G' is a function $F : V' \rightarrow \mathbb{R}^\mathcal{C}$ (i.e., an assignment of a \mathcal{C}-vector $F_{a'}$ to each $a' \in V'$). A function description F is valid for G' if:

1. $F_{a'} = 1$ and $F_{a} = 0$; and
2. If a' and b' are connected by an edge labeled l, where $l \in G(C)$, then $F_{a'}(C) = F_{b'}(C)$.

An annotated mGen network is an mGen network G' together with a valid function description F for G'.

Definition 3.19 (Reachability). Fix an mGen network G'. For $a' \in V'$, let $R_{a'}(C) := \text{true}$ if the extremal NO-instance $G(C)$ can reach a'.

The Boolean vector $R_{a'}$ is identified with the \mathcal{C}-vector $R_{a'}(C) := [C \text{ can reach } a']$.

Note that $R_{a'} = 1$; if and when G' is sound, then $R_{a'} = 0$.

Proposition 3.20 (Adjacent Reachability). If a' and b' are connected by an edge labeled l, where $l \in G(C)$, then $R_{a'}(C) = R_{b'}(C)$.

Lemma 3.21 (Valid Function Description). An mGen network G' has a valid function description if and only if G' is sound.

Proof. If G' is sound, then the reachability vector assignment R is a valid function description for it. If G' is not sound, then G' accepts some NO-instance $G(C)$ for some $C \in \mathcal{C}$ (because $G(\mathcal{C})$ are all maxterms of GEN), via some path P' connecting s' and t' labeled with literals in $G(C)$. If F is a function description for G' satisfying the adjacency condition (item (2)) in Definition 3.18, then for any two adjacent a' and b' on $V(P')$, $F_{a'}(C) = F_{b'}(C)$. Thus $F_{a'}(C) = F_{t'}(C)$ and F cannot be valid for G'.

We now introduce our key tool, invariant covers (Definition 3.23).

Definition 3.22 (l-Invariant). For a literal l and an annotated mGen network G' (with a valid function description F), a \mathcal{C}-vector g is l-invariant on G' if for any a' and b' in $V(G')$ connected by an edge labeled l, $(F_{a'}, g) = (F_{b'}, g)$. We say that g is l-invariant if g is l-invariant on G' for any annotated mGen network G'.

Definition 3.23 (Invariant Cover). Consider a YES instance P. A collection of \mathcal{C}-vectors $\{g_P\}_{i \in I}$ over some index set I forms an invariant cover (for P) if (1) for any positive literal $l \in G(P)$, there is an $i \in I$ so that g_P is l-invariant; and (2) for any $i \in I$, we have $(1, g_P) = 1$.

The idea behind invariant covers is as follows. For each $i \in I$, item (2) of Definition 3.23 implies $(F_{v'}, g_P) = 1$ and $(F_{v'}, g_P) = 0$. Consider a path P' connecting s' and t', all of whose edges are labeled with literals from P. As we move from s' to t' along P', imagine that for each $t \in I$, there is a player trying to get $(F_{v'}, g_P)$ from 1 to 0, where v' is the current node on P'. Whenever we move across an edge e' on P' with label $\lambda'(e') = l$, the players may all make progress towards this goal, except for the players...

17Hence $R_{a'}$ is the truth table at node a' restricted to the extremal NO-instances $G(C)$.
Lemma 3.24 (Barrier). Fix a YES instance P with an invariant cover $\{g_{P,t}\}_{t \in I}$ for P. Consider a path $P' = \langle e'_1, e'_2, \ldots, e'_\ell \rangle$ labeled with literals from P (that is, e'_j connects v'_{j-1} and v'_j and is labeled $\lambda'(e'_j) \in G(P)$) from $s' := v'_0$ to $t' := v'_\ell$. If $R_{s'} = 1$ and $R_t = 0$, then there is a node b' on P', and distinct $t_1, t_2 \in I$, such that

$$|\langle R_{b'}, g_{P,t_1} - g_{P,t_2} \rangle| \geq \frac{1}{\ell - 1}.$$

Proof. Apply Lemma 3.25 with $d_{j,1} := \langle R_{e'_j}, g_{P,t} \rangle$. □

Lemma 3.25 (Discrepancy in Progress). Consider real numbers $d_{j,1} \in \mathbb{R}$ for integer $0 \leq j \leq \ell$ and for index $t \in I$. If (1) for all $t \in I$, $d_{0,1} = 1$ and $d_{\ell,1} = 0$, and (2) for any $0 < j \leq \ell$, there is $t_j \in I$ such that $d_{j-1,t_j} = d_{j,1}$, then there exist j and distinct $\eta, t \in I$, such that

$$|d_{j,\eta} - d_{j,1}| \geq \frac{1}{\ell - 1}.$$

Proof. For $0 \leq j \leq \ell$, let $m_j := \min_t d_{j,t}$ and $M_j := \max_t d_{j,t}$ and $s_j := M_j - m_j$ (s stands for stretch or span). Assumption (2) implies that $m_{j-1} \leq M_j = m_j + s_j$. Assumption (1) gives $m_\ell = s_\ell = 0$,

$$1 = m_0 \leq m_\ell + \sum_{0 < j \leq \ell} s_j = \sum_{0 < j < \ell} s_j,$$

and $s_j \geq \frac{1}{\ell - 1}$ for some $0 < j < \ell$. □

We need a simple fact concerning the support of Fourier coefficients (Proposition 3.28), based on Definitions 3.26 and 3.27. The orthogonality in Fourier support gives the orthogonality in work done to different pyramids.

Definition 3.26 (Fourier Support). For a pyramid P, say a C-vector g is P-supported if

1. g depends only on coloring in P, i.e., $g(C_1) = g(C_2)$ if $v \in C_1 \iff v \in C_2$ for all $v \in V(P)$; or equivalently

2. $\hat{g}(U) \neq 0$ only when $U \subseteq V(P)$.

Definition 3.27 (High Frequency Support). We introduce cut-off degree and agreement degree for describing the Fourier support.

1. A C-vector g has cut-off degree k if $\hat{g}(U) \neq 0$ only when $|U| \geq k$.

2. A collection of C-vectors $\{g_t\}_{t \in I}$ agrees up to degree k if for all $U \in \mathcal{C}$ where $|U| \leq k$, we have $\hat{g}_{t_1}(U) = \hat{g}_{t_2}(U)$ for $t_1, t_2 \in I$.

Proposition 3.28 (Cut-Off and Agreement). For a collection of \mathcal{C}-vectors $\{g_i\}_{i \in I}$, the following are equivalent:

1. for any $i_1, i_2 \in I$, the difference $g_{i_1} - g_{i_2}$ has cut-off degree $k + 1$; and
2. $\{g_i\}_{i \in I}$ agrees up to degree k.

Later, we will construct an invariant cover agreeing up to degree $k = \Omega(h)$ and of “length” $\sigma \leq O(k \log n)$ (with a small enough constant in $O(\cdot)$), giving a size lower bound of $2^{\Omega(h \log n)} = n^{\Omega(h)}$ via Lemma 3.29.

Lemma 3.29 (Size Lower Bound from Invariant Cover). For $h \leq n^{1/8}$, if there is an invariant cover $\{g_{P_1}\}_{i \in I}$ for a pyramid YES-instance P of height h such that (1) g_{P_1} is P-supported, (2) $\{g_{P_1}\}_{i \in I}$ agrees up to degree $k \leq \left(\frac{h+1}{2}\right)$, and (3) $\|g_{P_1}\| \leq 2\sigma$ for $i \in I$; then any sound mGEN network G' having n' nodes for GEN of size n and accepting all pyramid YES-instances, satisfies

$$n' \geq 2^{(k \log n)/40 - (\sigma + 1)/2}.$$

Proof. Fix a pyramid P of height h. Its YES instance $G(P)$ is accepted by G' via some path P' labeled with literals from $G(P)$. Lemma 3.24 gives a node b'_p and a \mathcal{C}-vector $g_P := g_{P_{i_1}} - g_{P_{i_2}}$ such that $|\langle R_{b'_p}, g_P \rangle| \geq 1/n'$. Note that $\|g_P\| \leq \|g_{P_{i_1}}\| + \|g_{P_{i_2}}\| \leq 2\sigma + 1$. Also, g_P has cut-off degree $k + 1$ by Proposition 3.28, and is P-supported.

Let $q := n^{k/10}, m := \left(\frac{h+1}{2}\right)$, then Lemma 2.2 gives q sets $Q_1, Q_2, \ldots, Q_q \subseteq [N]$ satisfying $|Q_i| = m$ and $|Q_i \cap Q_j| \leq k$ for $1 \leq i \neq j \leq q$, where

$$N = \exp\left(\frac{k \ln n}{10k} + 1\right) \frac{m^2}{k} \leq en^{1/10}m^2 \ll n.$$

For each Q_i, construct a pyramid P_i by identifying Q_i arbitrarily with a pyramid graph of height h. Now the previous paragraph gives $b'_i := b'_p$ and $g_i := g_P$. Normalize $\tilde{g}_i := g_i/\|g_i\|$, then $\{\tilde{g}_i\}_{1 \leq i \leq q}$ is orthonormal (having disjoint Fourier support). Note that $1 \geq \|R_{b'_i}\|^2 \geq \sum_i |\langle R_{b'_i}, \tilde{g}_i \rangle|^2$ for any $b' \in V'$. Now

$$n' = \sum_{d' \in V'} 1 \geq \sum_i \sum_{d' \in V'} |\langle R_{d'}, \tilde{g}_i \rangle|^2 \geq \sum_i |\langle R_{b'_i}, \tilde{g}_i \rangle|^2 \geq q\left(\frac{1}{n'^{2\sigma + 1}}\right)^2,$$

since

$$|\langle R_{b'_i}, \tilde{g}_i \rangle| \geq \frac{1}{n'} \frac{1}{\|g_i\|} \geq \frac{1}{n'^{2\sigma + 1}}.$$

It follows that $(n')^3 \geq q/2^{2\sigma + 2} = n^{k/10}/2^{2\sigma + 2}$.

3.3.3 Reduction to reversible pebbling

This subsection reuses the lower bound for reversible pebbling mGEN networks (Lemma 3.11) for constructing invariant covers. Recall that each \mathcal{C}-vector $g_{P_{i1}}$ in an invariant cover is l-invariant for some literal (triple) l. Note that being l-invariant is a strong condition: $g_{P_{i1}}$ must satisfy a linear algebraic relation with respect to any mGEN network. However, it turns out that l-invariant vectors can be constructed using

a single mGEN network (Definition 3.31 and Corollary 3.36), which is even a reversible pebbling mGEN network. Indeed, \(G'_p \) (Definition 3.31) is suitable for this task, because “any reversible pebbling strategy to pebble \(P \) can be lifted to, or seen as a subgraph (i.e., edge subset) of, \(G'_p \) with a matching function description \(K \).” Hence the name universal.

Definition 3.30 (\(\zeta \)-Function\(^{18} \)). Identify a reversible pebbling configuration \(K_\alpha \in \mathcal{K} \) with the \(C \)-vector

\[
K_\alpha(C) := [K_\alpha \subseteq C] \quad \text{for } C \in \mathcal{C}.^{16}
\]

Definition 3.31 (Universal Reversible Pebbling Switching Network). Given a pyramid \(P \), consider \(G'_p := (V'_p, E'_p, s'_p, t'_p, \lambda'_p) \) where \(V'_p := \text{PowerSet}(V(P)) \cup \{K_r\} \subseteq \mathcal{K} \) is the collection of all proper reversible pebbling configurations over elements of \(P \), plus the improper reversible pebbling configuration \(K_r := [n] \). Hence each \(\alpha' \in V'_p \) is identified and naturally associated with its reversible pebbling configuration (i.e., \(K_\alpha := \alpha' \cup \{s\} \in \mathcal{K} \) as in Definition 3.6), with the obvious distinguished nodes \(s_p' \) and \(t_p' \) so that \(K_{e_p} = K_\alpha \) and \(K_{e_p} = K_{t_p} \). Now \(\alpha' \) and \(\beta' \) in \(V'_p \) are connected by an edge \(e' \) in \(E'_p \) with label a triple \(\lambda'_p(e') = l \in G(P) \) iff \(K_{\alpha'} + l = K_{\beta'} + l \). Then \(G'_p \) is a reversible pebbling mGEN network annotated with a valid function description \(K : V'_p \rightarrow \mathbb{R}^E \) (Definition 3.18 and Proposition 3.15).

To construct invariants (Definition 3.22) using the universal network (Definition 3.31), we need an alternative, equivalent characterization of invariants (Lemma 3.33) concerning the spatial\(^{19} \) support of \(C \)-vectors (Definition 3.32).

Definition 3.32 (l-Definite). For a literal \(l \), say that a \(C \)-vector \(g \) is \(l \)-definite if \(g(C) \neq 0 \) implies \(l \in G(C) \) (Definition 3.14).

Lemma 3.33 (Invariant ⇔ Definite). \(g \) is \(l \)-invariant iff \(g \) is \(l \)-definite.

Proof. For the \(\leq \) direction, on any annotated mGEN network \(G' \) with a valid function description \(F \), when \(\alpha' \) and \(\beta' \) are connected by an edge labeled \(l \), \(F_\alpha'(C)g(C) = F_{\beta'}(C)g(C) \) for any \(C \), because either (i) \(g(C) = 0 \), or (ii) \(l \in G(C) \), hence \(F_\alpha'(C) = F_{\beta'}(C) \) (item 2 of Definition 3.18). The \(\Rightarrow \) direction follows from Lemma 3.34.

The following proof of Lemma 3.34, i.e., backward induction and Lemma 3.35, was communicated to us by Yuval Filmus and Robert Robere, substantially simplifying proofs and presentations in earlier versions.

Lemma 3.34 (Reversible Pebbling Invariant). If \(g \) is \(l \)-invariant on \(G'_p \), then \(g \) is \(l \)-definite.

Proof. If \(l \notin G(C) \) and \(g \) is \(l \)-invariant on \(G'_p \), then \(g(C) = 0 \) by a backward induction on \(C \) as follows. Note that \(v \notin C \) if \(l =: w \land u \rightarrow v \notin G(C) \), and

\[
g(C) = \sum_{C \subseteq \mathcal{D} \subseteq \mathcal{V} \setminus \{v\}} g(D) - \sum_{C \subseteq \mathcal{D} \subseteq \mathcal{V} \setminus \{v\}} g(D).
\]

The first term is zero by Lemma 3.35, and the second term is also zero if (1) \(C = \mathcal{V} \setminus \{v\} \) vacuously, or (2) \(g(D) = 0 \) for all \(C \subseteq D \subseteq \mathcal{V} \setminus \{v\} \) by induction hypothesis.

\(^{18}\)The \(C \)-vector \(K_\alpha(\cdot) \) can be identified with \(\zeta(\alpha', \cdot) \) of the incidence algebra over the partially ordered set \(C \) of proper reversible pebbling configurations. For a fixed pyramid \(P \), the corresponding inverse \(g^\zeta(\cdot) \) (see Proposition 3.40) can basically be identified with \(\mu(\cdot, \alpha') \), interpreting the inner product \(\langle \cdot, \cdot \rangle \) (Definition 3.16) as a convolution (Proposition 3.40).

\(^{19}\)Spatial as in spatial domain, as the dual to frequency domain.
Lemma 3.35 (Inclusion-Exclusion Principle). If \(g \) is \(l \)-invariant on \(G'_p \), and \(l := w \wedge u \rightarrow v \notin G(C) \), then
\[\sum_{C \subseteq D \subseteq V \setminus \{v\}} g(D) = 0. \]

Proof. Let \(A' := C \) and \(B' := C \cup \{v\} \), then \(A' \) and \(B' \) are connected by an edge labeled \(l \) on \(G'_p \), for \(C + l = C \cup \{v\} \). Since \(g \) is \(l \)-invariant on \(G'_p \), \(\langle K_{A'}, g \rangle = \langle K_{B'}, g \rangle \). Hence
\[0 = |C| \langle g, K_{A'} - K_{B'} \rangle = \sum_{D} g(D)([a' \subseteq D] - [b' \subseteq D]) = \sum_{C \subseteq D \subseteq V \setminus \{v\}} g(D). \]

Corollary 3.36 (Reversible Pebbling Invariant). \(g \) is \(l \)-invariant if \(g \) is \(l \)-invariant on \(G'_p \).

Proof. The \(\Leftarrow \) direction follows from Lemma 3.34 and the \(\Leftarrow \) direction of Lemma 3.33.

3.3.4 Invariant cover from the universal network

For the many properties required in the lower bound framework (Lemma 3.29) concerning Fourier support, Corollary 3.36 intuitively handles the condition of \(l \)-invariance (implicit in an invariant cover). Other properties are easier to satisfy than \(l \)-invariance, except perhaps the property of agreement, which is handled by the notion of \(l \)-accessible reversible pebbling configurations (Definition 3.38) relative to a barrier (Definition 3.37). Roughly, different \(l \)-accessible reversible pebbling configurations \(A'_l \) (for different literals \(l \)) agree with each other over the common accessible reversible pebbling configurations \(A' \), which translates to the agreement condition (see Lemma 3.41).

Definition 3.37 (Barrier). Consider a set of nodes \(B' \subseteq V'_p \). A path \(P' \) on \(G'_p \) intersects \(B' \) if \(V(P') \cap B' \neq \{\} \). A collection of reversible pebbling configurations \(B' \subseteq V'_p \) is a barrier if \(s'_p \notin B' \) and \(t'_p \notin B' \) and every path \(P' \) from \(s'_p \) to \(t'_p \) on \(G'_p \) intersects \(B' \).

Definition 3.38 (\(l \)-Accessible Reversible Pebbling Configurations). Relative to a barrier \(B' \subseteq V'_p \), we define the collection of accessible reversible pebbling configurations
\[A'_l := \{ a' \in V'_p : \exists \text{ a path } P' \text{ connecting } s'_p \text{ and } a' \text{ and } P' \text{ does not intersect } B' \}. \]
We want an extended notion of \(l \)-accessible reversible pebbling configurations \(A'_l \supseteq A' \) where we allow intersection caused by edges labeled \(l \), defined by
\[A'_l := \{ a' \in V'_p : a' \in A' \text{ or } a' \text{ is adjacent to } b' \in A' \text{ by an edge labeled } l \}. \]
That is, all edges crossing \(A'_l \) are not labeled with \(l \). Indeed, if \(a' \) is adjacent to \(b' \in A' \) by an edge labeled \(l := w \wedge u \rightarrow v \), then \(a' \) and \(b' \) differ by a reversible pebbling move (Remark 3.3) to pebble or unpebble \(v \), since \(t \) is not involved if \(b' \in A' \). It follows that if \(a' \) and \(b' \) are connected by an edge labeled \(l := w \wedge u \rightarrow v \), and \(a' \in A'_l \), then \(b' \in A'_l \) as well (they differ at most by a reversible pebbling move (Remark 3.3) to pebble or unpebble \(v \)).

Remark 3.39 (Möbius Inversion). To construct an invariant cover \(\{g_{P,l}\}_{P \subseteq G(P)} \) (Lemma 3.41) where each \(g_{P,l} \) is \(P \)-supported (for use in Lemma 3.29), it suffices to restrict attention to \(P \)-supported vectors, which form a subspace of \(\ell \)-vectors. Note that the \(\ell \)-vector \(K_{A'} \) is \(P \)-supported iff \(a' \subseteq V(P) = Q \).
Then (1) \(\langle K_{d'}, g^{d'} \rangle = \zeta(a', \cdot) \) for \(\cdot \in \mathbb{C} \) unless \(a \in G \) for all \(U \subseteq \mathbb{C} \). On observing that \(A \) is the construction of a subspace of \(\mathbb{P} \) of proper reversible pebbling configurations over elements of \(P \). Hence \(\{ K_{d'} \}_{d' \in V(P)} \) forms a basis for the subspace of \(\mathbb{P} \)-vectors, admitting a dual basis \(\{ g^{d'} \}_{d' \in V(P)} \) satisfying \(\langle K_{d'}, g^{d'} \rangle = [d' = b'] \) (Proposition 3.40), given by an inclusion-exclusion over \(\mathbb{P} \). Hence if \(g_{PI} := \sum_{d' \in A'_I} g^{d'} \), then \(\langle K_{b'}, g_{PI} \rangle = [b' \in A'_I] \), indicating whether \(b' \in A'_I \). Thus for any \(A'_I \) on \(G \) connected by an edge labeled \(l \), it follows that \(\langle K_{d'}, g_{PI} \rangle = [d' \in A'_I] = [b' \in A'_I] = \langle K_{b'}, g_{PI} \rangle \) by the construction of \(A'_I \) (Definition 3.38). So \(g_{PI} \) is \(l \)-invariant on \(G \), hence \(l \)-invariant (Corollary 3.36).

Proposition 3.40 (Dual Vector to \(K_{d'} \)). Fix a subset \(Q = V(P) \subseteq \bar{V} \subset [n] \) of size \(|Q| \). We write \(\tilde{C} := C \cap Q \) for \(C \in \mathbb{C} \). For any subset \(d' \subseteq Q \), define a \(\mathbb{P} \)-supported \(\mathbb{C} \)-vector \(g^{d'} \) by

\[
g^{d'}(C) := 2^{|Q|}[\tilde{C} \subseteq d'](\langle -1 \rangle)^{|d'| - |C|}.
\]

Then (1) \(\langle K_{b'}, g^{d'} \rangle = [d' = b'] \) for \(d', b' \subseteq Q \), and (2) \(\hat{g}^{d'}(U) = (-2)^{|d'|}[d' \subseteq U] \). In particular, \(\hat{g}^{d'} \) is supported on \(U \supseteq d' \), i.e., \(\hat{g}^{d'}(U) \neq 0 \) only when \(U \supseteq d' \).

Proof. Note that \(g^{d'} \) is \(\mathbb{P} \)-supported by definition, hence

\[
\langle K_{b'}, g^{d'} \rangle = \frac{1}{|C|} \sum_{C \subseteq \tilde{C}} K_{b'}(C) g^{d'}(C) = \frac{1}{2^{|Q|}} \sum_{C \subseteq Q} K_{b'}(\tilde{C}) g^{d'}(\tilde{C}) = \sum_{b' \subseteq C \subseteq d'} (-1)^{|d'| - |C|} = [d' = b'],
\]

on observing that \((-1)^{|d'| - |C|} = \mu(\tilde{C}, d') \) is the \(\mu \)-function of \((\mathbb{P}, \mathbb{C}) \). This (1) holds. For (2), since \(g^{d'} \) is \(\mathbb{P} \)-supported, focus on \(U \subseteq Q \), then

\[
\hat{g}^{d'}(U) = \langle \chi_U, g^{d'} \rangle = \sum_{C \subseteq d'} (-1)^{|C| - |U| + |d'| - |C|},
\]

which is zero (due to cancellation) unless \(d' \subseteq U \), in which case it gives \(\sum_{C \subseteq d'} (-1)^{|d'|} = (-2)^{|d'|} \). \(\square \)

Lemma 3.41 (Constructing Invariants). For any pyramid \(P \) of height \(h \geq 2 \), let \(m := \binom{h+1}{2} \). For any positive literal \(l \in G(P) \), there is a \(\mathbb{C} \)-vector \(g_{PI} \) such that (1) \(g_{PI} \) is \(\mathbb{P} \)-supported, (2) \(g_{PI} \) is \(l \)-invariant, (3) \(\langle 1, g_{PI} \rangle = 1 \), (4) for all \(U \subseteq \bar{V} \) where \(|U| \leq k := h - 1 \), we have \(\hat{g}_{PI}(U) \) is independent of \(l \), and (5) for all \(U \subseteq \bar{V} \), \(|g_{PI}(U)| \leq 2^\tau \) where \(\tau := 2h \log(\text{em}/h) \), and (6) \(\| g_{PI} \| \leq 2^\sigma \) where \(\sigma := m/2 + \tau \).

Proof. Let \(B' := \{ d' \in V' \setminus \{ t'_p \} : |K_{d'} \setminus \{ s \}| = h \} \) be the collection of \(l \)-accessible reversible pebbling configurations relative to \(B' \). Note that \(t'_p \notin A'_I \) since \(h \ll \binom{h+1}{2} \). Now let \(g_{PI} := \sum_{d' \in A'_I} g^{d'} \), where \(g^{d'} \) is the dual vector to \(K_{d'} \) (Proposition 3.40). Each \(g^{d'} \) is \(\mathbb{P} \)-supported, hence (1) holds. The end of Remark 3.39 establishes (2). For (3), note that \(1 = \chi_1 \) and \(\hat{g}^{d'}(\{ \} \) \neq 0 only when \(d' = s'_p \), and \(\hat{g}^{d'}(\{ \}) = 1 \) (Proposition 3.40). For (4), note that if \(d' \) is such that \(|K_{d'} \setminus \{ s \}| < h \), then \(d' \in A'_I \) iff \(d' \in A' \), hence \([d' \in A'_I] = [d' \in A'] \) is independent

\[\text{Theory of Computing, Volume 10 (15), 2014, pp. 389–419}\]
of l for such a'. Also note that $\hat{g}^d(U) \neq 0$ only when $a' \subseteq U$ by Proposition 3.40. For (5), note that if $a' \in A_j'$, then $|K_{a'} \setminus \{s\}| \leq h$. Also recall

$$\binom{m}{\leq h} = \sum_{i=0}^{h} \binom{m}{i} \leq \left(\frac{em}{h}\right)^h.$$

Since $\hat{g}_{Pl}(U) = \sum_{a' \in A_j'} \hat{g}^d(U)$,

$$|\hat{g}_{Pl}(U)| \leq \sum_{a' \in A_j'} |\hat{g}^d(U)| \leq \sum_{a' \in A_j'} 2|a'| \leq \left(\frac{m}{h}\right) 2^h \leq \left(\frac{em}{h}\right)^h 2^h = 2^h \log(em/h) + h.$$

using Proposition 3.40. For (6), $\langle g_{Pl}, g_{Pl} \rangle = \sum_{U \subseteq Q} \hat{g}_{Pl}(U)^2 \leq 2^m 2^\tau$. \hfill \Box

3.3.5 Tight size bound

Note that the lower bound (Lemma 3.29) gets stronger as the invariant cover gets shorter (having a smaller σ). And for tight size bounds (Theorems 3.46 and 3.48), the first term $\Theta(k \log n)$ has to dominate the second term $\Theta(\sigma)$. To this end, we need yet another alternative, equivalent characterization of invariants (Definition 3.22) concerning Fourier support (Lemma 3.44). This characterization allows us to chop off high frequency Fourier coefficients from g_{Pl} to shorten the vectors (Lemma 3.45). Recall that we focus on literals $l = w \wedge u \rightarrow v$ where $w \neq v$ and $u \neq v$. Further, assume $w \neq t$ and $u \neq t$ and $v \neq s$, which is the case for our analysis (Lemma 3.29) and would simplify the treatment in Lemma 3.44.

Propositions 3.42 and 3.43 are simple facts about representing Boolean logic in Fourier analysis.

Proposition 3.42 (Arithmetization). Fix $v \in [n]$. Define the \mathbb{C}-vectors α_v and β_v by

$$\alpha_v(C) := \begin{cases} \frac{1}{2}(\chi_1(C) - \chi_{\{v\}}(C)) & \text{if } v \in \bar{V}, \\
\chi_1(C) & \text{if } v = s, \\
0 & \text{if } v = t. \end{cases} \quad \text{and} \quad \beta_v(C) := \begin{cases} \frac{1}{2}(\chi_1(C) + \chi_{\{v\}}(C)) & \text{if } v \in \bar{V}, \\
0 & \text{if } v = s, \\
\chi_1(C) & \text{if } v = t. \end{cases}$$

Then for any $C \in \mathbb{C}$, we have $[v \in C \cup \{s\}] = \alpha_v(C)$ and $[v \notin C \cup \{s\}] = \beta_v(C)$.

Proposition 3.43 (Orbital Average). For $Z \subseteq \bar{V}$ and $v \in \bar{V} \setminus Z$, define $Z_v := Z \cup \{v\}$, then

$$(\chi_1 - \chi_{\{v\}})(\hat{g}(Z)\chi_Z + \hat{g}(Z_v)\chi_{Z_v}) = (\hat{g}(Z) - \hat{g}(Z_v))(\chi_Z - \chi_{Z_v})$$

and

$$(\chi_1 + \chi_{\{v\}})(\hat{g}(Z)\chi_Z + \hat{g}(Z_v)\chi_{Z_v}) = (\hat{g}(Z) + \hat{g}(Z_v))(\chi_Z + \chi_{Z_v}).$$

Proof. When $v \notin Z$, we have $\chi_{Z_v}(C) = \chi_Z(C)\chi_{\{v\}}(C)$, so (under co-ordinate-wise multiplication)

$$(\chi_1 - \chi_{\{v\}})\chi_Z = \chi_Z - \chi_{Z_v} = (\chi_{\{v\}} - \chi_1)\chi_{Z_v},$$

giving the first equality. The second equality is proved similarly. \hfill \Box
Lemma 3.44 (Fourier Invariant). Fix a triple \(l := w \land u \to v \). Let \(\psi(l) := \{w, u, v\} \cap \hat{V} \). A \(\mathbb{C} \)-vector \(g \) is \(l \)-invariant iff for any \(Z \subseteq \hat{V} \setminus \psi(l) \), we have

\[
0 = \xi_{g,l}(Z) := \sum_{X \subseteq \psi(l)} \chi_{\hat{V} \cap \{w,u\}}(X) \hat{g}(Z \cup X).
\]

Proof. \(g \) is \(l \)-invariant iff \(g \) is \(l \)-definite (Lemma 3.33) iff \(g(C) = [l \in G(C)]g(C) \) for all \(C \in \mathcal{E} \) (Definition 3.32). If \(l = w \land u \to v \) for \(w, u, v \in [n] \), then \([l \in G(C)] = 1 - [w \in C_3][u \in C_4][v \notin C_5] \) where \(C_\gamma := C \cup \{s\} \) (Definition 3.14). Therefore, for any \(C \in \mathcal{E} \), we have

\[
g(C) = [l \in G(C)]g(C) \quad \text{iff} \quad [w \in C_3][u \in C_4][v \notin C_5]g(C) = 0.
\]

Succinctly, \(g \) is \(l \)-invariant iff (under co-ordinate-wise multiplication)

\[
[w \in \cdot \cup \{s\}] [u \in \cdot \cup \{s\}] [v \notin \cdot \cup \{s\}] g = 0
\]
as \(\mathbb{C} \)-vectors, iff (by Proposition 3.42) \(\alpha_w \alpha_u \beta_v g = 0 \) as \(\mathbb{C} \)-vectors. Fourier expand \(g \) as

\[
g = \sum_{U \subseteq \hat{V}} \hat{g}(U) \chi_U = \sum_{Z \subseteq \hat{V} \setminus \psi(l)} \sum_{Y \subseteq \psi(l)} \hat{g}(Z \cup Y) \chi_{Z \cup Y}.
\]

(3.1)

Now \(g \) is \(l \)-invariant iff (under co-ordinate-wise multiplication as \(\mathbb{C} \)-vectors)

\[
0 = \sum_{Z \subseteq \hat{V} \setminus \psi(l)} \sum_{Y \subseteq \psi(l)} \hat{g}(Z \cup Y) \chi_{Z \cup Y},
\]

which (by Proposition 3.43, recall \(w \neq t, u \neq t, v \neq s \)) is equivalent to

\[
0 = \sum_{Z \subseteq \hat{V} \setminus \psi(l)} \left(\sum_{X \subseteq \psi(l)} \chi_{\hat{V} \cap \{w,u\}}(X) \hat{g}(Z \cup X) \sum_{Y \subseteq \psi(l)} \chi_{\hat{V} \cap \{w,u\}}(Y) \chi_{Z \cup Y} \right)
\]

\[
= \sum_{Z \subseteq \hat{V} \setminus \psi(l)} \xi_{g,l}(Z) \eta(Z),
\]

where \(\eta(Z) := \sum_{Y \subseteq \psi(l)} \chi_{\hat{V} \cap \{w,u\}}(Y) \chi_{Z \cup Y} \). Note that \(\{\eta(Z)\}_Z \) are orthogonal and non-zero, hence linearly independent. \(\square \)

Lemma 3.45 (Low-Pass Invariant). Fix natural numbers \(k \) and \(\tau \). If for a pyramid \(P \), for any positive literal \(l \in G(P) \), there is a \(\mathbb{C} \)-vector \(g_{P,l} \) such that (1) \(g_{P,l} \) is \(P \)-supported, (2) \(g_{P,l} \) is \(l \)-invariant, (3) \(\langle 1, g_{P,l} \rangle = 1 \), (4) for all \(U \subseteq \hat{V} \) where \(|U| \leq k \), we have \(\hat{g}_{P,l}(U) \) is independent of \(l \), and (5) for all \(U \subseteq \hat{V} \), \(|\hat{g}_{P,l}(U)| \leq 2^\tau \); then for any positive literal \(l \in G(P) \), there is a \(\mathbb{C} \)-vector \(\tilde{g}_{P,l} \) satisfying (1), (2), (3), (4), and (5), plus (6) \(\|\tilde{g}_{P,l}\| \leq 2^\tau \) where \(\sigma := \left((k+4)\log m\right) + \tau \).

Proof. For \(l \in G(P) \), expand \(g_{P,l} = \sum_{C \in \mathcal{E}} \hat{g}_{P,c}(C) \chi_C \) as a \(\mathbb{C} \)-vector. If \(l := w \land u \to v \), define

\[C_{l,k} := \{C \in \mathbb{E} : |C \setminus \psi(l)| \leq k\} \subseteq \mathbb{E} \]

for \(\psi(l) := \hat{V} \cap \{w, u, v\} \), and \(\tilde{g}_{P,l} := \sum_{C \in C_{l,k}} \hat{g}_{P,c}(C) \chi_C \) as a \(\mathbb{C} \)-vector by chopping off the high frequency Fourier coefficients from \(g_{P,l} \). Note that \(\langle \tilde{g}_{P,l}, \chi_U \rangle \neq 0 \) implies \(\langle g_{P,l}, \chi_U \rangle \neq 0 \) for any \(U \in \mathbb{E} \). Now \(\tilde{g}_{P,l} \)

is \(P\)-supported due to the second item of Definition 3.26, hence (1) holds. Since \(g_{PI}\) is \(I\)-invariant, by Lemma 3.44, \(\xi_{g_{PI}}(Z) = 0\) for any \(Z \subseteq \tilde{V} \setminus \psi(l)\). It follows that \(\xi_{g_{PI}}(Z) = 0\) for any such \(Z\), as either (i) for some \(X \subseteq \psi(l)\), \(Z \cup X \in \mathcal{C}_{l,k}\), hence \(Z \cup X \in \mathcal{C}_{l,k}\) for all such \(X\), thus \(\xi_{g_{PI}}(Z) = \xi_{g_{PI}}(Z)\); or (ii) for all \(X \subseteq \psi(l)\), \(Z \cup X \notin \mathcal{C}_{l,k}\), thus \(\xi_{g_{PI}}(Z) = 0\). So \(\tilde{g}_{PI}\) is \(I\)-invariant by Lemma 3.44 and (2) holds. For (3), \(1 = \chi_{\{1\}}\) and \(\langle \tilde{g}_{PI}, \chi_{\{1\}} \rangle = \langle g_{PI}, \chi_{\{1\}} \rangle\). For (4), when \(U \subseteq \tilde{V}\) has \(|U| \leq k\), \(\langle \tilde{g}_{PI}, \chi_U \rangle = \langle g_{PI}, \chi_U \rangle\). (5) follows since \(|\langle \tilde{g}_{PI}, \chi_U \rangle| \leq |\langle g_{PI}, \chi_U \rangle|\) for all \(U \subseteq \tilde{V}\). Note that \(|C| \leq k + 3\) for \(C \in \mathcal{C}_{l,k}\), hence

\[
\langle \tilde{g}_{PI}, \tilde{g}_{PI} \rangle = \sum_{C \in \mathcal{C}_{l,k}} 2^{\tilde{g}_{PI}(C)} \leq \left(\frac{m}{k + 3} \right)^{2^{\tau}} \leq m^{2\tau + 62^{\tau}}.
\]

\[\square\]

Theorem 3.46 (Size Lower Bound). For any \(4 \leq h \leq n^{1/600}\), any sound \(m\)GEN network \(G'\) having \(n'\) nodes for \(\text{GEN}\) of size \(n\), and accepting all pyramid \(\text{YES}\)-instances of height \(h\), satisfies

\[n' \geq 2^{(\log n)/400 - 1/2} = n^{\Theta(h)}.
\]

Proof. By Lemma 3.41, boosted by Lemma 3.45, there is an invariant cover \(\{g_{PI}\}_{I \in \mathcal{G}(P)}\) for \(P\) such that (1) \(g_{PI}\) is \(P\)-supported and (2) \(\{g_{PI}\}_{I \in \mathcal{G}(P)}\) agrees up to degree \(k := h - 1\), and (3) \(\|g_{PI}\| \leq 2^\sigma\) with \(\sigma \leq (k + 4) \log m + 4h \log m \leq 6h \log m\). Now Lemma 3.29 gives

\[
\log n' \geq \frac{k}{40} \log n - \frac{1}{2} \sigma - \frac{1}{2} \geq \frac{h}{80} \log n - 3h \log m - \frac{1}{2} \geq \frac{h}{400} \log n - \frac{1}{2}.
\]

Theorem 3.46 gives a size lower bound for \(m\)GEN networks solving the generation problem, by analyzing pyramid \(\text{YES}\)-instances. However, the general generation problem may be harder and require larger \(m\)GEN networks. To get a tight bound (and thus defending the title of this paper), we construct below a monotone (decision) problem computed by a (uniform) \(m\)GEN network (Definition 3.47), allowing us to reuse **Theorem 3.46** for a tight size bound in **Theorem 3.48**.

Definition 3.47 (Universal Degree-\(h\) Reversible Pebbling Switching Network). For a size parameter \(n\) and \(h \leq n\), consider

\[G'_{n,h} := (V_{h}, E'_{h}, s'_{h}, t'_{h}, \lambda'_{h})\]

where

\[V_{h} := \left(\tilde{V} \cup K_{f} \right) := \{ V \subseteq [n] \setminus \{s,t\} : |V| \leq h \} \cup \{K_{f}\}\]

is the collection of proper reversible pebbling configurations of size at most \(h\) (excluding \(s\), plus the improper reversible pebbling configuration. Hence each \(a' \in V_{h}'\) is identified and naturally associated with its reversible pebbling configuration \((K_{d} := a' \cup \{s\} \in \mathcal{K}\) as in Definition 3.6), with the obvious distinguished nodes \(s'_{h}\) and \(t'_{h}\) so that \(K_{s} = K_{a'}\) and \(K_{t} = K_{f}\). Now \(a'\) and \(b'\) in \(V_{h}'\) are connected by an edge \(e' \in E_{h}'\) labeled with a triple \(\lambda'_{h} = l\) iff \(K_{d} + l = K_{d'} + l\). Then \(G_{n,h}'\) is a reversible pebbling \(m\)GEN network annotated with a valid function description \(K : V_{h} \rightarrow \mathcal{R}^{\mathcal{E}}\) (Definition 3.18 and Proposition 3.15).

Recall that \(f_{G'_{n,h}}\) is the function computed by \(G'_{n,h}\), which is monotone. Note that \(G'_{n,h}\) has

\[
\left(\begin{array}{c} n - 2 \\ h \end{array} \right) + 1 = n^{O(h)}
\]

nodes (and hence \(n^{O(h)}\) edges).

Theorem 3.48 (Tight Size Bound). For any \(12 \leq h \leq 3n^{1/600}\), any mGEN network \(G'\) having \(n'\) nodes and computing \(f_{G_{n',h}}\) satisfies
\[
n' \geq \frac{1}{2} n^{h/1200} = n^{\Theta(h)}.
\]

Proof. Note that \(G_{n',h}'\) is sound and accepts all pyramid YES-instances of height \(h/3\) (by simulating a reversible pebbling strategy), and so is any \(G'\) computing \(f_{G_{n',h}}\). Now apply Theorem 3.46.

\[\square\]

4 Lower bound for cliques

This section proves the lower bound for cliques as Theorem 4.19. After defining the problem and the model below (Definitions 4.1 and 4.2), Section 4.1 introduces the Fourier analytic framework over extremal No-instances, Section 4.2 describes the lower bound framework assuming the existence of an invariant cover, and Section 4.3 constructs the invariant cover. These subsections clearly share many similarities with the lower bound proof in Section 3.

Definition 4.1 (Clique Problem). For a size parameter \(n\), let \(V := [n]\) be \(n\) vertices. For \(2 \leq k \leq n\), the \(k\)-clique problem \((k\text{-CLIQUE})\) receives as input a subset \(E \subseteq \binom{V}{2}\) of edges. \(k\text{-CLIQUE}\) accepts input \(E\) if the graph \((V, E)\) has a \(k\)-clique, i.e., if there is \(U \subseteq V, |U| = k\), and \(\{u, v\} \in E\) for all \(u \neq v \in U\). The value of \(E\) is represented as \(\binom{V}{2}\) Boolean variables.

Definition 4.2 (Monotone Switching Networks for CLIQUE). We say that a switching network is a monotone switching network for CLIQUE \((m\text{-CLIQUE network})\), if each edge \(e' \in E'\) is labeled with \(\lambda'(e') = \{u, v\}\) for some \(u \neq v \in V\). Given an instance for \(k\text{-CLIQUE}\) with data \(E\), the literal \(\lambda'(e') = \{u, v\}\) is in the instance if \(\{u, v\} \in E\).

4.1 Fourier analysis on extremal instances

The analysis focuses on the YES-instances of CLIQUE having a structure of a \(k\)-clique, and the NO-instances that are \((k-1)\)-colorable.\(^{21}\) In particular, those YES-instances are minterms and those NO-instances are ‘similar’ to maxterms of CLIQUE as a monotone Boolean function, and they are respectively “hardest to accept” and “hardest to reject.” Fourier analysis will be done on the truth tables restricted to the \((k-1)\)-colorable instances (Definition 4.7). These definitions for CLIQUE are analogous to the ones for GEN in Section 3.3.1.

Definition 4.3 \((k\text{-clique YES-Instances})\). An instance \(G(P) \in \{0, 1\}^{\binom{V}{2}}\) of CLIQUE forms a \(k\text{-clique YES-instance}\) if there exists \(Q \subseteq V, |Q| = k\) such that \(\{u, v\} \in E\) iff \(u \neq v\) and \(u, v \in Q\). In this case, the YES-instance is simply called a \(k\)-clique (also denoted by \(P\)), and \(V(P) := Q \subseteq V\).

Definition 4.4 \((\text{Extremal NO-Instances})\). Let \(\mathcal{C} := \{C: V \rightarrow [k-1]\} \cong [k-1]^V\) be the collection of \(k-1\) colorings of \(V\). A coloring \(C \in \mathcal{C}\) is associated with the extremal NO-instance \(G(C)\) where an edge \(\{u, v\} \notin G(C)\) iff \(C(u) = C(v)\) for \(u, v \in V\).

\(^{21}\)This consideration is standard in the study of the monotone complexity of \(k\text{-CLIQUE}\) (e.g., [46, 55]), and similar ideas date back at least to Razborov [48].
This subsection adapts the framework of invariant cover from G INNER PRODUCT SPACE OF COLORINGS some index set INVARIANT COVER DEFINITION 4.10 if \(l \)-invariant G INNER PRODUCT SPACE OF COLORINGS. For two \(\mathcal{C} \)-vectors \(f \) and \(g \), we define

\[
\langle f, g \rangle := \frac{1}{|\mathcal{C}|} \sum_{C \in \mathcal{C}} f(C) \overline{g(C)}
\]

as their inner product, inducing the norm \(\|f\| := \langle f, f \rangle^{1/2} \). Then \(\mathbb{C}^\mathcal{C} \) is an inner product space.

Definition 4.6 (Fourier Analysis). For a coloring \(U \in \mathcal{C} \), we define the \(\mathcal{C} \)-vector

\[
\chi_U(C) := \omega^{\sum_{v \in V} U(v) C(v)}
\]

where \(\omega := e^{2\pi i/(k-1)} \) is the primitive \((k-1)^a\) root of unity. The collection \(\{\chi_U\}_{U \in \mathcal{C}} \) forms an orthonormal basis for \(\mathbb{C}^\mathcal{C} \), called the Fourier Basis. We write \(\hat{g}(U) := \langle g, \chi_U \rangle \) to denote the Fourier coefficient of \(g \) at “frequency” \(U \). We say that the support of \(U \) is \(\text{supp}(U) := \{v \in V : U(v) \neq 0\} \) for \(U \in \mathcal{C} \).

Definition 4.7 (Reachability). Fix an \(m\text{CLIQUE} \) network \(G' \). For \(a' \in V' \), let \(R_{a'}(C) := \text{TRUE} \) if the extremal No-instance \(G(C) \) can reach \(a' \).\(^{22}\) The Boolean vector \(R_{a'} \) is identified with the \(\mathcal{C} \)-vector \(R_{a'}(C) := [C \text{ can reach } a'] \).

Proposition 4.8 (Adjacent Reachability). If \(a' \) and \(b' \) are connected by an edge labeled \(\{u,v\} \), where \(\{u,v\} \in G(C) \), then \(R_{a'}(C) = R_{b'}(C) \).

Let \(1 \) denote the all-ones \(\mathcal{C} \)-vector: \(1(C) = 1 \) for all \(C \in \mathcal{C} \); and similarly \(0 \) the all-zeros \(\mathcal{C} \)-vector. Note that \(R_{1} = 1 \); and if \(G' \) is sound (i.e., does not accept No-instances), then \(R_{1} = 0 \).

4.2 Invariant cover for cliques

This subsection adapts the framework of invariant cover from \(\text{GEN to CLIQUE} \) as Lemma 4.13, by suitably changing the definitions of an invariant cover (Definitions 4.9 and 4.10) and Fourier support (Definitions 4.11 and 4.12).

Definition 4.9 (\(l \)-Invariant). For a literal \(l \) and an \(m\text{CLIQUE} \) network \(G' \), a \(\mathcal{C} \)-vector \(g \) is \(l \)-invariant on \(G' \) if for any \(a' \) and \(b' \) in \(V(G') \) connected by an edge labeled \(l \), \(\langle R_{a'}, g \rangle = \langle R_{b'}, g \rangle \). We say that \(g \) is \(l \)-invariant if \(g \) is \(l \)-invariant on \(G' \) for any \(m\text{CLIQUE} \) network \(G' \).

Definition 4.10 (Invariant Cover). Consider a \(\text{YES} \) instance \(P \). A collection of \(\mathcal{C} \)-vectors \(\{g_{P,t}\}_{t \in I} \) over some index set \(I \) forms an invariant cover (for \(P \)) if (1) for any positive literal \(l \in G(P) \), there is an \(t \in I \) so that \(g_{P,t} \) is \(l \)-invariant; and (2) for any \(t \in I \), we have \(\langle 1, g_{P,t} \rangle = 1 \).

Definition 4.11 (Fourier Support). For a \(k \)-clique \(P \), say a \(\mathcal{C} \)-vector \(g \) is \(P \)-supported if

1. \(g \) depends only on coloring in \(P \), i.e., \(g(C_1) = g(C_2) \) if \(C_1(v) = C_2(v) \) for all \(v \in V(P) \); or equivalently

\(^{22}\)Hence \(R_{a'} \) is the truth table at node \(a' \) restricted to the extremal No-instances \(G(C) \).
2. \(\hat{g}(U) \neq 0 \) only when \(\text{supp}(U) \subseteq V(P) \).

Definition 4.12 (High Frequency Support). We introduce cut-off degree and agreement degree for describing the Fourier support.

1. A \(\mathcal{C} \)-vector \(g \) has cut-off degree \(k \) if \(\hat{g}(U) \neq 0 \) only when \(|\text{supp}(U)| \geq k \).

2. A collection of \(\mathcal{C} \)-vectors \(\{g_i\}_{i \in I} \) agrees up to degree \(k \) if for all \(U \in \mathcal{C} \) where \(|\text{supp}(U)| \leq k \), we have \(\hat{g}_{t_1}(U) = \hat{g}_{t_2}(U) \) for \(t_1, t_2 \in I \).

Lemma 4.13 (Size Lower Bound from Invariants). For \(3 \leq k \leq n^{1/100} \), if there is an invariant cover \(\{g_{P,1}\}_{i \in I} \) such that (1) \(g_{P,1} \) is \(P \)-supported, (2) \(\{g_{P,1}\}_{i \in I} \) agrees up to degree \(k-2 \), and (3) \(\|g_{P,1}\| \leq k^2 \); then any sound \(m\text{CLIQUE} \) network \(G' \) having \(n' \) nodes for \text{CLIQUE} of size \(n \) and accepting all \(k \)-cliques, satisfies
\[
n' \geq (1/2)n^{k/100} = n^{\Theta(k)}.
\]

Proof. Fix a \(k \)-clique \(P \). Its \text{YES}-instance \(G(P) \) is accepted by \(G' \) via some path \(P' \) labeled with edges from \(G(P) \). Lemma 3.24 gives a node \(b'_p \) and a \(\mathcal{C} \)-vector \(g_P := g_{P,1} - g_{P,2} \) such that \(\langle R_{b'_p}, g_P \rangle \geq 1/n' \).\(^{23}\)

Note that \(\|g_P\| \leq \|g_{P,1}\| + \|g_{P,2}\| \leq 2k^2 \). Also, \(g_p \) has cut-off degree \(k-1 \) by Proposition 3.28, and is \(P \)-supported.

Let \(q := n^{k/10} \), then Lemma 2.2 gives \(q \) sets \(Q_1, Q_2, \ldots, Q_q \subseteq [N] \) satisfying \(|Q_i| = k \) and \(|Q_i \cap Q_j| \leq k-2 \) for \(1 \leq i \neq j \leq q \), where
\[
N = \exp \left(\frac{k \ln n}{10(k-2)} + 1 \right) \frac{k^2}{k-2} \leq n^{1/3}k^2 \ll n.
\]

For each \(Q_i \), construct the \(k \)-clique \(P_i \) with \(V(P_i) = Q_i \), then the previous paragraph gives \(b'_i := b'_P \) and \(g_i := g_P \). Normalize \(\tilde{g}_i := g_i/\|g_i\| \), then \(\{\tilde{g}_i\}_{1 \leq i \leq q} \) is orthonormal (having disjoint Fourier support). Note that \(1 \geq \|R_{b'_i}\|^2 \geq \sum_i |\langle R_{b'_i}, \tilde{g}_i \rangle|^2 \) for any \(b' \in V' \). Now
\[
n' = \sum_{a' \in V'} 1 \geq \sum_{i} \sum_{a' \in V'} |\langle R_{a'}, \tilde{g}_i \rangle|^2 \geq \sum_i |\langle R_{b'_i}, \tilde{g}_i \rangle|^2 \geq q \left(\frac{1}{n'2k^2} \right)^2,
\]

since
\[
|\langle R_{b'_i}, \tilde{g}_i \rangle| \geq \frac{1}{n'} \frac{1}{\|g_i\|} \geq \frac{1}{n'2k^2}.
\]

It follows that
\[
(n')^3 \geq \frac{q}{4k^2} = \frac{n^{k/10}2}{4k^2} \geq \frac{1}{4} n^{k/20}.
\]

\(^{23}\)Strictly speaking, \(\mathcal{C} \)-vectors in Section 4.1 are complex vectors while \(\mathcal{C} \)-vectors in Section 3.3.1 are real vectors. We may redefine \(\mathcal{C} \)-vectors in Section 3.3.1 as complex vectors. In doing so, the only necessary change is the proof of Lemma 3.24: we may apply Lemma 3.25 instead with \(d_{j,i} := \text{real part of } \langle R_{j,i}, g_{P_i} \rangle \).
4.3 Constructing invariant cover

This subsection constructs an invariant cover for CLIQUE (Lemma 4.14) by exploiting the symmetry in the problem. The lower bound for CLIQUE is proved as Theorem 4.19.

Fix a collection of vertices \mathcal{D} (e.g., $V(P) \cong [k]$) and a color set \mathcal{R} (e.g., $[k-1]$). A coloring $C: \mathcal{D} \rightarrow \mathcal{R}$ has a monopoly if exactly one color class has more than one vertex, i.e., $|\{c \in \mathcal{R}: |C^{-1}(c)| > 1\}| = 1$, in which case the monopoly refers to vertices in \mathcal{D} with the dominating color. Later, for counting purposes, we will restrict attention to a subset of vertices in a clique, e.g., $\mathcal{D} = [k-2]$ and $\mathcal{R} = [k-1]$. In such cases, say C is proper if $C(u) = C(v)$ implies $u = v$ for $u, v \in \mathcal{D}$.

Lemma 4.14 (Invariant Cover). Define the scaling factor $\phi(k) := (k-1)^{k-1}/(k-2)!(k-2)$. For any vertex v in a k-clique P, define a \mathbb{C}-vector $g_{P,v}$ by

$$g_{P,v}(C) := \begin{cases} \phi(k)(-1)^\tau(\tau - 2)! & \text{if } C \text{ (restricted to } P) \text{ has a monopoly with } \tau \text{ vertices and the monopoly does not contain } v, \\ 0 & \text{otherwise.} \end{cases}$$

Then (1) $g_{P,v}$ is P-supported, (2) $g_{P,v}$ is l-invariant when $l = \{u, v\}$ for any $u \in V(P) \setminus \{v\}$, (3) $\langle 1, g_{P,v} \rangle = 1$, (4) $\{g_{P,v}\}_{v \in P}$ agrees up to degree $k-2$, and (5) $\|g_{P,v}\| \leq k^{k/2}$.

Proof. Item (1) is clear. For (2), note that if $g_{P,v}(C) \neq 0$ then C gives a unique color to v in P, i.e., $C(u) \neq C(v)$ for all $u \in V(P) \setminus \{v\}$. Hence if a' and b' are connected by an edge labeled $l = \{u, v\}$ where $u \in V(P) \setminus \{v\}$, then $R_{a'}(C)g_{P,v}(C) = R_{b'}(C)g_{P,v}(C)$ for any C, because either (i) $g_{P,v}(C) = 0$, or (ii) $C(u) \neq C(v)$, then $\{u, v\} \in G(C)$ and $R_{a'}(C) = R_{b'}(C)$ (Proposition 4.8).

For (3), note that when C assigns a unique color (denoted by c_v below) in P, ignoring v and its color reduces to a coloring $\tilde{C}: V(P) \setminus \{v\} \rightarrow [k-1] \setminus \{C(v)\}$, which is identified with $\tilde{C}: [k-1] \rightarrow [k-2]$. For $\tau \geq 2$, the number of such \tilde{C} having a monopoly of size τ is

$$\binom{k-1}{\tau} \binom{k-2}{\tau - 2}!,$$

hence

$$\langle 1, g_{P,v} \rangle = |\mathcal{C}|^{-1} \sum_{C \in \mathcal{C}} g_{P,v}(C) = \frac{1}{(k-1)^k} \sum_{c_i \in [k-1]} \sum_{2 \leq k-1} \binom{k-1}{\tau} \binom{k-2}{\tau - 2}! \cdot \phi(k)(-1)^\tau(\tau - 2)! = \frac{1}{k-2} \sum_{2 \leq k-1} \binom{k-1}{\tau} (-1)^\tau = 1,$$

using the combinatorial identity $\sum_{0 \leq t \leq \ell} \binom{\ell}{t} (-1)^t = 0$ for $t \geq 1$, \(24\)

For (4), note that \mathbb{C}-vectors g_1 and g_2 agree up to degree $k-2$ if they “depend the same way on colorings whose domain has size at most $k-2$” (Claim 4.15). More precisely, introduce the following.

\(24\)Elchanan Mossel noticed that this implicit use of the principle of inclusion-exclusion for controlling Fourier coefficients is similar to the Efron-Stein decomposition [20].
For nesting vertex sets \(\mathcal{D}_1 \supseteq \mathcal{D}_2 \), a coloring \(C_1 : \mathcal{D}_1 \to \mathcal{R} \) extends a coloring \(C_2 : \mathcal{D}_2 \to \mathcal{R} \) if \(C_1 \) agrees with \(C_2 \) when restricted to \(\mathcal{D}_2 \), i.e., \(C_1(v) = C_2(v) \) for \(v \in \mathcal{D}_2 \). Define

\[
\text{Ext}(C_2, \mathcal{D}_1) := \{ C_1 : \mathcal{D}_1 \to \mathcal{R} \text{ extending } C_2 \}
\]

as all extensions of \(C_2 \) to \(\mathcal{D}_1 \). The \(C_2 \)-slice of a \(\mathcal{C} \)-vector \(g \) is slice \((g, C_2) := |E|^{-1} \sum_{C_1 \in \mathcal{E}} g(C_1) \), where \(E := \text{Ext}(C_2, \mathcal{D}_1) \) with an appropriate \(\mathcal{D}_1 \) (which will be clear from the context, e.g., \(V \) or \(V(P) \)).

Claim 4.15 (Agreement). \(\mathcal{C} \)-vectors \(g_1 \) and \(g_2 \) agree up to degree \(k - 2 \) if slice \((g_1, C_2) = \text{slice}(g_2, C_2) \) for any coloring \(C_2 : \mathcal{D}_2 \to [k - 1] \) such that \(|\mathcal{D}_2| \leq k - 2 \).

Proof. Given any coloring \(U \in \mathcal{C} \) as frequency, partition \(\mathcal{C} \) by colors over supp \((U) \), and rewrite

\[
\hat{g}(U) = |\mathcal{C}|^{-1} \sum_{C \in \mathcal{C}} g(C) \chi_U(C) = |\mathcal{S}|^{-1} \sum_{S \in \mathcal{S}} \text{slice}(g, S) \chi_U(S),
\]

where \(\mathcal{S} := \{ S : \text{supp}(U) \to [k - 1] \} \) is the collection of colorings over the support of \(U \) (note that \(\chi_U \) depends only on colors over supp \((U) \)). Hence if \(|\text{supp}(U)| \leq k - 2 \), then

\[
\hat{g}_1(U) = |\mathcal{S}|^{-1} \sum_{S \in \mathcal{S}} \text{slice}(g_1, S) \chi_U(S) = |\mathcal{S}|^{-1} \sum_{S \in \mathcal{S}} \text{slice}(g_2, S) \chi_U(S) = \hat{g}_2(U). \]

Hence (4) follows, if for any \(u, v \in V(P) \), we have slice \((g_{P,u}, C_2) = \text{slice}(g_{P,v}, C_2) \) for any coloring \(C_2 : \mathcal{D}_2 \to [k - 1] \) with \(|\mathcal{D}_2| \leq k - 2 \). Further, we can assume \(\mathcal{D}_2 \subseteq V(P) \), since \(g_{P,u} \) and \(g_{P,v} \) are \(P \)-supported. Therefore, after computing the slice function (Claim 4.16) to show the independence of \(v \) (Claim 4.17), item (4) follows from Claim 4.18 (due to Claim 4.15).

Claim 4.16 (Indicator of Proper Coloring). If \(\mathcal{D}_2 \subseteq V(P) \) has size \(|\mathcal{D}_2| = k - 1 \), and \(\mathcal{D}_2 \ni v \), then for any coloring \(C_2 : \mathcal{D}_2 \to [k - 1] \), we have

\[
\text{slice}(g_{P,v}, C_2) = \frac{k - 2}{k - 1} \phi(k) \| C_2 \text{ is proper} \|.
\]

Proof. Let \(E := \text{Ext}(C_2, V(P)) \), then any extension \(C_1 \in E \) colors one more vertex \(w \in V(P) \setminus \mathcal{D}_2 \) than \(C_2 \), and

\[
\text{slice}(g_{P,v}, C_2) = \frac{1}{k - 1} \sum_{C_1 \in E} \text{slice}(g_{P,v}, C_1).
\]

If \(C_2 \) is proper, then by considering the coloring of \(w \),

1. one extension \(C_1 \in E \) has a monopoly of size 2 containing \(v \), where \(\text{slice}(g_{P,v}, C_1) = 0 \); and
2. \(k - 2 \) extensions \(C_1 \in E \) has a monopoly of size 2 not containing \(v \), where \(\text{slice}(g_{P,v}, C_1) = \phi(k) \) as \((1)^2(2 - 2)! = 1\).

Thus

\[
\text{slice}(g_{P,v}, C_2) = \frac{k - 2}{k - 1} \phi(k)
\]

if \(C_2 \) is proper.
Otherwise, C_2 is not proper, and has a color class with more than one vertex. If C_2 does not have a monopoly or the monopoly contains v, then any extension $C \in \text{Ext}(C_2, V)$ has $g_{P,v}(C) = 0$, hence $\text{slice}(g_{P,v}, C_2) = 0$.

For the remaining case, C_2 has a monopoly of size $\tau \geq 2$ not containing v. By considering the coloring of w,

- one extension $C_1 \in E$ has a monopoly of size $\tau + 1$ not containing v, where $\text{slice}(g_{P,v}, C_1) = \frac{\phi(k)}{k-1}((-1)^{\tau+1} (\tau - 1)! + (\tau - 1)(-1)^{\tau} (\tau - 2)!) = 0$.

- $\tau - 1$ extensions $C_1 \in E$ have a monopoly of size τ not containing v, where $\text{slice}(g_{P,v}, C_1) = \frac{\phi(k)}{k-1}((-1)^{\tau} (\tau - 2)!)$.

Hence

$$\text{slice}(g_{P,v}, C_2) = \frac{\phi(k)}{k-1}((-1)^{\tau+1} (\tau - 1)! + (\tau - 1)(-1)^{\tau} (\tau - 2)!) = 0.$$ \hfill \Box

Claim 4.17 (Independence of v). If $\mathcal{D}_2 \subseteq V(P)$ has size $|\mathcal{D}_2| = k - 2$, then for any coloring $C_2 : \mathcal{D}_2 \rightarrow [k - 1]$, we have

$$\text{slice}(g_{P,v}, C_2) = \frac{k-2}{(k-1)^2} \phi(k)[C_2 \text{ is proper}],$$

which is independent of v.

Proof. Let \mathcal{D}_1 be an arbitrary subset such that $\mathcal{D}_1 \subseteq V(P)$ and $|\mathcal{D}_1| = k - 1$ and $\mathcal{D}_1 \supseteq \mathcal{D}_2 \cup \{v\}$. Now $\text{slice}(g_{P,v}, C_2) = |E|^{-1} \sum_{C_1 \in E} \text{slice}(g_{P,v}, C_1)$ where $E := \text{Ext}(C_2, \mathcal{D}_1)$. If C_2 is not proper, neither is any $C_1 \in E$, hence $\text{slice}(g_{P,v}, C_1) = 0$ by Claim 4.16, and $\text{slice}(g_{P,v}, C_2) = 0$. Otherwise C_2 is proper, then exactly one extension $C_1 \in E$ is proper, and the result follows from Claim 4.16. \hfill \Box

Claim 4.18 (Equality of Slices). For any $C_2 : \mathcal{D}_2 \rightarrow [k - 1]$ with $\mathcal{D}_2 \subseteq V(P)$ and $|\mathcal{D}_2| \leq k - 2$, we have $\text{slice}(g_{P,u}, C_2) = \text{slice}(g_{P,v}, C_2)$ for any $u, v \in V(P)$.

Proof. Let \mathcal{D}_1 be an arbitrary subset of size $|\mathcal{D}_1| = k - 2$ such that $\mathcal{D}_2 \subseteq \mathcal{D}_1 \subseteq V(P)$. Let $E := \text{Ext}(C_2, \mathcal{D}_1)$, then Claim 4.17 gives $\text{slice}(g_{P,u}, C_2) = \text{slice}(g_{P,v}, C_2)$ for $C_1 \in E$, so

$$\text{slice}(g_{P,u}, C_2) = |E|^{-1} \sum_{C_1 \in E} \text{slice}(g_{P,u}, C_1) = |E|^{-1} \sum_{C_1 \in E} \text{slice}(g_{P,v}, C_1) = \text{slice}(g_{P,v}, C_2).$$ \hfill \Box

To compute $\|g_{P,v}\|$ for (5), partition \mathcal{E} by coloring to v (denoted by c_v below),

$$\langle g_{P,v}, g_{P,v} \rangle = |\mathcal{E}|^{-1} \sum_{C \in \mathcal{E}} g_{P,v}(C)^2 = \frac{1}{(k-1)^2} \sum_{c_v \in [k-1]} \sum_{2 \leq \tau \leq k-1} \left(\frac{k-1}{\tau} \right) \frac{(k-2)!}{(\tau-2)!} \frac{\phi(k)}{k-1}((-1)^{\tau} (\tau - 2)!) = \frac{(k-1)^{k-1}}{(k-2)^2} \sum_{2 \leq \tau \leq k-1} \left(\frac{k-1}{\tau} \right) \frac{(\tau - 2)!}{(k-2)!} \leq (k-1)^k,$$

since

$$\frac{(k-1)}{\tau} \frac{(\tau - 2)!}{(k-2)!} \leq k-1.$$

So $\|g_{P,v}\| \leq k^{k/2}$. \hfill \Box
Theorem 4.19 (Size Lower Bound). For $3 \leq k \leq n^{1/100}$, any mCLIQUE network G' having n' nodes and computing k-CLIQUE of size n, satisfies

$$n' \geq \frac{1}{2} n^{k/100} = n^{\Theta(k)}.$$

Acknowledgements

We thank Yuval Filmus and Robert Robere for pointing out an error in an earlier version, and for substantially simplifying the conceptual framework with a backward induction of Lemma 3.35. The first-named author thanks Anand Bhaskar, Stephen Cook, Pierre McKenzie, Thomas Watson, and Dustin Wehr for helpful discussions. We also thank the anonymous reviewers of STOC’12 and the anonymous reviewers of ToC and their colleagues, for valuable comments on presentations.

References

TIGHT BOUNDS FOR MONOTONE SWITCHING NETWORKS VIA FOURIER ANALYSIS

AUTHORS

Siu Man Chan
Postdoc Department of Computer Science
University of Toronto
siuman@cs.utoronto.ca

Aaron Potechin
Ph. D. student
Mathematics Department
Massachusetts Institute of Technology
aaron@potechin.org

ABOUT THE AUTHORS

SIU MANCHAN is a postdoc currently at Toronto, after spending one year at Princeton. He completed his Ph. D. at Berkeley under Luca Trevisan and Elchanan Mossel. He did his M. S. at Toronto under Toniann Pitassi, and his undergrad at the Chinese University of Hong Kong under Leizhen Cai. He is interested in lower bounds in computational complexity, like his clone Siu On. Siu Man is currently occupied with space and parallel complexity, and more generally with the understanding of proofs, algorithms, and complexity in different mathematical models via combinatorics. He procrastinates by dreaming of upgrading his camera gears and buying more lenses.

AARON POTECHEIN did his undergraduate studies at Princeton, which was followed by Part III of the Mathematical Tripos at Cambridge. He is now a graduate student at MIT working under Jonathan Kelner. While he is interested in a wide variety of topics, his primary research focus for the past few years has been on trying to prove space lower bounds using the switching network model. At FOCS 2010 he received the Machtey Award for the Best Student Paper for his paper “Bounds on Monotone Switching Networks for Directed Connectivity.”

THEORY OF COMPUTING, Volume 10 (15), 2014, pp. 389–419