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Abstract: We initiate the study of multi-source extractors in the quantum world. In this
setting, our goal is to extract random bits from two independent weak random sources, on
which two quantum adversaries store a bounded amount of information. Our main result is a
two-source extractor secure against quantum adversaries, with parameters closely matching
the classical case and tight in several instances. Moreover, the extractor is secure even if the
adversaries share entanglement. The construction is the Chor-Goldreich (1988) two-source
inner product extractor and its multi-bit variant by Dodis et al. (RANDOM’04). Previously,
research in this area focused on the construction of seeded extractors secure against quantum
adversaries; the multi-source setting poses new challenges, among which is the presence of
entanglement that could potentially break the independence of the sources.
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1 Introduction and results

Randomness extractors are fundamental in many areas of computer science, with numerous applications
to derandomization, error-correcting codes, expanders, combinatorics and cryptography, to name just a
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few. Randomness extractors generate almost uniform randomness from imperfect sources, as they appear
either in nature, or in various applications. Typically, the imperfect source is modelled as a distribution
over n-bit strings whose min-entropy is at least k, i. e., a distribution in which no string occurs with
probability greater than 2−k [30, 5, 37]. Such sources are known as weak sources. One way to arrive at a
weak source is to imagine that an adversary (or some process in nature), when in contact with a uniform
source, stores n− k bits of information about the string (which are later used to break the security of
the extractor, i. e., to distinguish its output from uniform). Then, from the adversary’s point of view, the
source essentially has min-entropy k.

Ideally, we would like to extract randomness from a weak source. However, it is easy to see that
no deterministic function can extract even one bit of randomness from all such sources, even for min-
entropies as high as n−1 (see, e. g., [30]). One main approach to circumvent this problem is to use a
short truly random seed for extraction from the weak source (seeded extractors) (see, e. g., [31]). The
other main approach, which is the focus of the current work, is to use several independent weak sources
(seedless extractors) (e. g., [5, 35, 10, 4, 27] and many more).

With the advent of quantum computation, we must now deal with the possibility of quantum adver-
saries (or quantum physical processes) interfering with the sources used for randomness extraction. For
instance, one could imagine that a quantum adversary now stores n− k qubits of information about the
string sampled from the source. This scenario of a bounded storage quantum adversary arises in several
applications, in particular in cryptography.

Some constructions of seeded extractors were shown to be secure in the presence of quantum
adversaries: König, Maurer, and Renner [29, 22, 28] proved that the pairwise independent extractor
of Impagliazzo et al. [19, 17] is also good against quantum adversaries, and with the same parameters.
König and Terhal [24] showed that any one-bit output extractor is also good against quantum adversaries,
with roughly the same parameters. In light of this, it was tempting to conjecture that any extractor is also
secure against quantum storage. Somewhat surprisingly, Gavinsky et al. [14] gave an example of a seeded
extractor that is secure against classical storage but becomes insecure even against very small quantum
storage. This example has initiated a series of recent ground-breaking work that examined which seeded
extractors stay secure against bounded storage quantum adversaries. Ta-Shma [32] gave an extractor
with a short (polylogarithmic) seed extracting a polynomial fraction of the min-entropy. His result was
improved by De and Vidick [8] extracting almost all of the min-entropy. Both constructions are based on
Trevisan’s extractor [34].

However, the question of whether seedless multi-source extractors can remain secure against quantum
adversaries has remained wide open. The multi-source scenario corresponds to several independent adver-
saries, each tampering with one of the sources, and then jointly trying to distinguish the extractor’s output
from uniform. In the classical setting this leads to several independent weak sources. In the quantum
world, measuring the adversaries’ stored information might break the independence of the sources, thus
jeopardizing the performance of the extractor.1 Moreover, the multi-source setting offers a completely
new aspect of the problem: the adversaries could potentially share entanglement prior to tampering with
the sources. Entanglement between several parties is known to yield several astonishing effects with no
counterpart in the classical world, e. g., non-local correlations [1] and superdense coding [3].

We note that the example of Gavinsky et al. can also be viewed as an example in the two-source

1Such an effect appears also in strong seeded extractors and has been discussed in more detail by König and Terhal [24].
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model; we can imagine that the seed comes from a second source (of full entropy in this case, just like
any seeded extractor can be artificially viewed as a two-source extractor). And obviously, in the same
way, recent work on quantum secure seeded extractors artificially gives secure two-source extractors,
albeit for a limited range of parameters and without allowing for entanglement. However, no one has as
of yet explored how more realistic multi-source extractors (i. e., with equally sized sources of non-full
entropy) fare against quantum adversaries, and in particular how entanglement might change the picture.
We ask: Are there any good multi-source extractors secure against quantum bounded storage? And does
this remain true when considering entanglement?

Our results In this paper, we answer all these questions affirmatively. We focus on the inner-product
based two-source extractor of Dodis et al. [10] (DEOR-extractor). Given two independent weak sources
X and Y with the same length n and min-entropies k1 and k2 satisfying k1 + k2 ' n, this extractor gives m
close to uniform random bits, where m≈max(k1,k2)+ k1 + k2−n. In recent years several two-source
extractors with better parameters have been presented (e. g., [4, 27]).

A first conceptual step in this paper is to define the model of quantum adversaries and of security
in the two-source scenario (see Definitions 2.1 and 2.2): Each adversary gets access to an independent
weak source X (respectively, Y ), and is allowed to store a short arbitrary quantum state.2 In the entangled
setting, the two adversaries may share arbitrary prior entanglement, and hence their final joint stored state
is the possibly entangled state ρXY . In the non-entangled case their joint state is of the form ρXY = ρX⊗ρY .
In both cases, the security of the extractor is defined with respect to the joint state they store.

Definition 1.1 (Two-source extractor against (entangled) quantum storage (informal)). A function E :
{0,1}n×{0,1}n→ {0,1}m is a (k1,k2,ε) extractor against (b1,b2) (entangled) quantum storage if for
any sources X ,Y with min-entropies k1,k2, and any joint stored quantum state ρXY prepared as above,
with X-register of b1 qubits and Y -register of b2 qubits, the distribution E(X ,Y ) is ε-close to uniform
even when given access to ρXY .

Depending on the type of adversaries, we will say E is secure against entangled or non-entangled
storage. Note again that entanglement between the adversaries is specific to the multi-source scenario and
does not arise in the case of seeded extractors.

Having set the framework, we show that the construction of Dodis et al. [10] is secure, first in the
case of non-entangled adversaries.

Theorem 1.2. The DEOR-construction is a (k1,k2,ε) extractor against (b1,b2) non-entangled storage
with

m = (1−o(1))max
(

k1−
b1

2
,k2−

b2

2

)
+

k1−b1 + k2−b2−n
2

−9logε
−1−O(1)

output bits, provided k1 + k2−max(b1,b2)> n+Ω(log3(n/ε)).

As we show next the extractor remains secure even in the case of entangled adversaries. Notice the
loss of essentially a factor of 2 in the allowed storage; this is related to the fact that superdense coding
allows to store n bits using only n/2 entangled qubit pairs.

2In the setting of seeded extractors with one source, this type of adversary was called quantum encoding by Ta-Shma [32].
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Theorem 1.3. The DEOR-construction is a (k1,k2,ε) extractor against (b1,b2) entangled storage with

m = (1−o(1))max(k1−b2,k2−b1)+
k1−2b1 + k2−2b2−n

2
−9logε

−1−O(1)

output bits, provided k1 + k2−2max(b1,b2)> n+Ω(log3(n/ε)).

Note that in both cases, when the storage is linear in the source entropy we can output Ω(n) bits with
exponentially small error. To compare to the performance of the DEOR-extractor in the classical case,
note that a source with min-entropy k and classical storage of size b roughly corresponds to a source of
min-entropy k−b (see, e. g., [32, Lemma 3.1]). Using this correspondence, the DEOR-extractor [10]
gives m = max(k1,k2)+ k1− b1 + k2− b2− n− 6logε−1−O(1) output bits against classical storage,
whenever k1 + k2−max(b1,b2) > n+Ω(logn · (log2 n+ logε−1)). Hence the conditions under which
one can extract randomness are essentially the same for DEOR and for our Theorem 1.2. The amount
of random bits we can extract is somewhat less than that in the classical case, even when disregarding
storage.

In the non-entangled case, we are able to generalize our result to the stronger notion of guessing
entropy adversaries or so called quantum knowledge. In this case, the entropy of the source is measured
by the (in)ability of the adversary to guess it given some side information (see discussion below and
Section 5 for details). We show that the DEOR-extractor remains secure even in this case, albeit with
slightly weaker parameters.

Theorem 1.4. The DEOR-construction is a (k1,k2,ε) extractor against quantum knowledge with

m = (1−o(1))max(k1,k2)+
k1 + k2−n

6
−9logε

−1−O(1)

output bits, provided k1 + k2 > n+Ω(log3(n/ε)).

Strong extractors The extractor in Theorems 1.2, 1.3 and 1.4 is a so called weak extractor, meaning
that when trying to break the extractor, no full access to any of the sources is given (which is natural in
the multi-source setting). We also obtain several results in the so called strong case (see Corollary 3.5,
Lemma 4.1, Corollary 5.7 and Lemma 5.8). A strong extractor has the additional property that the output
remains secure even if the adversaries later gain full access to any one (but obviously not both) of the
sources.3 See Section 2 for details and a discussion of the subtleties in defining a strong extractor in the
entangled case, and Sections 3, 4 and 5 for our results in the strong case.

Tightness In the one-bit output case, we show that our results are tight, both in the entangled and
non-entangled setting (see Lemma 3.7).

Proof ideas and tools To show both of our results, we first focus on the simplest case of one-bit outputs.
In this case the DEOR-extractor [10] simply computes the inner product E(x,y) = x · y (mod 2) of the
n-bit strings x and y coming from the two sources. Assume that the two adversaries are allowed quantum
storage of b qubits each. Given their stored information they jointly wish to distinguish E(x,y) from

3This is called a strong blender in [10].
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uniform, or, in other words, to predict x · y. We start by observing that this setting corresponds to the well
known simultaneous message passing (SMP) model in communication complexity,4 where two parties,
Alice and Bob, have access to an input each (which is unknown to the other). They each send a message
of length b to a referee who, upon reception of both messages, is to compute a function E(x,y) of the
two inputs. When E is hard to compute, it is a good extractor. Moreover, the entangled adversaries case
corresponds to the case of SMP with entanglement between Alice and Bob, a model that has been studied
in recent work (see, e. g., [15, 13]).

Before we proceed, let us remark that there are cases, where entanglement is known to add tremendous
power to the SMP model. Namely, Gavinsky et al. [15] showed an exponential saving in communication
in the entangled SMP model, compared to the non-entangled case.5 This points to the possibility that
some extractors can be secure against a large amount of storage in the non-entangled case, but be insecure
against drastically smaller amounts of entangled storage. Our results show that this is not the case
for the DEOR extractor, i. e., that this construction is secure against the potentially harmful effects of
entanglement.

In the one-bit output DEOR case we can tap into known results on the quantum communication
complexity of the inner product problem (IP). Cleve et al. [6] and Nayak and Salzman [25] have given
tight lower bounds in the one-way and two-way communication model, with and without entanglement
(which also gives bounds in the SMP model). For instance, in the non-entangled case, to compute
IP exactly in the one-way model, n qubits of communication are needed, and in the SMP model, n
qubits of communication are needed from Alice and from Bob, just like in the classical case. Note that
whereas in the communication setting typically worst case problems are studied, extractors correspond
to average case (with respect to weak randomness) problems. With some extra work we can adapt the
communication lower bounds to weak sources and to the average bias which is needed for the extractor
result. In fact, the results we obtain hold in the strong case (where later one of the sources is completely
exposed), which corresponds to one-way communication complexity.

Tightness of our results comes from matching upper bounds on the one-way and SMP model
communication complexity of the inner product. Adapting the work of Chor and Goldreich [5] we can
obtain tight bounds for any bias ε . Somewhat surprisingly, it seems no one has looked at tight upper
bounds for IP in the entangled SMP model, where Cleve et al. [6] give an n/2 lower bound for the
message length for Alice and Bob. It turns out this bound is tight,6 which essentially leads to the factor 2
separation in our results for the entangled vs. non-entangled case (see Section 3).

To show our results for the case of multi-bit extractors, we use the nice properties of the DEOR
construction (and its precursors [35, 11]). The extractor outputs bits of the form Ax · y. Vazirani’s
XOR-Lemma allows to reduce the multi-bit to the one-bit case by relating the distance from uniform of
the multi-bit extractor to the sum of biases of XOR’s of subsets of its bits. Each such XOR, in turn, is just
the inner product, for which we already know how to bound the bias. Our main technical challenge is to
adapt the XOR lemma to the case of quantum side-information (see Section 2). This way we obtain results

4The connection between extractors and communication complexity has been long known, see e. g., [35].
5This result has been shown for a relation, not a function. It is tempting to conjecture that this result can be turned into an

exponential separation for an extractor with entangled vs. non-entangled adversaries. It is, however, not immediate how to turn a
worst case relation lower bound into an average case function bound, as needed in the extractor setting, so we leave this problem
open.

6We thank Ronald de Wolf [9] for generously allowing us to adapt his upper bound to our setting.
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for multi-bit extractors, which even hold in the case of strong extractors. Following Dodis et al. [10],
we further improve the parameters in the weak extractor setting by combining our strong two-source
extractor with a good seeded extractor (in our case with the construction of De et al. [7]) to extract even
more bits. See Section 4 for details.

Guessing entropy One can weaken the requirement of bounded storage, and instead only place a lower
bound on the guessing entropy of the source given the adversary’s storage, leading to the more general
definition of extractors secure against guessing entropy. Informally, a guessing entropy of at least k means
that the adversary’s probability of correctly guessing the source is at most 2−k (or equivalently, that given
the adversary’s state, the source has essentially min-entropy at least k). Guessing entropy is arguably
a more natural defintion of “limited knowledge,” and applies also when a priori bound on the storage
dimension is not known. The resulting extractors are more generally applicable, and secure also in the
bounded storage setting (see Section 5). A convenient side effect is that we no longer have to worry about
two parameters (min-entropy and storage) instead only working with one (guessing entropy).

In the classical world, a guessing entropy of k is more or less equivalent to a source with k min-
entropy; in the quantum world, however, things become less trivial. In the case of seeded extractors, this
more general model has been successfully introduced and studied in [28, 24, 12, 7, 33], where several
constructions secure against bounded guessing entropy were shown.7

In the case of non-entangled two-source extractors, we can show (based on [24]) that any classical
one-bit output two-source extractor remains secure against bounded guessing entropy adversaries, albeit
with slightly worse parameters. Moreover, our XOR-Lemma allow us to prove security of the DEOR-
extractor against guessing entropy adversaries even in the multi-bit case (Theorem 1.4, see Section 5 for
the details).8

In the entangled adversaries case, one natural way to define the model is to require the guessing
entropy of each source given the corresponding adversary’s storage to be high. This definition, however,
is too strong: it is easy to see that no extractor can be secure against such adversaries. This follows from
the observation that by sharing a random string r1r2 (which is a special case of shared entanglement) and
having the first adversary store r1⊕ x,r2 and the other store r1,r2⊕ y, we keep the guessing entropy of
X (respectively, Y ) relative to the adversary’s storage unchanged yet we can recover x and y completely
from the combined storage.

Hence we are naturally led to consider the weaker requirement that the guessing entropy of each
source given the combined storage of both adversaries is high. We now observe that already the DEOR
one-bit extractor (where the output is simply the inner product) is not secure under this definition,
indicating that this definition is still too strong. To see this, consider uniform n-bit sources X ,Y , and say
Alice stores x⊕ r, and Bob stores y⊕ r, where r is a shared random string. Obviously, their joint state
does not help in guessing X (or Y ), hence the guessing entropy of the sources is still n; but their joint
state does give x⊕ y. If, in addition, Alice also stores the Hamming weight |x| mod 4 and Bob |y| mod 4,
the guessing entropy is barely affected, and indeed one can easily show it is n−O(1). However, their
information now suffices to compute x · y exactly, since x · y = (1/2)((|x|+ |y|− |x⊕ y|) mod 4). Hence

7Renner [28] deals with the notion of conditional min-entropy, which was shown to be equivalent to guessing entropy [23].
8We are grateful to Thomas Vidick for pointing out that our XOR-Lemma allows us to obtain results also in this setting.
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the inner product is insecure in this model even for very high guessing entropies, even though it is secure
against a fair amount of bounded storage.

In light of this, it is not clear if and how entangled guessing entropy sources can be incorporated into
the model, and hence we only consider bounded storage adversaries in the entangled case. We note that
it is also unclear how to define extractors for dependent random variables in the classical scenario, and
just as there are constructions for certain kinds of dependent weak sources, it might be possible to give
constructions for certain kinds of entanglement.

Related work We are the first to consider two-source extractors in the quantum world, especially against
entanglement. As mentioned, previous work on seeded extractors against quantum adversaries [29, 22,
28, 24, 32, 8, 7, 2] gives rise to trivial two-source extractors where one of the sources is not touched by
the adversaries. However, the only previous work that allows to derive results in the genuine two-source
scenario is the work by König and Terhal [24]. Using what is implicit in their work, and with some extra
effort, it is possible to obtain results in the one-bit output non-entangled two-source scenario (which hold
against guessing entropy adversaries, but with worse performance than our results for the inner product
extractor), and we give this result in detail in Section 5. Moreover, König and Terhal [24] show that any
classical multi-bit extractor is secure against bounded storage adversaries, albeit with an exponential
decay in the error parameter. This easily extends to the non-entangled two-source scenario, to give results
in the spirit of Theorem 1.2. We have worked out the details and comparison to Theorem 1.2 in Section 6.
Note, however, that to our knowledge no previous work gives results in the entangled scenario.

Discussion and Open Problems We have, for the first time, studied two-source extractors in the
quantum world. Previously, only seeded extractors have been studied in the quantum setting. In the
two-source scenario a new phenomenon appears: entanglement between the (otherwise independent)
sources. We have formalized what we believe the strongest possible notion of quantum adversaries in this
setting and shown that one of the best performing extractors, the DEOR-construction, remains secure.
We also show that our results are tight in the one-bit output case.

Our results for the multi-bit output DEOR-construction allow to extract slightly less bits compared
to what is possible classically. An interesting open question is whether it is possible to obtain matching
parameters in the (non-entangled) quantum case. One might have to refine the analysis and not rely solely
on communication complexity lower bounds. Alternatively, our quantum XOR-Lemma currently incurs
a penalty exponential in either the length of the output or the length of the storage. Any improvement
here also immediately improves all three main theorems. In particular, by removing the penalty entirely,
Theorem 1.2 can be made essentially optimal (with respect to the classical case).

We have shown that inner-product-based constructions are necessarily insecure in two reasonable
models of entangled guessing entropy adversaries (and hence that bounded storage adversaries are the
more appropriate model in the entangled case). It should be noted that it is possible that other extractor
constructions (not based on the inner product) could remain secure in this setting, and this subject warrants
further exploration.

As pointed out, it is conceivable that entanglement could break the security of two-source extractors.
Evidence for this is provided by the communication complexity separation in the entangled vs. non-
entangled SMP-model, given in [15]. A fascinating open problem is to turn this relational separation
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into an extractor that is secure against non-entangled quantum adversaries but completely broken when
entanglement is present.

Our work leaves several other open questions. It would be interesting to see if other multi-source
extractors remain secure against entangled adversaries, in particular the recent breakthrough construction
by Bourgain [4] which works for two sources with min-entropy (1/2−α)n each for some small constant
α , or the construction of Raz [27], where one source is allowed to have logarithmic min-entropy while
the other has min-entropy slightly larger than n/2. Both extractors output Ω(n) almost uniform bits.

And lastly, it would be interesting to see other application of secure multi-source extractors in the
quantum world. One possible scenario is multi-party computation. Classically, Kalai et al. [20] show that
sufficiently strong two-source extractors allow to perform multi-party communication with weak sources
when at least two parties are honest. Perhaps similar results hold in the quantum setting.

Structure of the paper In Section 2 we introduce our basic notation and definitions, and describe the
DEOR construction. Here we also present one of our tools, the “quantum” XOR-Lemma. Section 3
is dedicated to the one-bit output case and the connection to communication complexity and gives
our tightness results. In Section 4 we deal with the multi-bit output case and prove our main result,
Theorems 1.2 and 1.3. In Section 5 we present our results against non-entangled guessing entropy
adversaries (partly based on [24]) and prove Theorem 1.4. Section 6 works out the results that can be
derived from [24] in the case of multi-bit extractors against non-entangled bounded storage.

2 Preliminaries and tools

In this section we provide the necessary notation, formalize Definition 1.1, describe the DEOR-extractor
and present and prove our quantum XOR-Lemma. For background on quantum information see, e. g., [26].

Notation Given a classical random variable Z and a set of density matrices {ρz}z∈Z we denote by ZρZ

the cq-state
∑
z∈Z

Pr[Z = z] |z〉〈z|⊗ρz .

When the distribution is clear from the context we write p(z) instead of Pr[Z = z]. For any random
variable Z′ on the domain of Z, we define

ρZ′ := ∑
z∈Z′

Pr[Z′ = z]ρz .

For any random variable Y , let

Y ρZ := ∑
y∈Y

Pr[Y = y] |y〉〈y|⊗ρZ|Y=y .

We denote by Um the uniform distribution on m bits. For matrix norms, we define

‖A‖tr = Tr
(√

A†A
)

and ‖A‖F =
√

Tr(A†A) .
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Both norms are invariant under unitary transformations and satisfy

‖A‖F ≤ ‖A‖tr ≤
√

D‖A‖F ,

where D is the dimension of A. Lastly, we define the trace distance between two matrices:9

|A−B|tr =
1
2
‖A−B‖tr .

Extractors against quantum storage We first formalize the different types of quantum storage.

Definition 2.1. For two random variables X ,Y we say ρXY is a (b1,b2) entangled storage10 if it is
generated by two non-communicating parties, Alice and Bob, in the following way. Alice and Bob
initially share an arbitrary entangled state. Alice receives x ∈ X , Bob receives y ∈ Y . They each apply an
arbitrary quantum operation on their qubits. Alice then traces out all but b1 of her qubits, and Bob b2 of
his qubits, giving the state ρxy.

We denote by ρA
XY the state obtained when Alice keeps her entire state, whereas Bob traces all but b2

of his qubits, and similarly for ρB
XY .

We say ρXY is (b1,b2) non-entangled storage if ρxy = ρx⊗ρy for all x ∈ X ,y ∈ Y .

The security of the extractor is defined relative to the storage.

Definition 2.2. A (k1,k2,ε) two-source extractor against (b1,b2) (entangled) quantum storage is a
function E : {0,1}n×{0,1}n → {0,1}m such that for any independent n-bit weak sources X ,Y with
respective min-entropies k1,k2, and any (b1,b2) (entangled) storage ρXY ,

|E(X ,Y )ρXY −Um⊗ρXY |tr ≤ ε .

For ease of notation we’ll omit the tensor sign when dealing with the uniform distribution; it should
always be assumed to be completely independent.

The extractor is called X-strong if

|E(X ,Y )ρXY X−UmρXY X |tr ≤ ε ,

X-superstrong when ρXY is replaced by ρA
XY , and similarly for Y . It is called (super)strong if it is both X-

and Y - (super)strong.

A note on the definition: A strong extractor is secure even if at the distinguishing stage one of the
sources is completely exposed. A superstrong extractor is secure even if, in addition, the matching party’s
entire state is also given. Without entanglement, the two are equivalent (and correspond to an extractor
against (k1,b2) storage), as the state can be completely reconstructed from the source. Further note that
in the communication complexity setting the model of strong extractors corresponds to the SMP model
where the referee also gets access to one of the inputs, whereas the model of superstrong extractors
corresponds to the one-way model, where one party also has access to its share of the entangled state.

To prove E is an extractor, it suffices to show that it is either X-strong or Y-strong. All our proofs
follow this route.

9This corresponds to the classical statistical distance and is commonly used in quantum information theory.
10Technically, the storage is fully defined by XY ρXY , but adversaries only see partial traces, e. g., XρXY or ρXY .
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Flat sources It is well known that any source with min-entropy k is a convex combination of flat sources
(i. e., sources that are uniformly distributed over their support) with min-entropy k. In what follows we
will therefore only consider such sources in our analysis of extractors, as one can easily verify that for
every sources X ,Y and quantum storage ρXY ,∣∣E(X ,Y )ρXY −UmρXY

∣∣
tr ≤max

i, j

∣∣E(Xi,Yj)ρXiY j −UmρXiY j

∣∣
tr,

where X = ∑αiXi and Y = ∑β jYj are convex combinations of flat sources.

The DEOR construction The following (strong) extractor construction is due to Dodis et al. [10].
Every output bit is the inner product, namely Aix · y for some full rank matrix Ai, where x and y are the
n-bit input vectors. Here x · y := ∑

n
j=1 x jy j (mod 2). The matrices Ai have the additional property that

every subset sum is also of full rank. This ensures that any XOR of some bits of the output is itself the
inner product.

Lemma 2.3 ([10]). For all n > 0, there exist an efficiently computable set of n×n matrices A1,A2, . . . ,An

over GF(2) such that for any non-empty set S⊆ [n], AS := ∑i∈S Ai has full rank.

Definition 2.4 (strong blender of [10]). Let n≥ m > 0, and let {Ai}m
i=1 be a set as above. The DEOR-

extractor ED : {0,1}n×{0,1}n→{0,1}m is given by ED(x,y) = A1x · y, A2x · y, . . . , Amx · y.

The XOR-Lemma Vazirani’s XOR-Lemma [35] relates the non-uniformity of a distribution to the
non-uniformity of the characters of the distribution, i. e., the XOR of certain bit positions. For the
DEOR-extractor it allows to reduce the multi-bit output case to the binary output case.

Lemma 2.5 (Classical XOR-Lemma [35, 16]). For every m-bit random variable Z∣∣Z−Um
∣∣2
1 ≤ ∑

06=S∈{0,1}m

∣∣(S ·Z)−U1
∣∣2
1.

This lemma is not immediately applicable in our scenario, as we need to take into account quantum
side information. For this, we need a slightly more general XOR-Lemma.

Lemma 2.6 (Classical-Quantum XOR-Lemma). Let ZρZ be an arbitrary cq-state, where Z is an m-bit
classical random variable and ρZ is of dimension 2d . Then11∣∣ZρZ−UmρZ

∣∣2
tr ≤ 2min(d,m) · ∑

06=S∈{0,1}m

∣∣(S ·Z)ρZ−U1ρZ
∣∣2
tr .

Proof. Following the proof of the classical XOR-Lemma in [16], we first relate ‖ZρZ−UmρZ‖tr to
‖ZρZ−UmρZ‖F, and then view ZρZ−UmρZ in the Hadamard (or Fourier) basis, giving us the desired
result. We need the following simple claim.

Claim 2.7. For any Boolean function f ,
∥∥ f (Z)ρZ−U1ρZ

∥∥
tr =

∥∥∑z(−1) f (z)p(z)ρz
∥∥

tr.

11We thank Thomas Vidick for pointing out that we can also have a bound in terms of m and not only d.
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Proof. Let ρb = ∑z: f (z)=b p(z)ρz for b = 0,1. Then ρZ = ρ0 +ρ1 and∥∥ f (Z)ρZ−U1ρZ
∥∥

tr =
∥∥∥|0〉〈0|⊗ρ0 + |1〉〈1|⊗ρ1−

1
2
(|0〉〈0|+ |1〉〈1|)⊗ (ρ0 +ρ1)

∥∥∥
tr

=
1
2

∥∥∥|0〉〈0|⊗ (ρ0−ρ1)+ |1〉〈1|⊗ (ρ1−ρ0)
∥∥∥

tr

=
∥∥ρ0−ρ1

∥∥
tr =

∥∥∥∑
z
(−1) f (z)p(z)ρz

∥∥∥
tr
. (2.1)

Let χS(z) = (−1)S·z for S ∈ {0,1}m. Let D = 2d , M = 2m, and σz = p(z)ρz− 1
M ρZ . Then∥∥ZρZ−UmρZ

∥∥2
tr =

∥∥∥∑
z
|z〉〈z|⊗σz

∥∥∥2

tr
=
∥∥∥(H⊗m⊗ ID)

(
∑

z
|z〉〈z|⊗σz

)
(H⊗m⊗ ID)

∥∥∥2

tr

=
1

M2 ·
∥∥∥∥∑

z,y,S
|y〉〈S|⊗χS(z)χy(z)σz

∥∥∥∥2

tr
≤ D

M
·
∥∥∥∥∑

z,y,S
|y〉〈S|⊗χS(z)χy(z)σz

∥∥∥∥2

F
, (2.2)

where H is the Hadamard transform.

Factor D Using the fact that the ‖·‖2
F of a matrix is the sum of ‖·‖2

F of its (D×D) sub-blocks, together
with χS(z)χy(z) = χy+S(z) and ‖·‖F ≤ ‖·‖tr, (2.2) gives∥∥ZρZ−UmρZ

∥∥2
tr ≤

D
M ∑

y
∑
S

∥∥∥∑
z

χy+S(z)σz

∥∥∥2

F
= D∑

S

∥∥∑
z

χS(z)σz
∥∥2

F ≤ D∑
S

∥∥∥∑
z

χS(z)σz

∥∥∥2

tr
, (2.3)

where for the equality we used the fact that ∑S
∥∥∑z χy+S(z)σz

∥∥2
F does not depend on y. Using Claim 2.7

with f (Z) = S ·Z, we get

∑
S 6=0

∥∥(S ·Z)ρZ−U1ρZ
∥∥2

tr = ∑
S 6=0

∥∥∥∑
z

χS(z)p(z)ρz

∥∥∥2

tr
= ∑

S 6=0

∥∥∥∑
z

χS(z)σz

∥∥∥2

tr
= ∑

S

∥∥∥∑
z

χS(z)σz

∥∥∥2

tr
, (2.4)

where the second equality holds since χS is balanced, and the third since ∑z σz = 0. Combining equations
(2.3) and (2.4) gives the desired result.

Factor M Restarting from the next-to-last step of (2.2), using again χS(z)χy(z) = χy+S(z) and the
Cauchy-Schwarz inequality, we obtain

‖ZρZ−UmρZ‖2
tr ≤

1
M2 ·

(
∑
S

∥∥∥∥∑
y
|y〉〈S+ y|⊗

(
∑

z
χS(z)σz

)∥∥∥∥
tr

)2

≤ 1
M
·∑

S

∥∥∥∥∑
y
|y〉〈S+ y|⊗

(
∑

z
χS(z)σz

)∥∥∥∥2

tr
= M ·∑

S

∥∥∥∑
z

χS(z)σz

∥∥∥2

tr
,

where the last step follows from the observation that the matrices inside the norms are of the form
P⊗B where P is a permutation matrix. In this case ‖P⊗B‖tr = dim(P) · ‖B‖tr = M · ‖B‖tr. As before,
combining this with equation (2.4) gives the desired bound.
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3 Communication complexity and one-bit extractors

3.1 Average case lower bound for inner product

Cleve et al. [6] give a lower bound for the worst case one-way quantum communication complexity of
inner product with arbitrary prior entanglement. It is achieved by first reducing the problem of transmitting
bits over a quantum channel to that of jointly computing the inner product, and then using an extended
Holevo bound. Nayak and Salzman [25] obtained an optimal lower bound by replacing Holevo with a
more “mission-specific” bound.

Theorem 3.1 ([25], Theorem 1.3 and discussion thereafter). Let X be an n-bit random variable with
min-entropy k, and suppose Alice wishes to convey X to Bob over a one-way quantum communication
channel using b qubits. Let Y be the random variable denoting Bob’s guess for X. Then

(a) Pr[Y = X ]≤ 2−(k−b), if the parties don’t share prior entanglement, and

(b) Pr[Y = X ]≤ 2−(k−2b).

Revisiting the reduction of Cleve et al., we now show how to adapt it to flat sources, to the average
case error and to the inner product. The main challenge is to carefully treat the error terms so as to not
cancel out the (small) amplitude of the correct state.

Lemma 3.2. Let X ,Y be flat sources over n bits with min-entropies k1,k2, and A,B be full rank n by
n matrices over GF(2). Let P be a b qubit one-way protocol for (AX) · (BY ) with success probability
1/2+ ε . Then

(a) ε ≤ 2−(k1+k2−b−n+2)/2, if the parties don’t share prior entanglement, and

(b) ε ≤ 2−(k1+k2−2b−n+2)/2.

Proof. Let us first consider the case A = B = I. Assume without loss of generality that Bob delays his
operations until receiving the message from Alice and that in his first step he copies his input, leaving the
original untouched throughout. Further assume Bob outputs the result in one of his qubits.

Cleve’s idea is to use the following steps to transfer X from Alice to Bob:

1. Bob prepares the state
√

2−k2−1 ·∑y∈Y,a∈{0,1}(−1)a|a〉|y〉.
2. Alice and Bob execute the clean version of P, where the output resides in Bob’s left-most qubit.

3. Bob performs the Hadamard transform on each of his first n+ 1 qubits and measures in the
computational basis.

For a fixed x, denote the success probability of P by 1/2+ εx (εx might be negative). After receiving
the message, each term of Bob’s state is of the form |z〉|y〉|0〉|ux〉, where |z〉 is a place holder for the output
and |ux〉 is taken to contain Alice’s message and Bob’s prior entangled qubits as required by the protocol
(if present). The rest of the protocol is then performed locally by Bob. We denote this computation by PB.
After applying PB, each term becomes

αx,y|y〉|x · y〉|Jx,y〉+βx,y|y〉|x · y〉|Kx,y〉 ,
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and by assumption, Eyβ 2
x,y = 1/2−εx. Following the analysis of Cleve et al. [6], using clean computation

produces the state

|z+ x · y〉|y〉|0〉|ux〉+
√

2βx,y|Mx,y,z〉,

where

|Mx,y,z〉=
(

1√
2
|z+ x · y〉− 1√

2
|z+ x · y〉

)
P†

B |y〉|x · y〉|Kx,y〉 .

Observe the following properties of M:

1. |Mx,y,0〉=−|Mx,y,1〉.

2. As y ∈ Y varies, the states |Mx,y,z〉 are orthonormal.

3. Since P†
B does not affect the first n (so called input) qubits, |Mx,y,z〉 is orthogonal to states of the

form |a〉|y′〉⊗ |·〉 for all a ∈ {0,1},y ∈ Y,y′ /∈ Y .

It follows that after the second step, Bob’s complete state is |ψ〉= |v〉+ |e〉 where

|v〉=
√

2−k2−1 ∑
y∈Y,a∈{0,1}

(−1)a+x·y|a〉|y〉|0〉|ux〉 , |e〉=
√

2−k2−1 ∑
y∈Y,a∈{0,1}

(−1)a
√

2βx,y|Mx,y,a〉 .

By the properties of |Mx,y,z〉, ∣∣|e〉∣∣= 2
√
Eyβ 2

x,y = 2

√
1
2
− εx .

Since |v〉+ |e〉 and |v〉 are normalized states, we can easily derive 〈v|(|v〉+ |e〉) = 2εx. Define

|ψ0〉=
(
H⊗n+1|1x〉

)
⊗|0〉|ux〉=

√
2k2−n|v〉+

√
2−n−1 ∑

y/∈Y,a∈{0,1}
(−1)a+x·y|a〉|y〉|0〉|ux〉 ,

and note that the second term is orthogonal to both |v〉 and |e〉. It follows that 〈ψ|ψ0〉 =
√

2k2−n+2εx.
Applying the Hadamard transform in Step 3 does not affect the inner product, and so Bob will measure
|1x〉 with probability 2k2−n+2 · ε2

x . Applying Theorem 3.1(a) and 3.1(b) along with Jensen’s inequality
now completes the proof.

For the general case where A 6= I or B 6= I, we modify Step 3. of the transmission protocol. Instead of
the Hadamard transform, Bob applies the inverse of the unitary transformation

|z〉|x〉 7→
√

2−n−1 ·∑
y,a
(−1)za+(Ax)·(By)|a〉|y〉 .

It is easy to check that this gives the desired result.
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3.2 One bit extractor

When the extractor’s output is binary, distinguishing it from the uniform distribution is equivalent to
computing the output on average. This was shown by Yao [36] when the storage is classical and is trivially
extended to the quantum setting.

Fact 3.3. For every cq-state ZρZ and Boolean function f,

| f (Z)ρZ−U1ρZ|tr ≤ ε ⇐⇒ max
M

Pr[M(ρZ) = f (Z)]≤ 1
2
+ ε ,

where M(ρZ) is the (classical) distribution of measurement outcomes of POVM M, the maximum ranges
over all Boolean POVM, and the probability is over Z and the measurement M.

With this observation, reformulating Lemma 3.2 in the language of trace distance yields a one bit
extractor.

Corollary 3.4. The function EIP(x,y) = x ·y is a (k1,k2,ε) extractor against (b1,b2) (entangled) quantum
storage provided

(a) (entangled) k1 + k2−2min(b1,b2)≥ n−2+2logε−1,

(b) (non-entangled) k1 + k2−min(b1,b2)≥ n−2+2logε−1.

Proof. With Yao’s equivalence, Lemma 3.2(b) immediately gives

|(AX ·Y )ρXY X−UρXY X |tr ≤ 2−(k1+k2−2b2−n+2)/2 and (3.1)

|(AX ·Y )ρXYY −UρXYY |tr ≤ 2−(k1+k2−2b1−n+2)/2 (3.2)

for any full rank matrix A, and specifically for A = I. By the assumption on ε , EIP is either Y-strong or
X-strong. Repeating this argument with Lemma 3.2(a) gives the non-entangled case.

Recall (see Definition 2.2 and discussion thereafter) that one-way communication corresponds to the
model of superstrong extractors. It is not surprising then that Lemma 3.2 actually gives a superstrong
extractor. By choosing ε in the above proof of Corollary 3.4 such that both inequalities (3.1) and (3.2)
are satisfied, where we replace ρxY by ρA

xY to include Alice’s complete state as well as Bob’s entangled
qubits and similarly for ρB

Xy, we obtain the following corollary.

Corollary 3.5. The function EIP(x,y) = x · y is a (k1,k2,ε) superstrong extractor against (b1,b2) (entan-
gled) quantum storage provided

(a) (entangled) k1 + k2−2max(b1,b2)≥ n−2+2logε−1,

(b) (non-entangled) k1 + k2−max(b1,b2)≥ n−2+2logε−1.

We now show that the parameters of all our extractors are tight up to an additive constant. For
simplicity, assume first that the error ε is close to 1/2, the sources are uniform and b1 = b2 =: b.
Corollary 3.4 then states that EIP is an extractor as long as b < n in the non-entangled case and b < n/2
in the entangled case. Indeed, in the non-entangled case it is trivial to compute the inner product in the
SMP model (i. e., break the extractor) when b≥ n. With entanglement, b≥ n/2 suffices as demonstrated
by the following protocol, adapted from a protocol by de Wolf [9].
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Claim 3.6. The inner product function for n bit strings is exactly computable in the SMP model with
entanglement with n/2+2 qubits of communication from each party.

Proof. Let x,y ∈ {0,1}n be Alice and Bob’s inputs. Since x · y = (1/2)((|x|+ |y|− |x⊕ y|) mod 4), it
suffices to show that the referee can compute x⊕ y with n/2 qubits of communication from each party, or
simply (x1⊕ y1,x2⊕ y2) ∈ {0,1}2 with one qubit of communication.

Denote the Pauli matrices σ00 = I, σ01 = Z, σ10 = X , σ11 = ZX . Given a shared EPR pair, Alice
applies σx1x2 to her qubit and sends it to the referee, and Bob does the same with σy1y2 . Note that applying
σb1b2 to the first qubit has the same effect as applying it to the second qubit, up to global phase. Further,
X is applied iff b1 is 1 and Z is applied iff b2 is 1. Since two applications of X (Z) cancel each other out,
we have that X is applied to the first qubit iff x1⊕ y1 = 1 and Z is applied to the first qubit iff x2⊕ y2 = 1.
The net effect on the EPR state (up to global phase) is σx1⊕y1,x2⊕y2⊗ I. For each value of (x1⊕y1,x2⊕y2)
this gives one of the orthogonal (completely distinguishable) Bell states.

Showing that our results are tight for arbitrary ε is trickier. We show

Lemma 3.7. If EIP = x · y is a (k1,k2,ε) extractor against (b1,b2) (entangled) storage then

(a) (entangled) k1 + k2−2min(b1,b2)> n−9+2logε−1,

(b) (non-entangled) k1 + k2−min(b1,b2)> n−5+2logε−1.

If EIP is superstrong, then

(a) (entangled) k1 + k2−2max(b1,b2)> n−9+2logε−1,

(b) (non-entangled) k1 + k2−max(b1,b2)> n−5+2logε−1.

Proof. Our proof follows the lines of Proposition 10 of Chor and Goldreich [5] with adaptations to the
case of quantum side information. We need the following theorem.

Theorem 3.8 ([5, Theorem 3]). There exist independent random variables X ,Y on ` bits with min-entropy
`−3 each12 such that Pr[X ·Y = 0]> 1/2+2−(`−1)/2.

We start in the weak extractor setting with entanglement. We construct sources X ,Y with min-
entropy k1,k2 and (b1,b2) entangled quantum storage ρXY for which the error will be “large.” Let
b = 2(min(b1,b2)− 2), and let ∆ = k1 + k2− n. If ∆ ≤ b, we pick X to be uniform on the first k1 bits
and 0 elsewhere, Y uniform on the last k2 bits and 0 elsewhere. The inner product of X ,Y is then the
inner product of at most b bits, and can be computed exactly using the SMP protocol in Claim 3.6 with
min(b1,b2) qubits from each.

In the case ∆ > b, we define X = X1X2X3X4 as follows: X1 is uniform on b bits, X2 is uniform on
k1−∆−3 bits, X3 is the first (∆+6−b,∆+3−b) source promised by Theorem 3.8 (for `= ∆+6−b),
and X4 is constant 0n−k1−3. Analogously, Y = Y1Y2Y3Y4, such that the lengths |Yi| = |Xi| are defined
as: Y1 is uniform on b bits, Y2 is constant 0n−k2−3, Y3 is the second (∆ + 6− b,∆ + 3− b) source
promised by Theorem 3.8, and Y4 is uniform on k2−∆− 3 bits. It is easily verified that H∞(X) ≥ k1

12The theorem in [5] is stated with slightly different parameters and for arbitrary Boolean functions. Our modification is
trivial.
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and H∞(Y )≥ k2. Finally, we set ρXY to be the entangled (min(b1,b2),min(b1,b2)) storage of the SMP
protocol in Claim 3.6 allowing us to compute x1 · y1 exactly, and M the measurement strategy of the
referee. Applying Theorem 3.8,

Pr[M(ρXY ) = X ·Y ] = Pr[X1 ·Y1 = X ·Y ] = Pr[X3 ·Y3 = 0]>
1
2
+2−(∆+5−b)/2

and |(X ·Y )ρXY −UρXY |tr > 2−(k1+k2−b−n+5)/2.
In the non-entangled case, we simply set b = min(b1,b2) and replace the SMP protocol with a trivial

protocol for IP on b bits.13

In the superstrong case with entanglement, assume without loss of generality that b1 > b2 and choose
b = b1/2. We then let ρxy be the entangled state that appears in the superdense coding protocol for X1.
Thus, exposing Bob’s state allows us to compute X1 ·Y1 exactly. Without entanglement, we set b = b1 and
have Alice send X1 to Bob.

4 Many bit extractors

Here we prove our main theorems, Theorems 1.2 and 1.3. First, using our quantum XOR-Lemma,
Lemma 2.6, we obtain results in the strong case.

Lemma 4.1. ED is a (k1,k2,ε) X-strong extractor against (b1,b2) (entangled) quantum storage provided

(a) (entangled) k1 + k2−2b2 ≥ 2m+n−2+2logε−1,

(b) (non-entangled) k1 + k2−b2 ≥ 2m+n−2+2logε−1.

Proof. Recall that ED(x,y) = A1x · y, A2x · y, . . . , Amx · y (see Definition 2.4). For 0 6= S ∈ {0,1}m, let
AS = ∑i:Si=1 Ai and note that S ·E(x,y) = ASx · y. By the XOR-Lemma 2.6,

∣∣E(X ,Y )ρXY X−UmρXY X
∣∣
tr ≤

√
2m ∑

S 6=0

∣∣(ASX ·Y )ρXY X−U1ρXY X
∣∣2
tr .

The result then follows by inequality (3.1) in the proof of Corollary 3.4 and its non-entangled analogue.

In a similar way, we also obtain a Y-strong extractor with analogous parameters. Following Dodis et
al. [10], we now apply a seeded extractor against quantum storage (see Definition 4.2) to the output of an
X-strong (Y-strong) extractor to obtain a two-source extractor with more output bits.

Definition 4.2 ([32]). A function E : {0,1}n×{0,1}d → {0,1}m is a (k,ε) seeded extractor against b
qubit quantum storage14 if for any n-bit source X with min-entropy k and any b qubit quantum storage
ρX , ∣∣E(X ,Ud)ρX −UmρX

∣∣
tr ≤ ε .

13In fact, this shows that our non-entangled extractor is tight even for classical storage.
14In terms of Definition 2.2, this corresponds to a (k,d,ε) two-source extractor against (b,0) quantum storage where the

second source is of length d.
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Lemma 4.3. Let EB : {0,1}n×{0,1}n → {0,1}d be a (k1,k2,ε) X-strong extractor against (b1,b2)
(entangled) quantum storage, let ES : {0,1}n×{0,1}d →{0,1}m be some function and define E(x,y) =
ES(x,EB(x,y)).

(a) (entangled) If ES is a (k1,ε) seeded extractor against b1 + b2 quantum storage then E is a
(k1,k2,2ε) extractor against (b1,b2) entangled quantum storage.

(b) (non-entangled) If ES is a (k1,ε) seeded extractor against b1 quantum storage then E is a
(k1,k2,2ε) extractor against (b1,b2) non-entangled quantum storage.

Proof. For part (a),

|EB(X ,Y )ρXY X−UdρXY X |tr ≤ ε and so |ES(X ,EB(X ,Y ))ρXY −ES(X ,Ud)ρXY |tr ≤ ε .

But |ES(X ,Ud)ρXY −UmρXY |tr ≤ ε by definition of ES. The result follows from the triangle inequality.
For part (b) note that when the storage is non-entangled,∣∣ES(X ,Ud)ρX ρY −UmρX ρY

∣∣
tr =

∣∣ES(X ,Ud)ρX −UmρX
∣∣
tr ,

and it suffices to require that ES be a seeded extractor against only b1 quantum storage.

A seeded extractor with almost optimal min-entropy loss is given by De et al. [7]. Their extractor
is secure against quantum guessing entropy sources, and so trivially against quantum storage [24] (see
Section 5 for details). We reformulate the seeded extractor in terms of Definition 4.2.

Corollary 4.4 ([7, Corrolary 5.3]). There exists an explicit (k,ε) seeded extractor against b quantum
storage with seed length d = O(log3(n/ε)) and m = d + k−b−8log(k−b)−8logε−1−O(1) output
bits.

The proofs of Theorems 1.2 and 1.3 now follow by composing the explicit extractors of Lemma 4.1
and Corollary 4.4 as in Lemma 4.3.

Proof of Theorem 1.2. ED is an X-strong extractor against non-entangled storage with

k1 + k2−b2−n−2logε−1

2

almost uniform output bits. This is larger than O(log3(n/ε)) when k1 + k2− b2 > n+Ω(log3(n/ε)).
Composing with the seeded extractor secure against b1 storage of Corollary 4.4 on the source X gives

m =
k1 + k2−b2−n−2logε−1

2
+(k1−b1)−8log(k1−b1)−8logε

−1−O(1) .

Similarly, ED is a Y-strong extractor, and can be composed with the seeded extractor on the source Y .
Choosing the better of the two, we prove the desired result.15

15We slightly sacrifice the parameters in the formulation of the theorem to simplify the result.
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Proof of Theorem 1.3. ED is an X-strong extractor against entangled storage with

k1 + k2−2b2−n−2logε−1

2

almost uniform output bits. This is larger than O(log3(n/ε)) when k1 + k2− 2b2 > n+Ω(log3(n/ε)),
allowing us to compose it with the seeded extractor secure against b1 +b2 storage of Corollary 4.4 on the
source X , obtaining

m =
k1 + k2−2b2−n−2logε−1

2
+(k1−b1−b2)−8log(k1−b1−b2)−8logε

−1−O(1) ,

and similarly for Y .

5 Guessing entropy adversaries

In previous sections, we considered extractors in the presence of quantum adversaries with limited storage.
A stronger notion of quantum adversary was also studied in the literature [28, 24, 12, 7, 33].

Definition 5.1 ([24]). Let XρX be an arbitrary cq-state. The guessing entropy of X given ρX is

Hg(X ← ρX) :=− logmax
M

Ex←X [Tr(Mxρx)],

where the maximum ranges over all POVMs M = {Mx}x∈X .

Considering the probability distribution on the support of X induced by measuring with M on ρX

(which we denote by M(ρX)), the above can be perhaps more easily understood as

Hg(X ← ρX) =− logmax
M

Pr[M(ρX) = X ] .

Renner [28] considered sources with high conditional min-entropy, rather than guessing entropy. The
two were shown to be equivalent [23].

We can now define two-source extractors secure against non-entangled guessing entropy adversaries.
Recall that in the non-entangled case the bounded storage is given by ρX ⊗ρY (see Definition 2.1). Here,
we place a limit not on the amount of storage, but on the amount of information, in terms of guessing
entropy, the adversaries have on their respective sources. That is, we require that the guessing entropy
of X (Y ) given ρX (ρY ) be high. We refer to the state ρX ⊗ρY as quantum knowledge, or if ρx,ρy are
classical for every x,y, as classical knowledge.

Definition 5.2. A (k1,k2,ε) two-source extractor against quantum knowledge is a function E : {0,1}n×
{0,1}n → {0,1}m such that for any independent sources X ,Y and quantum knowledge ρX ⊗ρY with
guessing entropies Hg(X ← ρX)≥ k1, Hg(Y ← ρY )≥ k2, we have |E(X ,Y )ρX ρY −UmρX ρY |tr ≤ ε .

The extractor is called X-strong if |E(X ,Y )ρY X−UmρY X |tr ≤ ε , and similarly for Y . It is called
strong if it is both X-strong and Y-strong.

It was shown that Hg(X ← ρX) ≥ H∞(X)− logdim(ρX) [24]. Thus, we can view adversaries with
bounded quantum storage as a special case of general adversaries. In particular, a (k1−b1,k2−b2,ε)
extractor against quantum knowledge is trivially a (k1,k2,ε) extractor against non-entangled (b1,b2)
storage.
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One-bit output case König and Terhal [24] show that every classical one-bit output strong seeded
extractor is also a strong extractor against quantum knowledge with roughly the same parameters. They
reduce the “quantum security” of the extractor to the “classical security,” irrespective of the entropy of the
seed. Informally, |E(X ,Y )ρXY −U1ρXY |tr is small if the statement is also true when ρX is classical. We
give a version of their Lemma 2 with slightly better parameters (smaller multiplicative constant on the right
hand side). The lemma shows that it suffices to prove security of an extractor with respect only to classical
knowledge obtained by performing a Pretty Good Measurement (PGM) [18] on arbitrary quantum
knowledge. For a cq-state ZρZ , a PGM is a POVM E= {Ez}z∈Z such that Ez = p(z)ρ−1/2

Z ρzρ
−1/2
Z .

Lemma 5.3. Let ZρZ be a cq-state, and f be a Boolean function. Then16

∣∣ f (Z)ρZ−UρZ
∣∣
tr ≤

√
1
2

∣∣ f (Z)E(ρZ)−UE(ρZ)
∣∣
tr ,

where E= {Ez}z∈Z is a Pretty Good Measurement, Ez = p(z)ρ−1/2
Z ρzρ

−1/2
Z .

Proof. We need the following lemma.

Lemma 5.4 ([28, Lemma 5.1.3]). Let S be a Hermitian operator and let σ be a nonnegative operator.
Then

|S|tr ≤
1
2

√
Tr(σ)Tr(σ−1/2Sσ−1/2S) .

Let ρ = ρZ , ρb = ∑z: f (z)=b p(z)ρz for b = 0,1. Further define (informally) a POVM M for guessing f
from ρZ by first applying E to get z and then computing f (z). Then

Pr[M(ρZ) = f (Z)] = ∑
z

p(z) ∑
z′: f (z′)= f (z)

Tr(Ez′ρz)

= Tr

(
∑

f (z′)= f (z)
ρ
−1/2(p(z′)ρz′)ρ

−1/2(p(z)ρz)

)
= Tr

(
ρ
−1/2

ρ0ρ
−1/2

ρ0 +ρ
−1/2

ρ1ρ
−1/2

ρ1

)
,

and similarly Pr[M(ρZ) 6= f (Z)] = Tr
(
ρ−1/2ρ0ρ−1/2ρ1 +ρ−1/2ρ1ρ−1/2ρ0

)
. Hence∣∣Pr[M(ρZ) = f (Z)]−Pr[M(ρZ) 6= f (Z)]

∣∣= Tr
(
ρ
−1/2(ρ0−ρ1)ρ

−1/2(ρ0−ρ1)
)
. (5.1)

By equation (2.1), | f (Z)ρZ−UρZ|tr = |ρ0−ρ1|tr, and by Lemma 5.4, setting S = ρ0−ρ1, σ = ρ ,∣∣ρ0−ρ1
∣∣
tr ≤

1
2

√
Tr
(
ρ−1/2(ρ0−ρ1)ρ−1/2(ρ0−ρ1)

)
. (5.2)

Combining equation (5.1) with equation (5.2) gives

∣∣ f (Z)ρZ−UρZ
∣∣
tr ≤

√
1
4

∣∣Pr[M(ρZ) = f (Z)]−Pr[M(ρZ) 6= f (Z)]
∣∣.

16E(ρZ) is a classical probability distribution and the trace distance | f (Z)E(ρZ)−UE(ρZ)|tr reduces to the classical variational
distance.
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Finally,∣∣Pr[M(ρZ) = f (Z)]−Pr[M(ρZ) 6= f (Z)]
∣∣≤ 2

∣∣ f (Z)M(ρZ)−UM(ρZ)
∣∣
tr ≤ 2

∣∣ f (Z)E(ρZ)−UE(ρZ)
∣∣
tr ,

where the right most expression describes a trivial strategy to guess f from M(ρ), giving the desired
result.

Corollary 5.5. If E is a classical one-bit output (k1,k2,ε) two-source extractor, then it is a (k1 +
logε−1,k2 + logε−1,

√
3ε/2) two-source extractor against quantum knowledge.

Proof. By Lemma 5.3,

∣∣E(X ,Y )ρX ρY −UρX ρY
∣∣
tr ≤

√
1
2

∣∣E(X ,Y )E(ρX ρY )−UE(ρX ρY )
∣∣
tr .

A direct calculation shows that for every x,y, E(ρx⊗ρy) = E1(ρx)⊗E2(ρy), where E1,E2 are Pretty Good
Measurements on states XρX ,Y ρY respectively. In other words, E1(ρX) and E2(ρY ) induce independent
classical distributions, which we denote by CX and CY . Thus

∣∣E(X ,Y )ρX ρY −UρX ρY
∣∣
tr ≤

√
1
2

∣∣E(X ,Y )CXCY −UCXCY
∣∣
tr, (5.3)

where Hg(X ←CX)≥ Hg(X ← ρX), and the same for Y .
By the definition of (classical) guessing entropy, one can easily show that a classical (k1,k2,ε) two-

source extractor is a (k1 + logε−1, k2 + logε−1, 3ε) extractor against classical knowledge (for details see
Proposition 1 in [24]). Inequality (5.3) then gives the desired parameters against quantum knowledge.

By a similar argument and following the proof of Theorem 1 in [24], we get

Corollary 5.6. If E is a classical one-bit output (k1,k2,ε) X-strong extractor, then it is a (k1,k2 +
logε−1,

√
ε) X-strong extractor against quantum knowledge.

The multi-bit output case We now show how to apply the results in the one-bit case, together with
our XOR-Lemma 2.6, to show security in the multi-bit case, proving Theorem 1.4.

By inequality (3.1) in the proof of Corollary 3.4, the inner product is a classical X-strong extractor
with error ε ≤ 2−(k1+k2−n+2)/2. Plugging this into Corollary 5.6 we obtain

Corollary 5.7. The function EIPA(x,y) = Ax · y, for any full rank matrix A, is a (k1,k2,ε) X-strong
(Y-strong) extractor against quantum knowledge provided that k1 + k2 ≥ n−2+6logε−1.

We now repeat the steps performed in Section 4 in the setting of non-entangled guessing entropy
adversaries to obtain a multi-bit extractor against quantum knowledge. In exactly the same fashion as in
the proof of Lemma 4.1 we use the XOR-Lemma 2.6 to reduce the security of ED to the strong one-bit
case of Corollary 5.7.

Lemma 5.8. ED is a (k1,k2,ε) X-strong (Y-strong) extractor against quantum knowledge provided that
k1 + k2 ≥ 6m+n−2+6logε−1.
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Proof. By the XOR-Lemma 2.6 and Corollary 5.7,

∣∣E(X ,Y )ρY X−UmρY X
∣∣
tr ≤

√
2m ∑

S 6=0

∣∣(ASX ·Y )ρY X−U1ρY X
∣∣2
tr ≤ 2m ·2−(k1+k2−n+2)/6.

To obtain our final result, we now compose our strong extractor with a seeded extractor against
quantum knowledge.

Lemma 5.9. Let EB : {0,1}n×{0,1}n → {0,1}d be a (k1,k2,ε) X-strong extractor against quantum
knowledge and let ES : {0,1}n×{0,1}d →{0,1}m be a (k1,ε) seeded extractor against quantum knowl-
edge.17 Then E(x,y) = ES(x,EB(x,y)) is a (k1,k2,2ε) extractor against quantum knowledge.

Proof. Immediate from the extractor definitions and the triangle inequality.

Corollary 5.10 ([7, Corrolary 5.3]). There exists an explicit (k,ε) seeded extractor against quantum
knowledge with seed length d = O(log3(n/ε)) and m = d + k−8logk−8logε−1−O(1).

Proof of Theorem 1.4. ED is an X-strong extractor against quantum knowledge with

k1 + k2−n−6logε−1

6
−O(1)

output bits. This is larger than O(log3(n/ε)) when k1 + k2 > n+Ω(log3(n/ε)). Composing with the
seeded extractor of Corollary 5.10 on the source X gives

m =
k1 + k2−n−6logε−1

6
+ k1−8logk1−8logε

−1−O(1) ,

and similarly for Y .

6 Many bit extractors against quantum storage from classical storage

König and Terhal [24] prove that any (classical) seeded extractor is secure against non-entangled quantum
storage, albeit with exponentially larger (in the storage size) error. Their proof is also valid for X-strong
(Y-strong) two-source extractors.

Their Lemma 5 essentially shows that every (k1,k2,ε) X-strong extractor has error 4 ·23b2 · ε against
(b1,b2) quantum storage (for any b1), assuming H∞(X)≥ k1 and Hg(Y ← ρY )≥ k2 + logε−1. Recall that
Hg(Y ← ρY )≥ H∞(Y )−b2. Adapted to our definitions, their result is

Lemma 6.1 ([24, Lemma 5]). Let E be a (k1,k2,ε) X-strong extractor. Then E is a (k1,k2 + b2 +
logε−1,4 ·23b2ε) X-strong extractor against (b1,b2) non-entangled storage.

17For a formal definition see [7].
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In particular, this shows that ED is an X-strong extractor with m = k1 + k2−10b2−n−4−3logε−1.
For comparison, our Lemma 4.1 gives m = (1/2)(k1 + k2−b2−n+2−2logε−1), which is better when
the storage is large, say, b2 ≥ k2/19.

For completeness, we derive an alternate version of Theorem 1.2 based on Lemma 6.1, by composing
the extractor above with the seeded extractor of De et al. [7].

Theorem 6.2. The DEOR-construction is a (k1,k2,ε) extractor against (b1,b2) non-entangled storage
with

m = (1−o(1))max(k1−9b2,k2−9b1)+ k1−b1 + k2−b2−n−11logε
−1−O(1)

output bits provided k1 + k2−10max(b1,b2)> n+Ω(log3(n/ε)).

Here too we are able to extract more bits than guaranteed by Theorem 1.2 when the storage is
symmetric and constitutes a small fraction (< 1/19) of the min-entropy. In particular, the storage must
be at least ten times smaller than the min-entropy, whereas no such restriction exist in Theorem 1.2.

We note that it is not immediately possible to obtain an analogue of Lemma 6.1 for weak two-source
extractors. The proof relates the security of an extractor with respect to quantum side information, to its
security with respect to classical side information. In the weak extractor setting, it thus suffices to consider
classical side information of the form F(ρX ⊗ρY ) for some specific POVM F given in the proof. The
problem with this approach is that generally F(ρX ⊗ρY ) might induce a random variable CXY correlated
with both X and Y , breaking the independence assumption (i. e., when conditioning on values of CXY , X
and Y might not be independent) and rendering the classical extractor insecure. It is not inconceivable
that F does have the property F(ρX ⊗ρY ) =CX ⊗CY , but we leave this open.
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