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Abstract: This is a comment on the article “A Quantum Algorithm for the Hamiltonian
NAND Tree” by Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, Theory of Comput-
ing 4 (2008) 169–190. That paper gave a quantum algorithm for evaluating NAND trees with
running time O(

√
N) in the Hamiltonian query model. In this note, we point out that their

algorithm can be converted into an algorithm using N1/2+o(1) queries in the conventional
(discrete) quantum query model.
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A NAND tree of depth n is a balanced binary tree whose internal vertices represent NAND gates. Placing
bits x1, . . . ,x2n at the leaves, the root of the NAND tree evaluates to the function fn(x1, . . . ,x2n), where
fn : {0,1}2n →{0,1} is defined recursively as follows. For n = 0, f0(x) = x, and for n > 0,

fn(x1, . . . ,x2n) = ¬
(

fn−1(x1, . . . ,x2n−1)∧ fn−1(x2n−1+1, . . . ,x2n)
)
. (1)

The goal of the NAND tree problem is to evaluate fn(x1, . . . ,x2n), making as few queries to the bits
x1, . . . ,x2n as possible. The optimal classical randomized algorithm for this problem makes Θ(N0.753)
queries, where N = 2n [9, 10, 11]. Until now, no better quantum algorithm was known, whereas the best
known quantum lower bound is only Ω(

√
N) [2]. Here we show the following.
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Theorem. The bounded-error quantum query complexity of evaluating balanced binary NAND trees is
N1/2+O(1/

√
logN).

Very recently, Farhi, Goldstone, and Gutmann [6] proposed a quantum algorithm that evaluates
NAND trees in time O(

√
N), albeit in the unconventional Hamiltonian oracle model [7, 8] rather than

the conventional quantum query model. In their version of the Hamiltonian oracle model, we are given
access to a Hamiltonian HO acting on n+1 qubits as

HO|b,k〉=−xk|¬b,k〉 (2)

for all b ∈ {0,1} and k ∈ {0,1}n, and the goal is to perform the computation using evolution according
to HO + HD(t) for as short a time as possible, where HD(t) is an arbitrary driving Hamiltonian (that is
possibly time-dependent and may act on an extended Hilbert space).

In the conventional quantum query model, the input is accessible via unitary operations of the form

UO|k,a〉= |k,a⊕ xk〉 , (3)

again acting on n + 1 qubits. Two queries of UO can be used to implement evolution according to HO

for an arbitrary time t, which can be seen as follows. The procedure acts on states of the form |b,k,a〉
(where the last register is an ancilla qubit) as follows. First, apply UO to the second and third registers.
Then apply a controlled-R(t) gate with the first register as the target and the third register as the control,
where

R(t) =
(

cos t isin t
isin t cos t

)
. (4)

Finally, apply UO to the second and third registers again. With the ancilla qubit initially in the |0〉 state,
the net effect of this procedure is the mapping |b,k,0〉 7→ cos(xkt)|b,k,0〉+ isin(xkt)|¬b,k,0〉, which
corresponds to evolution by HO for time t (that is, the unitary operation e−iHOt).

This simulation of HO does not imply that any fast algorithm in the Hamiltonian oracle model can
be turned into an algorithm with small query complexity in the conventional quantum query model.
Accurate simulation of the evolution according to HO + HD(t) apparently requires many interleaved
evolutions of HO and HD(t) each for a small time, yet each of which requires two unitary queries to
simulate. Nevertheless, it turns out that a Hamiltonian of the kind used in [6] can be simulated in the
conventional quantum query model with only small overhead.

Proof of Theorem. In the algorithm of [6], HD(t) is time-independent, so the evolution for time t is given
by e−i(HO+HD)t . Such evolution according to a sum of time-independent Hamiltonians can be simulated
using a high-order approximation of the exponential of a sum in terms of a product of exponentials of the
individual terms. As noted in [3, 4], by using a pth order approximation, the simulation can be performed
with error at most ε in at most

2
52p(2ht)1+1/2p

ε1/2p (5)

steps, where h = ‖HO + HD‖ ≤ 3. This yields a simulation with bounded error in O(t1+1/2p) steps for
any positive integer p, where the constant implied by the big O notation depends on ε and p. Moreover,
setting p =

√
log t in Eq. 5, we obtain the bound t1+O(1/

√
log t) on the number of steps. Since the algorithm

of [6] applies H for time t = O(
√

N), the Theorem follows.
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Remark 1. This result can also be deduced by noting that, given query access to the inputs via UO

(Eq. 3), one can easily simulate an oracle for the matrix elements of the underlying Hamiltonian HO +HD

used in [6], and then applying results in [3, 4] for simulating sparse Hamiltonians.

Remark 2. After the first version of this note appeared [5], the algorithm of [7] was generalized to eval-
uate an arbitrary AND-OR formula in N1/2+o(1) (discrete) queries [1]. Indeed, by using a discrete-time
quantum walk, [1] shows that the bounded-error quantum query complexity of evaluating “approxi-
mately balanced” formulas is only O(

√
N). In particular, this improves the above Theorem to show that

only O(
√

N) discrete quantum queries suffice to evaluate a balanced binary NAND tree.
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