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Abstract: Many geometric algorithms are formulated for input objects in general position;
sometimes this is for convenience and simplicity, and sometimes it is essential for the al-
gorithm to work at all. For arbitrary inputs this requires removing degeneracies, which has
usually been solved by relatively complicated and computationally demanding perturbation
methods.

The result of this paper can be regarded as an indication that the problem of removing
degeneracies has no simple “abstract” solution. We conkRleype problemsa successful
axiomatic framework for optimization problems capturing, e.g., linear programming and
the smallest enclosing ball of a point set. For infinitely many inte@enge construct &-
dimensional LP-type problem such that in order to remove degeneracies from it, we have
to increase the dimension to at legst- €)D, wheree > 0 is an absolute constant.

The proof consists of showing that certain posets cannot be covered by pairwise disjoint
copies of Boolean algebras under some restrictions on their placement. To this end, we
prove that certain systems of linear inequalities are unsolvable, which seems to require
surprisingly precise calculations.
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1 Introduction

Geometric computation and degeneracy. Many descriptions of algorithms in computational geom-

etry or in geometric optimization, as well as numerous proofs in discrete geometry, start with a sentence
similar to “Let us assume that the given points are in general position.” General position may mean
that no three among the points are collinear, or we may also require than no four are cocircular, etc.,
depending on the considered problem. Violations of general positions, such as three points on aline, are
referred to aslegeneracies

Assuming the input to be nondegenerate (i. ., in general position) usually simplifies the description,
analysis, and implementation of a geometric algorithm significantly. For many algorithms, this assump-
tion can be avoided with some extra work and careful attention to detail (a case study, arguing in favor of
expending such extra work, is Burnikel et &])] However, for some algorithms, the nondegeneracy as-
sumption is not only a convenient simplification, but rather an essential condition for correctness and/or
for running time analysis, which seems difficult to circumvent—we will mention an example below.

General methods have been developed for removing degeneracies in geometric algorithms, based on
infinitesimal perturbationsf the input (Edelsbrunner andiMke B], Yap [22], Emiris and Canny9)]).

Roughly speaking, the coordinates of each input object are changed by a suitable function of a real
parameteg > 0, and the considered algorithm is executed with these new input objects, treating

a formal quantity, smaller than any concrete nonzero real number occurring in the algorithm. These
approaches can actually be implemented, but they have several drawbacks: They slow down the compu-
tations significantly (typically by a large constant factor, but sometimes even much more), they increase
space requirements, and sometimes it may be difficult or impossible to reconstruct the correct result for
the original input from the result for the perturbed input—sgddr a discussion.

Removing degeneracies means “breaking ties” in some sense. Of course, the ties cannot be broken
arbitrarily, since geometric algorithms almost always depend on some kind of global consistency of the
input. Still, one might hope for some simpler, perhaps combinatorial, way of removing degeneracies.

To illustrate what we have in mind, let us recall that the famsiogplex methoaf linear program-
ming may also suffer from degeneracy—namely, for many pivoting rules the simplex method may get
into an infinite loop (tocyclg for certain highly degenerate inputs. (However, unlike degeneracy in
the geometric computations mentioned above, cycling of the simplex method is not an issue in prac-
tice.) There are two well-known pivot rules that provably avoid cycling:l&xé&ographic rule which
is conceptually an infinitesimal perturbation, aBldnd’s rule which is a combinatorial rule working
solely with indices of variables and constraints, as opposed to geometric properties of the input. So
our question is, whether there is something like a general “Bland’s rule” that would allow one to avoid
degeneracies in (some interesting classes of) geometric algorithms.

The present work can be regarded as an indication that a simple, general, and efficient combinatorial
method is unlikely to exist.

LP-type problems. We investigate the problem of removing degeneracies in a class of optimization
problems known as LP-type problems (or “generalized linear programming problems”). This axiomatic
framework, invented by Sharir and Welzl in 1999], has become a well-established tool in the field
of geometric optimization; sed7, 1, 2, 3, 14, 5, 15, 11] for more applications and results on LP-type
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problems, as well as e. 2], 12, 10, 18] for the investigation of other, related frameworks.

Once it is shown that a particular optimization problem is an LP-type problem and certain algo-
rithmic primitives are implemented for it, several efficient algorithms are immediately at disposal: the
Sharir—-Welzl algorithm, two other randomized optimization algorithms due to Clark$dsede [L3, 6]
for a discussion of how it fits the LP-type framework), a deterministic version 6f,iahd an algorithm
for computing the minimum solution that violates at mksif the givenn constraints 16] (this is the
promised example of an algorithm where nondegeneracy appears crucial).

An LP-type problem is given by a finite skt of constraintsand avalue wWG) € R for every subset
G C H. Intuitively, w(G) is the minimum value of a solution that satisfies all constraints.irAs our
running example, we will use the problem of computing the smallest disk containing a given planar point
set. HereH is a finite point set irR? andw(G) is the radius of the smallest circular disk that encloses
all points ofG. The general definition is as follows:

Definition 1.1. An LP-type problenis a pair(H,w), whereH is a finite set anev: 27 — R is a mapping
satisfying the following two conditions:

Monotonicity: For allF C G C H we havew(F) <w(G).
Locality: ForallF CGCH and allhe H,
if W(F) =w(G) =w(F u{h}) thenw(GU{h}) =w(G).

For the smallest enclosing disk problem, monotonicity is obvious, while verifying locality requires
the nontrivial but well known geometric result that the smallest enclosing disk is unique for every set.

The most important parameter of an LP-type problem, essentially controlling the behavior of algo-
rithms dealing with the given problem, is the combinatorial dimension.

Definition 1.2. Let (H,w) be an LP-type problem and I&tC H. A basis of Gis any inclusion-minimal
subseB C G with w(B) = w(G). A setB C H is called abasis in(H,w) if it is a basis of som& C H.
Thecombinatorial dimensioof (H,w) is the maximum cardinality of a basis.

If (H,w) is a smallest enclosing disk problem, then the combinatorial dimension is at most 3 (since
for every point seG in the plane there is a subgetof at most 3 points o6 such thatG andB have
the same smallest enclosing disk). Similarly, a higher-dimensional version, the smallest enclosing ball
problem of a point set iiR%, has combinatorial dimension at mast 1.

Degeneracy in LP-type problems. What should be considered a degeneracy in the smallest enclos-
ing disk problem? A reasonable answer is a subproblem with an “overdetermined” solution, which
means a séb whose minimum enclosing disk is determined by two distinct inclusion-minimal subsets
B1,B, C G. For exampleB; andB, can be two different diametrical pairs determining the same disk.
Nondegeneracy for an arbitrary LP-type problem can be defined in a similariiy [

LActually, the usual definition of an LP-type problem is more general: the mappiran also attain a special valueo,
which is considered smaller than all real numbers, and for which the locality axiom is not required. Moreover, in&tead of
one can use an arbitrary linearly ordered set, but this brings nothing new, just sometimes a more convenient notation. We will
stick to the definition above since it is simpler, and it will be easy to check that the more general definition doesn’t change
anything in our result.
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Figure 1: A degenerate LP-type problem where removing degeneracy increases dimension.

Definition 1.3. We call an LP-type problerfH,w) nondegenerat# w(B;) # w(By) for any two distinct
based, B;.

Consequently, in a nondegenerate LP-type problem, éseryH has exactly one basfs.
For removing degeneracies, we want to break thevi@;) = w(B;) by slightly modifying the
values ofw, while retaining all strict inequalities among the original values:

Definition 1.4. An LP-type problem(H,w') is arefinemenbf an LP-type problentH,w) on the same
set of constraints if for alF, G C H with w(F) < w(G) we havew' (F) < wW/(G).

We thus formalize “removing degeneracies” of an LP-type proljldnw) as the question of finding
a nondegenerate refinement(bf, w).

At first sight it might seem that in order to produce a nondegenerate refinement, it should suffice to
impose some suitable linear order on every group of bases sharing the same watuperhaps one
could even take an arbitrary ordering.

However, some thought reveals that things are not that simple. As was obserté}] sometimes
we also have to createewbases, and even larger ones than those preséht,im). Namely, consider
the smallest enclosing disk problem with= {a,b,c,d} forming the vertices of a squar€igure ).
The setH has two baseB; = {a,c} andB, = {b,d}, and the combinatorial dimension of the problem
is 2. We will refer to this particular 2-dimensional LP-type problem asstiigare exampland denote
it by (Hsq, Wsg). It is easily checked (we will do so ifiection2) that any nondegenerate refinement has
dimension at least 3. Hence removing degeneracies necessarily increases the dimension by 2.

In a preliminary reportZ0] containing some of the results of the present paper, an LP-type problem
was presented where removing degeneracy forces dimension increase by 2. Here we exhibit LP-type
problems where the required increase is arbitrarily large.

Theorem 1.5. There exists a positive constanit> 0 such that for infinitely many values of D, there
is an LP-type problem of combinatorial dimension D, for which every nondegenerate refinement has
combinatorial dimension at leagt + ¢)D.

The example of an LP-type problem as in the theorem is obtained by an “iterated join” of the square
example. We also show that an essentially equivalent example can be represented as a linear program in
the usual sense (a highly degenerate linear program).

2Another, seemingly weaker, notion of nondegeneracy naturally coming to mind is to require thab&vehhas a unique
basis. However, any LP-type problem satisfies this latter condition can easily be converted into an LP-type problem of the same
dimension that is nondegenerate in the sendgefihition 1.3[16]. So these definitions are essentially equivalent.
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The result can also be understood as telling us that for degenerate LP-type problems, the combina-
torial dimension doesn't convey a full “dimensionality” information about the problem. An alternative
dimension parameter might be the smallest possible dimension of a nondegenerate refinement; however,
this appears quite hard to determine.

The main open question is, can the smallest possible dimension of a nondegenerate refinement be
bounded by some function of the dimension of the original degenerate LP-type problem? In particular,
does every 2-dimensional LP-type problem have a nondegenerate refinement of dimension bounded by
a universal constant? We suspect that it is not the case, but it seems that the methods of the present paper
are not sufficient to yield such a result. The structure of 2-dimensional LP-type problems, say, appears
both quite restricted and hard to describe, and at present we have no candidate for an LP-type problem
where removing degeneracies might require increasing the dimension by more than a small constant
factor.

2 Structure of nondegenerate LP-type problems

Let (H,w) be an LP-type problem. We consider the partially ordered set (p(&&t), a Boolean
algebra. For every € R, we define the set systefty = {G C H : w(G) = x}. ThePy for all x € R form
a partition of 2'. Monotonicity implies thatPx has no “holes”. IfF ¢ M C G andx = w(F) = w(G),
thenw(M) = x as well. The following lemma shows that foondegenerateP-type problems, eachy
is actually a copy of a Boolean algebra.

Lemma 2.1 (Cube lemma).Let (H,w) be a nondegenerate LP-type problem. For everyR with
Py # 0 there exist two (uniquely determined) set€B- H such thatPy={F CH:BCF CC}. The
set B is the basis of all [E Py.

We call the sefF C H : BC F C C} acube we use the notatiofB,C] for it, we call B the bottom
vertexandC thetop vertexof the cubgB,C], and|C\ B| is thedimensiorof the cube.

Proof. We choosés € Py arbitrarily, we letB be the basis of, and we set
Cc= {h € H : w(B) :w(BU{h})} .

We claim that this choice d8 andC satisfies the desired conditions. First we prove @) = w(C).
Letting C\ B = {cy,...,cm}, we check by induction that(B) = w(BU {c3,...,G}), i =0,1,...,m.
Indeed, the induction step froimio i + 1 follows immediately from the locality axiom with =B, G =
Bu{cy,...,c}, andh = ¢i;1. Now when we havey(B) = w(C), monotonicity implies thalB,C] C Px.

Now let us assume/(F) = w(B) for someF C H. LetB’ be a basis oF ; we havew(B') = w(F) =
w(B), and thusB = B’ by nondegeneracy. In particuldB,C F. For everyf € F we havew(B) <
w(BU{f}) <w(F) =w(B), sow(B) =w(BU{f}), and hence € C; thusF C C. SinceF was an
arbitrary set irf’x and we have obtaind8l C F C C, we conclude wittPy C [B,C].

The uniqueness @ andC follows from a simple observation that every cube has a unigue top and
bottom vertex. O
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Figure 2: The pose®y, +,, for the square example.

To see how this lemma can be used, let us check the claim made in the introduction: every nonde-
generate refinement of the square exaniplg, wsq) has dimension at least 3. The poseL, ., of all
subsets oHsq with the same smallest enclosing circle as thatigfconsists of all subsets ¢&,b,c,d}
containing{a,c} or {b,d}; seeFigure 2

In any nondegenerate refinemeRy, ., has to be expressed as a disjoint union of cubes, and if the
dimension of the refinement were 2, all of these cubes would have to have a 2-element set as the bottom
vertex. In order to covefa,b,c,d}, we have to use a 2-dimensional cube, Bayc},{a,b,c,d}|. To
cover the remaining se{d, d}, {a,b,d}, and{b,c,d} by disjoint cubes, we must use at least one of the
0-dimensional (single-vertex) cubgs, b,d}, {a b,d}] or [{b,c,d},{b,c,d}] with a 3-element bottom
vertex. Therefore a combinatorial dimension of any nondegenerate refinenjel,ofs) is at least 3.

3 The construction

We begin by defining a binary operation on LP-type problems.

Definition 3.1. Let (Hy,w;) and (Hz,w2) be LP-type problems, and assutdgnH,; = 0. We define
a new LP-type problem, denoted B, w) = (H1,wy) % (H2,w2) and called thgoin of (Hi,ws) and
(H2,w2): H :=H1 UH2 andw(G) := w31 (GNHjy) +wo(GNHy) forall G C H.

Lemma 3.2. The join (H,w) = (H1,ws) * (H2,w») is indeed an LP-type problem, amim(H,w) =
dim(Hl,Wl) + dim(Hz,Wz).

Proof. First we observe that F C G andw(F) =w(G), thenw;(F NH;) =wi(GNH;),i =1,2. Indeed,
sinceF NH; € GNH;, we havew;(F NH;) <wi(GNH;i), and to get equality of the sum, equality must
hold in both components.

Now we verify the axioms fofH,w). Monotonicity is obvious, and for locality, I€&t C G C H and
h € H satisfyw(F) = w(G) = w(F U {h}). Supposing € Hy, we havew;(F NH1) =wi(GNH;p) =
wi((F NH1) U {h}) by the observation above, and locality (H1,w;) yieldswi((GNH1)U{h}) =
W]_(G N Hl). Then

w(GU{h}) =wi((GNH1)U{h})+wa(GNH2) =wi(GNH1) +we(GNH2) =w(G) |,

so(H,w) is indeed an LP-type problem.
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Now we check dinjH,w) > dim(Hz,w;) + dim(Hz2,w,). Let B; be a basis ifH;,w;) witnessing
dim(Hi,w;). It suffices to check thaB = B; UB; is a basis in(H,w); that is,w(A) < w(B) for every
proper subset dB. Letting Ay = ANH;, we haveA; C B; with at least one of the inclusions proper, say
A1 C By. SinceB; is a basis, we hawei (A1) < wi(B1) andw(A) < w(B) follows.

For the opposite inequality difal,w) < dim(H1,w;) + dim(H2, w), we choose a basBin (H,w)
with |B| = dim(H,w) and seB; = BN H;. It suffices to check thd; is a basis in{H;,w;). Let us consider
a proper subsei; C By; then

Wl(Bl) +W2(Bz) = W(B]_U Bz) > W(A]_U Bz) = Wl(Al) +W2(Bz) ,

and we getvi (A1) < wy(B1) as needed. The lemma is proved. O

The example. For the proof ofTheorem 1.5ve define, for a natural number, an LP-type problem
Lm as them-fold join of the square examplgHsq, Wsq). More formally, we choose distinct elements
ai,...,am, b1,...,bm, C1,...,Cm, di,...,dm, we letH; = {&,b;,c,d}, and we letw;: Hi — R be a
“copy” of the value functiorwsq from the square example, definedldn We let

Lm=(H,w) = (H1,wq) - - % (Hm, Wm)

(we note that the operation of join is clearly associative). We lidye= 4m and by the above lemma,
Lmis an LP-type problem of combinatorial dimensibr= 2m. It is easy to check that by taking a join
of m suitable nondegenerate refinements of the square example we obtain a nondegenerate refinement
of (H,w) of combinatorial dimensionr.
We want to bound from below the dimension of any nondegenerate refinemg&gpt ddimilar to
the warm-up argument faiHsq, Wsq), any nondegenerate refineméit= (H,w') of L, of dimension
D’ yields a covering of the pos&,) = {G C H : w(G) = w(H)} by disjoint cubegB;,Cj], where
each bottom verteB; satisfiegB;| < D’. We will deal with this combinatorial problem in the next two
sections.

The case m=2. The 4-dimensional LP-type problefy, is analyzed in 20], and it is shown that
every nondegenerate refinement has dimension at least 6. The correspondirig,pgsistillustrated

in Figure 3 Interestingly, thisP,, does admit a cover by disjoint cubes with bottom vertices of
cardinality at most 5; seBigure 4 However, the covers corresponding to a nondegenerate refinement
have to satisfy an additional condition, calladyclicity, and a case analysis i@(] verifies that every
acyclic cover must have a bottom vertex of cardinality 6 or larger. Here we won't define acyclicity; we
just remark that arbitrary covers by disjoint cubes correspond to nondegevietater spaceswhich is

a generalization of LP-type problems investigatedlifi.f One can thus say thét, has a 5-dimensional
nondegenerate refinement in the realm of violator spaces, but not in the realm of LP-type problems. On
the other hand, the subsequent proofbéorem 1.%loesn’t use acyclicity in any way and thus it applies
equally well to violator spaces.
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Figure 4: A covering ofP,) by disjoint cubes with all bottom vertices of size at most 5; a 4-
dimensional cube is marked by circles around its vertices.
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4 Setting up a linear system

The basic strategy for the proof ®heorem 1.5s simple. Letl, = (H,w) be the example constructed
above and let us suppose that the pdBet Py C 2H can be covered by disjoint cubés;,Cj]
with |Bj| < D'. Since dinfH,w) = D = 2m and all bases ofH,w) have exactly this size, we have
2m < |Bj| < |Cj| < |H| =4mfor all j. Let xqx denote the number of cubes wif;| = 2m+d and
ICj| =2m+k d <A:=D'—2m,d <k <2m. A cube[Bj,Cj] with |Bj| = 2m+d and|C;| = 2m+k
contains sets of cardinalityn®+ ¢, d < ¢ <k, and the number of sets of this cardinalityB),C;] equals
(*=9) (this formula is actually valid for alf if we adopt the convention th¢f) = 0 forb < 0 orb > a).
If we let

F(m/¢)=[{GeP: |G| =2m+/{}

we get that theq ¢ have to satisfy the following system of linear equations:

A 2m <kd

dzo k:m;(d,f) t—d

We are going to prove that with = [eD], wheree is a sufficiently small positive constant, this
system of equations for variableggy has nononnegative reasolution, provided tham is sufficiently
large.

To see that an approach based on counting sets of individual cardinalities may help us to prove
nonexistence of the covering @ note that already the proof in the endRgction2 may be rephrased
in terms of counting. In the poset Fgure 2 the vector of numbers of sets of cardinality 2, 3, and
4 is (2,4,1). However, this vector cannot be obtained as a nonnegative linear combination of vectors
(1,0,0), (1,1,0), and(1,2,1), which give numbers of sets of the respective cardinalities in cubes with
the allowed cardinality of the bottom vertex.

First we evaluaté& (m,?).

)xd,kzF(m,é) , £=0,1,....2m . 4.1)

Lemma 4.1. We have

_ m m(—3s
F(m7€)_z<s,€—25,m—é+s>2 ’

S

with the sum being over all s with< 2s < £ and s> ¢/ —m (here(, !\ ) = e IS @ multinomial
coefficient, k4 ko +kz =n). '

Proof. First we observe, reasoning as in the proof.efnma 3.2 that a seB C H is a basis oH in
L if and only if eachB; = BN H; is a basis oH; in (H;,w;). Hence the bases éf are the set8 with
BNH; ={a,c}orBNH;={b;,d} foralli=1,2,....m. AsetG CH is in ? iff it contains at least one
of these bases; i. e., if it contains at least one of the dairs; }, {b;,d;} for all i.

For G € P of cardinality In+ /¢ lets = [{i € {1,2,....m} : |[GNH;| =r}|, r = 2,3,4. We have
S +S3+3=mand &+ 353+ 4y = |G| = 2m+¢. Calculation shows thah = m—{(+ s andsg =
{— 2.

For counting the number of possible ways of choogkgve first fixs= s;. Thens, ands; are fixed
as well, and there ar@zg&l) ways to choose the indicésontributing to eacls: (in other words, to
choose which are thig; whereG takes 2, 3, or 4 elements, respectively). Knowing tat H;| = 2,
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there are two possibilities f@NH;, for |GNH;| = 3 we have 4 possibilities, and f@&NH;| there is just
one possibility. Therefore, on¢&NH;| has been fixed for ail there are 2 -4% = 2™~3% possibilities
for G. Summation oves = s yields the statement of the lemma (the conditions on the rangadhe
summation correspond to the obvious restrictienss, s, > 0). O

5 Unsolvability of the linear system

We recall that for finishing the proof afheorem 1.5it suffices to show that fof := [2em] andm
sufficiently large, the linear system.() has no nonnegative solution= (X4x)5_o ﬁfd.

Before starting with the formal proof, which is a sequence of somewhat frightening calculations,
we say a few words about how it was found. We started by testing the solvability for concrete values of
parameters via linear programming. We used the fundétiarrarProgramming in Mathematica, which
uses arbitrary precision arithmetic and computes the solution exactly; this allowed us to dealupith
to about 1000 (other LP solvers we tried failed for large instances because of insufficient accuracy). By
the Farkas lemma, the unsolvability is always witnessed by a linear combination of the equations that
has nonnegative coefficients on the left-hand side and negative right-hand side. By minimizing the sum
of absolute values of (suitably normalized) coefficients providing such a linear combination, we found
that the unsolvability was witnessed, in all examples we tried, by a linear combination of only 3 of the
equations. For simplifying the analytic approach, we then triedr&ecutivequations, and found that
such combinations work as well, provided that the index of the middle equation is chosen in a suitable
range. These numerical results encouraged us to try finer and finer estimates, until we finally reached
the following proof.

Proof of the unsolvability of (4.1).  We set, somewhat arbitrarily,= m/2, assumingn even (we
suspect that= tmfor any fixedz € (0,1) would work, but we haven't checked). We will show that for
sufficiently largem already the system of the three consecutive equations/with—1,t, andt + 1 has

no nonnegative solution. To this end, we find a linear combination of these three equations, with suitable
coefficientsa, 8,7, such that the resulting equation has all coefficients on the left-hand side nonnegative,
while the right-hand side is strictly negative. We will assume fhé negative and we normalize the
coefficients so thaB = —1 (we need not justify this assumption since we are free to chag8ey as

we wish). Explicitly, to have the coefficient of the variablg, in the resulting equation nonnegative,

we need that the following system @&+ 1)(2m—A/2+ 1) inequalities is satisfied:

k—d k—d k—d
a(t—d—1>_<t—d>+y<t—d+1> >0, O0<d<A,dsks<2m. (5.1)

To have right-hand side strictly negative, we need the following inequality:
aF(mt—1)—F(mt)+yF(mt+1) <0 . (5.2)

Our basic intuition behind the proof is a “continuous” one: Fdarge and fixed, the left-hand side
of (5.2) is something like a “weighted second derivative”Fofm,t) according ta, while on the left-
hand side of%.1) we have the same kind of the weighted second derivatives of the binomial coefficients.
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So our goal is to prove that the graphfm,t) “bends less” than the graph of any of the binomial
coefficients involved, and hende cannot be built as a positive linear combination of the binomial
coefficients.

However, this initial intuition is a quite rough one, since the choice of suitaldedy turns out to
be surprisingly subtle. Namely, we need to choase ap+ a1/t andy = 0+ 1 /t, where

o = \/T?1+2 ~1.29057, Y= \/TS_)_ 2 0193713

are uniquely determined real constants angy; are constants in certain ranges. For concreteness we
seta; =1 andy; = 1/8.

We get 6.1) from the following lemma:
Lemma 5.1. There is a positive constagt> 0 such that, with the above choice ofa, andy, Equa-

tion (5.1) holds for all d< A = [2em] and for all k> d, provided that m, and hence t, are sufficiently
large.

Proof. We use the substitution=k—d andx =t —d. We thus want to showt(,.*,) — () +7(,”,;) > 0.
Fory < x—1 all three terms are 0, and so we may assymex— 1. We rewrite the left-hand side to
!
(x+ 1) (y—x+1)!
Let us denote by («, 7,Y,X) the expression in parentheses; we want to show that it is nonnegative.
Let us choose constantg < a; andy; < 1. Assuminge in the lemma sufficiently small, we hade
sufficiently small compared tq and hencex = ap+ o /(Xx+d) > o+ o /xandy = o+ 71/ (x+d) >

Yo+ 1/
Sincef is nondecreasing it and iny (for the relevany andx), it suffices to check that

%

(0x(x+1) = (x+ 1) (y = x+ ) + 7y —x+ 1)y =) -

f(a0+77'y0+ 7y’ )>O )

and we will verify this for all sufficiently largeeal x and all realy. One of the properties ak, and

10 needed here ispyy = 1/4. Things can be simplified a little by the substitutips: Xx(z+ 1). Then
f(ao+ ai/x, %+ 7,/X X(z+1),x) is a polynomial ik andz. Forx fixed it is a quadratic polynomial in

z, and the coefficient af? is yox? + 71X > 0 (this calculation and the subsequent ones were done using
Mathematica). Therefore, it has a unique minimum, which can be found by setting the first derivative
(according ta) to 0. This minimum occurs at

X+ (1-w)x—7
2X(YoX+71)

Substituting this intdf (o + £ = ,}/0+ n ,Z(x+1),x) yields a function ok of the form
o o /
Yo — 218 + 4oy + Y:’LX—{—O(l) |
4%

the O(.) notation referring tox — co. Calculation shows that the coefficienbaif a positive real number
(for a; andy; sufficiently close tax; andy;, respectively). Hencé is indeed positive for the considered
values of the variables. O

20=2(X) =
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Remark. It is easy to check that i,y are positiveconstantsthen the inequalityf (¢, v,x,y) > 0
holds for ally and all sufficiently large if and only if oy > %1. However, for suctx andy (5.2) fails.
We are thus forced to chooseandy depending o such thatry — ;11 asx — oo,

We now proceed to establish.p). We set

m
mt.s) = 2m+t—3s
Qmt.s) (s,t—Zs,m—tJrs) ’

so thatF (m,t) = ysQ(m,t,s). First we look for thes maximizingQ(m,t, s). Let

 Q(mt,s)  (t—2s+1)(t—2s+2)
r(mt,s) = Q(mt,s—1) 8s(m—t+s)

be the ratio of two consecutive terms. As a functiors d@fis decreasing, and Q(m,t,s) is maximum
for the largess with r(m;t,s) > 1.

We stick to our choicé = m/2. It is more convenient to ugeas a parameter; let us writét;’s) =
r(2t,t,s) andQ(t,s) = Q(2t,t,s), and let us note than—t = t. If we leto = (/10— 3)/2 ~ 0.0811388
be the positive root of the equatioh— 26)? = 80 (1+ o) andsy = | ot|, then

(t—250+1)(t—25%+2)
8so(M—t + )
(1-20+0(t™1))2

8(c +O(t™1))(1+ o +O(t-1))

(1-20)? _

- 86(1+G)+O(t )

= 140t .

F(t,So) =

Next, we need an estimate on the rate of decrea¥tof +a) as|al increases.

Lemma5.2. Let @ = % + 1 + 1= ~ 180244 Suppose that & o(t%3). Then

Aot _ (11 o))/ |

Q(t, o)

where d.) refers to t— o and the convergence is uniform irfa.

3That is, there exists a functidft (0, ) — [0,) with £(t) — 0 ast — « such that
Qt,s0+a)
1-0(t) < =—"——>= <1+t
C( ) — (?(,[7 )e—coaz/Zt — C( )

for all relevanta andt.
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Proof. We will be summing ovej = 1,2,... ain the proof. Let us writ€ = j/t; thusé = o(1). We
have, using &-x = € +O(x?),

Ft,s0+])
F(t,s0)

2 V(12
t—25+1 t—259+2

(1+%) (1+t+50)

Flt,so+]) = (1+0(t™))

(1
- @+or)

— (l 12265)2
= (1+0(t
O 1y (14 L8
120‘2 O
= (1+0(t™) <e o )

(64 +0(£2)) (er's¢ +0(£2))
— (140t Y))(1+0(E2))e (Frmtotris)s
= (1+0(t™!) +0(&?))e -,

Then, using i1+ x) = X+ O(x?),

Qt,so+a) 2
"S5 2,

The lemma follows. O

Next, we consider the expressibiit,s) = aQ(m,t —1,s) — Q(m,t,s) + yQ(m,t + 1,s) with m= 2t,
o= ap+ag/t, andy = yp+ 71/t as above. The idea is to show that foclose tosy we havef)(t,s)
negative, while foss further froms; it can be positive but it is sufficiently small compared®(t,so).
Again, the calculation has to be done rather precisely in order to work.

Lemma 5.3. Let us suppose that-a o(t), and let = | ot | be as above. Then

~ C/c
D(t,so+a) = Q(t,sp+a)= " ( tlaz— 1+o(1)) ,
where C is a certain positive constant whose value will not be important,
c1 = (14584/10+ 46192 /5877~ 15.70710522,

the d.) notation refers to t— o, and the convergence is uniform in a.
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Proof. Similar to the proof oLemma 5.1we rewrite

) ) 1
D(t,s) = Q(t,s) - 2(t+1—2s)(t+s+1)

g(“?}/atvs) 9y

with g(et, 7,t,s) = ot (t — 25+ 1)(t —25) — 2(t — 25+ 1)(t +s+1) +4y(t +5) (t +s+1). With the constant
o as aboveg(op+ a1 /t, %+ 71/t,t,0t) becomes a polynomial i) which is a priori quadratic, but the
constantsxy andy, are chosen so that the coefficient@atwhich equals 14- 5v/10+ (26— 8v/10) o +
(11— 2\/f))yo, vanishes. (This, together witkyyy = %1, are the two conditions that uniquely determine
ap andy.) The coefficient of the linear term equals, = (191— 62,/10)/8 ~ —0.632652 (and thus
o(a,v,t,s) is indeed negative and of ordefor s sufficiently near tast).

More quantitatively, expanding and simplifying gives

g(oo+ a1 /t, 1o+ 11/t,t, ot +b) = —cot + c3b? + O(b?/t +- b+ 1)
with c3 = (14+51/10)/3. Fora= b+ ot — 5 = b+ ot — | ot] < b+ 1 we then obtain

g(oo+ o /t, Yo+ 1i/t,t,So+a) = —Cot + cza® + O(@%/t +a+1) .
Therefore, using = o(t), we arrive at

. o —Cot +cza?+ O(a%/t+a+1)
Dt.so+a) = Qt,0+a) 2(t+1—2s)(t+5s+1)

2
- Gsora)§ (S -1row)

as required. O

We are ready to proveés(2). For our choice ofx, y, andt we have

aF(mt—1)—F(mt)+yF(mt+1) = D(t,so+a) .

For concreteness let us sgt=t3/>. We will show that

~ 0

Dt o+a)<-— Q(t,%0)
[al<ao

for a constan® > 0. Now fora > ag we have
D(t,s0+a)| < aQ(t— L so+a) +Q(t, 0 +a) + yQ(t+ L,9+a) .

We haveQ(t — 1,50+ a) < Q(t — 1,5 + &), Which is smaller tha)(t — 1,s) by a factor exponential
int (seeLemma 5.2. A similar argument applies fdarandt 4+ 1 and fora < —ag and thus the sum over
|a| > ag is negligible.
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Combining Lemma$.2and5.3, we get that fota] < ap we have

~ ~ C

2
Bi.50-+8) = Q1) (1+ ala)e =/ (25~ 1iwia)

t

whereg(a) andyx(a) are some functions converging to Otas c, uniformly in a.
We will show that

2
3 rad@e (105 @) <aw) 53
a|<ap

Let us fix an arbitrarily smaly > 0 and let us assume thiahas been chosen so large thata)| < v,
|lyi(a)| < v forall a. Then the left-hand side 05(3) is bounded from below by

; e /2 (1 cra?/t) — ;<1+|¢t<a>|>e-°°az/2t|nm<a>|— |x(a) e~/
la[<ag [al<ao la]<ao

2
5 e (1) gy 5 guen
|la[<ag la]<ao

By basic properties of Riemann integration and uniform continuity arguments it is routine to check that
both of these sums converge to the corresponding integrals-as. So it suffices to bound from below

2 2
(1—3v) / e o0/ 2 gg ﬂ/ ale %%/ g .
) a t Joa

Sincea/t = t1/°> — » ast — o and the integrands decrease exponentiallg?ft, we make only a
negligible error by taking both integrals frofo to 0. We have

(1—3v) / e %%/ da — (1—3v)./27t/Co ~ 0.590419/k

—00

while

C @ _
- a?e ©%/2 da = ¢;/21c, ¥ *V/t ~ 0.514513/% .

This finally proves .2).

6 A geometric representation by a linear program

It turns out that an LP-type problefiy, = (H,W), which is similar tol, and which can also be used as
an example establishintheorem 1.5can be represented as a linear program. To see that our proof of
Theorem 1.5works for £ as well, it will be enough to verify that its posgf;) of maximum-weight

sets is isomorphic t&,, ) of Lm, and this will follow from the discussion below.
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Tabed &7

Tab )

Lpe X Zad
Ted

Figure 5: A linear program iik3 essentially representing the square example.

We begin by setting up the following linear program with variablegz (n > 0 is a very small
positive real number):
minimize z+ ny+ nx subject to

a X+4y—-2z < 1
b: X+8y+2z2 < 5
c X—8y+2z < -3
d —X—4y—-2z < -3
xy,z > 0.

The corresponding LP-type problefhlsq, Wsq) has the seHsq = {a,b,c,d} of four constraints corre-
sponding to the four inequalities of the linear program. The valG) of any subseG C Hgqis the
minimum of the linear program where the constraint$igf\ G have been deleted (we stress that the
implicit nonnegativity constraints,y,z > 0 are always present, even f8r= 0). In this way,wsq(G) is
well defined for eveng.

The linear program is illustrated iRigure 5 For better visualization, the picture shows the unit
cube[0,1]3, and intersections of the bounding planes of the constraints with the faeeisandx = 1
of the cube. The minimum of the linear programs containing both the consteaartd c or both the
constraintd andd is attained at the poingped = (0,1/2,1/2); thus,wisq(Hsg) = 1/2. It can be checked
that for every subseb of constraints containing neithéa,c} nor {b,d}, the minimum is attained at a
point withz= 0, and thus witiwsy < 1/2 (the picture shows the minima for &@lof cardinality 2). Thus
L is a 2-dimensional LP-type problem with the poSgf ., isomorphic toPy, ., for the square
example.

THEORY OF COMPUTING, Volume 3 (2007), pp. 159-177 174


http://dx.doi.org/10.4086/toc

REMOVING DEGENERACY MAY REQUIRE A LARGE DIMENSION INCREASE

Next, we observe that ifH,w) is an LP-type problem corresponding to a linear program with vari-
ablesx,...,xn and with objective mity cix;, and (H’,w’) is an LP-type problem corresponding to a
linear program with variables,, ..., x; and with objective miry ¢x/, then the join(H,w) « (H’,w') cor-
responds to the linear program obtained by putting the constraints of both linear programs together and
with objective mir{y ¢ixi + S ¢/x). Indeed, it suffices to check that the value functiofHhw) « (H’,w')
coincides with the value function obtained from the combined linear program, and this is immediate. In
particular, them-fold join Lmof m disjoint copies of(Hsg, Wsq) corresponds to the following linear
program in 3nvariables:

minimize ™, (z + Ny +n2x) subject to

Xi+4yi—2z < 1
3 +8yi+2z < 5
X —8yi+2z < -3 i=212,....m.
—X—4i-2z < -3
Xi,¥i,z > 0

We could have presented the exampleTtheorem 1.5n this form, but we find the abstract construction
of join more transparent.
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