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Abstract: An arithmetic circuit or formula is multilinear if the polynomial computed at
each of its wires is multilinear. We give an explicit polynomfaka, ...,xn) with coeffi-
cients in{0,1} such that over any field:

1. f can be computed by a polynomial-size multilinear circuit of deptiog?n).
2. Any multilinear formula forf is of sizen®(09"

This gives a superpolynomial gap between multilinear circuit and formula size, and sepa-
rates multilineaNC, circuits from multilinealNG, circuits.
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1 Introduction

An outstanding open problem in arithmetic circuit complexity is to understand the relative power of
circuits and formulas. Surprisingly, any arithmetic circuit of ssZer a polynomial of degred can be

*Research supported by the Israel Science Foundation (ISF) and by the Minerva Foundation.

to publish the work electronically and in hard copy. Use of the work is permitted as
long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, séetp://theoryofcomputing.org/copyright.html.

(© 2006 Ran Raz DOI: 10.4086/toc.2006.v002a006

Authors retain copyright to their work and grant Theory of Computing unlimited ?hts



http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright.html
http://dx.doi.org/10.4086/toc.2006.v002a006

RAN RAZ

translated into an arithmetic formula of size quasi-polynomia amdd [3, 8].1 Can such a circuit be
translated into a formula of siz@lynomialin sandd ?

In this paper, we answer this question faultilinear circuits and formulas. An arithmetic circuit
(or formula) ismultilinear if the polynomial computed at each of its wires is multilinear (as a formal
polynomial), that is, in each of its monomials the exponent of every input variable is at most one.

A preliminary version of this paper appeared in FOCS 2004. The title was “MultiliN€ar=~
Multilinear-NG," [ 6].

1.1 Multilinear Circuits

Let F be afield, and lefxs, ..., %, } be a set of input variables. Aarithmetic circuitis a directed acyclic
graph with nodes of in-degree 0 or 2. We refer to the in-neighbors of a node as its “children.” Every
leaf of the graph (i. e., a node of in-degree 0) is labelled with either an input variable or a field element.
Every other node of the graph is labelled with eitheor x (in the first case the node issam gateand
in the second case@moduct gat¢. We assume that there is only one node of out-degree zero, called
theroot. The circuit is aformulaif its underlying graph is a (binary) tree (with edges directed from the
leaves to the root).

An arithmetic circuit computes a polynomial in the rinixf . . ., %] in the following way. A leaf
just computes the input variable or field element that labels it. A sum gate computes the sum of the two
polynomials computed by its children. A product gate computes the product of the two polynomials
computed by its children. Thautputof the circuit is the polynomial computed by the root. For a circuit
@, we denote bny the output of the circuit, that is, the polynomial computed by the circuit. Sibe
of a circuit® is defined to be the number of nodes in the graph, and is denotgb| byhedepthof a
circuit is defined to be the maximal distance between the root and a leaf in the graph.

A polynomial in the ring s, ...,xn] is multilinear if in each of its monomials the exponent of
every input variable is at most one. An arithmetic circuit (or formulahigdtilinear if the polynomial
computed by each gate of the circuit is multilinear.

1.2 Background

Multilinear circuits (and formulas) were formally defined by Nisan and WigdersoBg]inQbviously,
multilinear circuits can only compute multilinear functions. Moreover, multilinear circuits are restricted,
as they do not allow the intermediate use of higher powers of variables in order to finally compute a cer-
tain multilinear function. Note, however, that for many multilinear functions, circuits that are not multi-
linear are very counter-intuitive, as they require a “magical” cancellation of all high powers of variables.
For many multilinear functions, it seems “obvious” that the smallest circuits and formulas should be
multilinear. Moreover, for most multilinear functions, no gain is known to come from permitting higher
powers.

For example, the (first entry of the) productrofmatrices of sizen x n is a multilinear function, and
the smallest known circuits for this function are multilinear. It seems intuitively clear that the smallest

IMoreover, ifs, d are both polynomial in the number of input variabiehen the circuit can be translated into a polynomial-
size circuit of deptIO(Iog2 n), that is, arNG; circuit [8].
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circuits for this function should be multilinear. On the other hand, for some multilinear functions the
smallest known circuits are not multilinear. For example, the determinant ofammatrix is a mul-
tilinear function (of then? entries) that has polynomial size arithmetic circuits but doesn’'t have known
subexponential size multilinear circuits.

Super-polynomial lower bounds for the size of multilinear formulas were recently pra@yedn[
particular, it was proved that over any field, any multilinear formula for the permanent or the determinant
of ann x n matrix is of sizen®(°9"  Note, however, that all known multilinear circuits for the permanent
or the determinant are of exponential size, and hence these bounds don't give any separation between
multilinear circuit and formula size.

For more background and motivation for the study of multilinear circuits and formula$sgel].

For general background on algebraic complexity theory 8e8 [

1.3 Our results

We construct an explicit polynomial with the properties specified in the following theorem.

Theorem 1.1. There exists an explicit multilinear polynomia(x, ..., X), with coefficients if0, 1},
such that over any field:

(a) f can be computed by a polynomial-size multilinear circuit of dep(ﬂlm@ n;
(b) any multilinear formula for f is of size®°9"

Item (a) means that has a multilineaNGC, circuit. Item (b) implies thatf cannot be computed
by a polynomial-size multilinear circuit of depti(logn), that is, by a multilineaNC; circuit? This
gives a super-polynomial gap between multilinear circuit and formula size, and separates multilinear
NGC; circuits from multilineamNG, circuits.

For the proof of our lower bound on the multilinear formula sizef pfve use methods fronv].
The main contribution of this paper is the construction of a polynorinthkt can be computed by small
multilinear circuits, and to which these methods can be applied.

2 Syntactic multilinear formulas

Let ® be an arithmetic circuit over the set of variables,...,x,}. For every nodes in the circuit,
denote byd, the sub-circuit with root/, and denote by, the set of variables that occur in the circuit
®,. We say that an arithmetic circu? is syntactic multilinearif for every product gater of ®, with
childrenvy, v,, the sets of variableX,, andX,, are disjoint.

Note that any syntactic multilinear circuit is clearly multilinear. At the other hand, a multilinear cir-
cuit is not necessarily syntactic multilinear. Nevertheless, the following proposition shows that without
loss of generality we can assume that a multilinear formula is syntactic multilinear.

2Note that any (multilinear) circuit of dept(logn) can trivially be translated into a polynomial size (multilinear) formula
(of depthO(logn)).
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Proposition 2.1 ([7]). For any multilinear formula, there exists a syntactic multilinear formula of the
same size that computes the same polynomial.

Proof. Let ® be a multilinear formula. Let be a product gate i, with childrenvy,v», and assume
thatX,, andXy, both contain the same variable Since® is multilinear,®, is a multilinear polynomial

and hence in at least one of the polynomidlg, ®,, the variable; doesn’t occur. W.l.0.g. assume that

in the polynomialcb\,1 the variable; doesn’t occur. Then every occurrencexpin ®,, can be replaced

by the constant 0. By repeating this for every product gate in the formula, as many times as needed, we
obtain a syntactic multilinear formula that computes the same polynomial. O

3 Lower bounds for multilinear formulas

In this section, we prove general lower bounds for the size of multiliear formulas. To prove these bounds
we follow very closely the techniques frord][ As in [7], our starting point is the partial derivatives
method of Nisan and Wigderso4,[5]. As in [7], to handle sets of partial derivatives, we make use of
the partial derivatives matrixfirst used in §]).

3.1 The partial-derivatives matrix

Let f be a multilinear polynomial over the set of variabl{gs, . ..,ym} U {z1,...,zn}. For a multilinear
monomial p in the set of variablegy,...,ym} and a multilinear monomiad in the set of variables
{z1,...,Zm}, denote byM¢(p,q) the coefficient of the monomigbq in the polynomialf. Since the
number of multilinear monomials in a setmfvariables is 2™, we can think oM; as a 2" x 2™ matrix,
with entries in the field F. We caM; the partial derivatives matribof f. We will be interested in the
rank of the matrixXV; over the field F.

The following two propositions give some basic facts about the partial derivatives matrix.

Proposition 3.1. Let f f;,f, be three multilinear polynomials over the set of variables
{Y1,.--,Ym} U{z1,...,2Zn}, such that f= f; + f,. Then M = My, + My,

Proof. Immediate from the definition of the partial derivatives matrix. O

Proposition 3.2. Let f f;,f, be three multilinear polynomials over the set of variables
{Y1,..-,¥Ym} U {z,...,zZn}, such that f= f; - f,, and such that the set of variables that depends
on and the set of variables thag depends on are disjoint. TheRankM¢) = RankK My, ) - RankK My, ).

Proof. Note that the matriMs is the tensor product dflt, andMys, (where all matrices are restricted
to rows and columns that are non-zero). Hence, the raik:a$é the product of the rank dl¢, and the
rank of My,. O

Let ® be a multilinear formula over the set of variablgs, ...,ym} U {z,...,Zn}. Recall that the
output® of the formula® is a multilinear polynomial ovefys,...,ym} U {z,...,zn}. For simplicity,
we denote the matriig also byMe. We will be interested in bounding the rank of the matviy

3We only consider monomials with coefficient 1 (suchx@&xa, as opposed to, sayxiXaXa).
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over the field F. (Note, however, that the rankvb§ may be as large as"Zi. e., full rank), even if the
formula® is of linear size.)

3.2 Unbalanced nodes

Let ® be a syntactic multilinear formula over the set of varialigs...,ym} U {z,...,zn}. For every
nodev in the formula, denote by, the set of variables iflys, ..., ym} that occur in the formul&,, and
denote byZ, the set of variables ifizy, ..., zn} that occur in the formulg,.

Denote byb(v) the average ofY,| and|Z,| and denote by(v) their minimum. Letd(v) = b(v) —
a(v). We say that a nodeis k-unbalancedf d(v) > k.

Let y be a simple path from a leaf to a nodev of the formula®. We say that is k-unbalancedf
it contains at least onleunbalanced node. We say thais centralif for every u,u; on the pathy such
thatu; is a child ofu, we haveb(u) < 2b(u;). Note that for every node in the formula, with children
uz, Uy, we haveb(u) < b(up) +b(uz). Hence, by induction, for every nodan the formula, there exists
at least one central path that reachel particular, at least one central path reaches the root.

We say that the formul@ is k-weakif every central path that reaches the root of the formula contains
at least on&-unbalanced node. The following lemma froif] fhows that if the formulab is k-weak
then the rank of the matrikle can be bounded.

Lemma 3.3 ([7]). Let ® be a syntactic multilinear formula over the set of variables
{Y1,.--,¥Ym} U{z,...,Zn}, and assume thab is k-weak. Then,

RankMg) < |®|-2™%/2

3.3 Random partition

Let n=2m. Let ® be a syntactic multilinear formula over the set of variafes {xi,...,xn}. LetA
be a random partition of the variablesXninto {y,...,ym} U {z,...,zn}. Formally,Ais a (randomly
chosen) one-to-one function from the set of variablés the set of variable§ys, ..., ym} U {za,...,Zm}.
Denote by®, the formulad after replacing every variable &f by the variable assigned to it By
Obviously,®, is a syntactic multilinear formula over the set of variablgs ...,ym} U {z1,...,Zn}.

The following lemma shows that j®| is small then with high probabilitgp, is k-weak fork = n1/8,
We will give the proof of the lemma in the next section.

Lemma 3.4. Let n=2m. Let® be a syntactic multilinear formula over the set of variables=X
{X1,...,%}, such that every variable in X occurs @, and such that®| < n¢'°9" wheree is a suf-
ficiently small universal constant (e.g.= 10~°). Let A be a random partition of the variables in X into
{y1,...,¥Ym} U{z1,...,zm}. Then, with probability of at least— n—2(0°9" the formula®, is k-weak, for
k=nY8,
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3.4 The lower bounds

Lower bounds for the size of multilinear formulas can be proved as a corollagrtoma 3.3and
Lemma 3.4 We will prove lower bounds for functions that satisfy the followinigh rankproperty?

Definition 3.5 (High rank). Letn=2m. Let f be a multilinear polynomial (over a field F) over the set
of variablesX = {x1,...,x,}. We say thatf is of high rank over F if the following is satisfied: LeA
be a random partition of the variablesXninto {yi,...,ym} U {z1,...,zn}. Then, with probability of at
leastn—o(09n)

RankMy,) > 2m""%/2

where the rank is over F, anfd denotes the polynomidl after replacing every variable M by the
variable assigned to it béx.

The following corollary is our basic lower bound.

Corollary 3.6. Let n=2m. Let f be a multilinear polynomial (over a fiel) over the set of variables
X ={Xa,...,%}. If f is of high rank oveF (seeDefinition 3.5 then for any multilinear formul& for f,

’(D’ > nQ(Iogn) ]

Proof. By Proposition 2.1we can assume w.l.0.g. th@tis syntactic multilinear. Note also that we can
assume w.l.o.g. that all the variablesXroccur in®, as we can always add variables multiplied by 0.
Assume for a contradiction th&b| < n€'°9" wheree is the universal constant frollemma 3.4 Let A
be a random partition of the variablesXninto {yi,...,ym} U {z,...,Zn}. Then, byLemma 3.4 with
probability of at least - n~2(°9" the formula®, is k-weak, fork = nl/8,

Hence, byLemma 3.3with probability of at least - n—2(09)

RanKMg,) < 2™™°/2
Thus® cannot be a formula for the high rank functién O

We will now consider multilinear polynomial§ (over a field F) over two sets of variableX: =
{X1,...,%} andX’ = {x},...,x }. We think of the variables iX’ as auxiliary variables. Le¥' : X' — F
be an assignment of values in F to all the variableX'in We denote byfy the polynomialf, after
substituting in every variable i’ the value assigned to it BY. Note thatf, is a multilinear polynomial
over the set of variablex.

Corollary 3.7. Let n=2m. Let f be a multilinear polynomial (over a fief) over the sets of variables
X ={x1,....Xa} and X = {x],...,x }. If for some assignment AX" — F the polynomial £ is of high
rank overF (seeDefinition 3.5 then for any multilinear formulab for f,

]CD| > r]Q(Iogn) ]

“Note that the function$ used in this paper will actually satisfy a much stronger property. Namely, for any pasitive
will have RankMs, ) = 2™ (where all notation is as iBefinition 3.5.
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Proof. Denote byd, the formula® after replacing every variable of by the value assigned to it by
A'. Then,®y is a formula forfy, and|®y | = |®|. Hence, byCorollary 3.6 |®| = |y | > n@logn [

In some cases, in order to find an assignn#@siuch that the polynomidly is of high rank, we will
need to consider extensions G of the field F. Note that any polyndimiakr F is also a polynomial
over any field extending F.

Corollary 3.8. Let n=2m. Let f be a multilinear polynomial (over a fiel)l over the sets of variables
X ={Xq,....%} and X = {x],...,X}. If for some fieldG D F there exists an assignment:AX' — G,
such that the polynomialfis of high rank oveG (seeDefinition 3.5 then for any multilinear formula
@ for f (over the fieldF),

’(D’ > nQ(Iogn) ]

Proof. Any multilinear formula forf over the field F is also a multilinear formula férover the field G.
The proof hence follows bgorollary 3.7 O

4 Proof ofLemma 3.4

Let us first give a brief sketch of the proof. Note that the intuition and the basic structure of the proof
are the same as ifT], but the details here are much simpler.

Intuitively, sinceA is random, every node with large enougtX, will be k-unbalanced with high
probability. The probability that suahis notk-unbalanced is smaller tha(n—?9), for some constar.

This may not be enough since the number of central paths is possibly as laij&@@asNevertheless,
each central path contai@logn) nodes so we can hope to prove that the probability that none of them
is k-unbalanced is as small as©(109"

This, however, is not trivial since there are dependencies between the different nodes. We will
identify Q(logn) nodes,vs,...,Vv;, on the path (that will be “far enough” from each other). We will
show that for every;, the probability that; is notk-unbalanced is smaller thad(n—?9), even when
conditioning on the event thai, ..., v;_1 are notk-unbalanced.

4.1 Notation

For any integen, denoteln] = {1,...,n}.

To simplify notation, we denote in this section the formdig by W. There is a one-to-one corre-
spondence between the nodesbodind the nodes d¥. For every node in @, there is a corresponding
node inW¥ and vice versa. For simplicity, we denote both these nodes &gd we think of them as the
same node. Hence, denotes the set of variablesthat occur in the formula,, while Y, denotes
the set of variables iy, ...,ym} that occur in the formul&,, andZ, denotes the set of variables in
{z1,...,Zyn} that occur in¥,. Let

o(v)=|X|/n .

For three integersl;, M, < N, denote byH (N, M1, M) the hypergeometric distribution with param-
etersN, M1, My, that is, the distribution of the size of the intersection of a random set oMsiznd a
set of sizeM; in a universe of sizé&.
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Proposition 4.1. Let y be a random variable that has the hypergeometric distribuftoiN, M1, My),
where N4 < M, < 3N/4, and N2 < M; < N/2. Then,y takes any specific value with probability of
at most N—Y/4). That is, for any number a,

Priy =a <O(N~Y4) .

Proof. Follows by the definition of the hypergeometric distribution and standard bounds on binomial
coefficients. O

4.2 Central paths are unbalanced

Let y be a simple path from a leaf to a nodedn Note thaty is central inW iff for every u,u; on the
pathy, such thau is a child ofu, we havea(u) < 2a(up). Since this property doesn’'t depend on the
partition A, we say in this case thatis central in®. We will show that ify is central then with high
probability y is unbalanced in the formuh.

Claim 4.2. Lety be a central path from a leaf to the root & Then,
Pr{y is not k-unbalanced it | < n~@(09m

Proof. Recall that the first node gfis a leaf and hence(v) for that node is at most/h, and the last
node ofy is the root and hence(v) for that node is 1. Note that(v) is monotonously increasing along
y. Letvi,...,v; be nodes ory, chosen by the following process: Let be the first node ory, such
thata(vy) > n~/2. For everyi, letvi, 1 be the first node om, such thaix(vi 1) > 2- (V). Stop when
o(viy1) > 1/4. Denote by the indexi of the lasty; in this process.

Sincey is central, for every, U’ on y, such that/ is a child ofu, we havea(u) < 2a(J'). Hence,
for everyi € [| — 1], we havex(vi+1) < 4- a(vi). Hence, the process above continueSigiogn) steps.
To summarize, we have= Q(logn) and nodew;, ...,Vv; onv, such that for everye {2,...,1},

1/4> a(v) >2-a(vi_1) > n Y2 .

Denote by€ the event thay is notk-unbalanced in the formuM. For everyi € [I], denote by¢; the
event that the node is notk-unbalanced in the formul. Sincel C Ni¢()&i,

Ei

Pri&] < Pr {ﬂ Ei] =[] Pr
iell]

iell]

o

irefi-1]

We will bound for everyi > 1 the conditional probability PE; | Nicji_y Eir].
Fixie {2,...,1}. Note thatX,, , C X,. Given the se¥,, ,, we can write,

‘YVi‘ - ’YVi—1’ +X

wherey has the distributio((N, M1, Mp), with N =n— Xy, _,|, M1 = [Xy| — Xy .|, M2 =m— Y, ,|.
Hence, byProposition 4.1|Y,, | does not take any specific value with probability larger tém1/4),
even when conditioning on (the content of) theset .
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Note that the everflj.ci_q i depends only on the content of the ¥gt, . Therefore]Y,, |, and hence
alsod(v), do not take any specific value with probability larger ti@im~1/4), even when conditioning
on the evenf¢ji_y &y Recall thaty; is notk-unbalanced iffd(vi) < k. Sinced(v) is integer, the
probability for that is at mosb(k-n~/#) = O(n~*/#), even when conditioning on the evef ;1 &;.
That is,

Pr (C:i ﬂ 3i/ §O(n_l/8)
ireli-1]

We can now bound

Pr[é’] < I_I Pr gi m Ei/ :n’Q('Og”)
iell] i'efi-1]

O]

We can now complete the proof bémma 3.4 By Claim 4.2 if y is a central path from a leaf to the
root of ®, theny is notk-unbalanced (in¥) with probability of at mosn—2(°9"  The number of paths
from a leaf to the root of® is the same as the number of leaveshirwhich is smaller thamé'°9" (and
we assumed thatis small enough). Hence, by the union bound, with probability of at least £(09n)
all central paths from a leaf to the root$farek-unbalanced, that is, the formuis k-weak.

5 Multilinear- NC; # Multilinear- NG

In this section, we present our construction for a multilinear polynofniaht has polynomial-size mul-
tilinear circuits and doesn’t have polynomial-size multilinear formulas. Let us start with some notation
and concepts needed to defihe

Let [n] = {1,...,n}. For everyi, j € [n] such thai < j, denote byi, j] the interval of[n] starting at
i and ending af, that is,[i, j] = {i,i+1,...,j}. Denote bys the set of all such intervals, including the
empty interval (which is denoted by 0). Faxr s, € 8, such thaty, s, are disjoint and, is consecutive
to s1, denote bys; o s, their concatenation, that is,sf = [i, j|, ands, = [j + 1, j'] thens; o5, = [i, j'].

Denote byJ the set of (ordered) pairs of disjoint intervalsSinthat is,

T={(s1,%2) €Sx8 : 5N =0} .

Forty,t; € 7, such thatt; = (S1,1,S12),t2 = (S2,1,%,2), and such thas; 1,S12,5.1,52 are all disjoint
andsp 1 is consecutive tg; 1 andsy » is consecutive tg; o, denote by ot, their pairwise concatenation,
thatis,tyoty = (Sp1091,S120%2) € T.

For everys € S, denote byl (s) its length (i. e., the number of elements in it). EeE (s1,%) € T,
denotel (t) = I(s1) +1(s2). Fort = (s1,%) € T, defineL(t) = I(t) if both s1,s, are non-empty, and
L(t) = 0.75-1(t) if either s; or s, is empty. (We will use_(t) as a measure for the “size” of For
technical reasons we wainto be considered smaller if eitheror s, is empty).

SWe think of the empty interval as consecutive to every interval, and every interval is consecutive to it.
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Forty,to,t3,t € T, such thatf; = (S11,512),t2 = ($21,%,2),t3 = (S3.1,S3,2),t = (S1,52), we say that
{t1,t2} is apartition of t if {s11,512,51,%2} IS a partition ofs; Us, as sets. We say that the par-
tition is properif t =ty oty, andl(ty),l(t2) > 0. In the same way{t;,tp,t3} is a partition oft if
{s11,51.2,92.1,5.2,%,1,S32} IS @ partition ofs; Us, as sets. The partition is propertif=t; oty ots,
andl(t1),l(t2),l(t3) > O.

For a functionA: [n] — {1,—1} and fors € §, denote byA(s) the sum ofA on the elements ia. In
the same way, fare T, denote byA(t) the sum ofA on the elements in the union of the two intervals in
t. We say thaf is balanced os € § if A(s) =0, and in the same wagis balanced ohe T if A(t) =0.
Denote byB the set of alt € 7 on whichA is balanced, that is,

Ba={tcT : Alt)=0} .

Obviously, the lengtlh(t) of everyt € Ba is even.

For our proof, we will need the following technical lemma. Roughly speaking, the lemma states that
anyt € B can be partitioned into three significantly smaligt,,t3 € Ba. We defer the proof of the
lemma toSection5.5.

Lemma 5.1. Let A be a function A[n] — {1, —1}. Lette Ba be such that(t) > 2. Then, there exist
t1,t2,t3 € Ba, such that{ty, to,t3} is a partition of t, and I(t;), L(t2), L(t3) < 0.75-L(t).

For anyt € T, such that (t) is even, denote b{(t) the set of allty,t2,t3}, such thatts,to,t3 € T,
and{ty,ty,t3} is a partition oft, andl (t1),l(t2),l (t3) are even, andl(t;),L(t2),L(t3) < 0.75-L(t).

5.1 The construction

We will now define our multilinear polynomidl (with coefficients in{0,1}), such that over any field,

can be computed by a polynomial-size multilinear circuit and cannot be computed by a polynomial-size
multilinear formula. f will be defined over the set of variabl&s= {xi,...,x,} (wherenis even) and a

set of (auxiliary) variables

X' = {)q,tl,tz-,ts}t,tl,tz,tgeT :
That is, for everyt, ty,tp,t3 € T we have an (auxiliary) variablg, . ... Note that the total number of
auxiliary variables is polynomial in.
f will be defined in the following way. For evetye T, such that (t) is even, we will define a
multilinear polynomialf;. We then define

F=T(mo -
We define the polynomial§ by induction onL(t):
Case 1L(t) =I(t) = 0. We define in this casd; = 1.

Case 20 < L(t) <2. Sincel(t) is even/)(t) = 2. Hence, the union of the two intervalstioontains two
indices. Denote these indices byj;. We define in this case,

fr =X, - X, +1 .

Note that for the two possible partitions pf,, x;, } into {y1} U {z; }, the partial derivatives matrix
of f; is the identity matrix of size 2 and is hence of rank 2 (i. e., full rank).
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Case 3L(t) > 2. Sincel(t) is even/(t) is at least 4. We define in this case,

ft - Z X{,tl,tz,t3 . ft]_ ° ftz . ft3 .
{ta,t2,ta}eP(t)

Observe that (by the inductive definition) for afty,t,,t3} that give a partition of, the polyno-
mials fy,, fi,, f;, depend on disjoint sets of variables. Hence, since we only sum{tiver, t3} that
give partitions ot, it follows by induction that the polynomid} is multilinear.

5.2 Upper bound

The inductive definition off gives a syntactic multilinear circuit fof. Note that since we defined an
arithmetic circuit to be of fan-in (i. e., in-degree) 2 (sgectionl.1), we need to replace the sum in the
definition of eachf; by a tree of depti®(logn) of sum gates (of in-degree 2).

The final circuit is of size polynomial in, since the size df (and hence also the size Xf and the
size of P(t) for everyt € 7) is polynomial inn.

The circuit is of depthO(log?n), since in the definition off, we only sum over{ty,ty,t3} with
L(t1),L(t2),L(t3) <0.75-L(t) and sinceL(([n],0)) < n. (Note that this gives a depth @f(logn), but
since we replace every sum by a tree of dépftogn) of sum gates we get another factor@fiogn)).

Corollary 5.2. Over any field~, the polynomial f (as defined above) can be computed by a polynomial-
size syntactic multilinear circuit of depth(@g?n).

5.3 Lower bound

We will now show that any multilinear formula fdr, over any field F, is of siza®(°9", For the proof,
we useCorollary 3.8

Letn=2m. Let G be a field extending F, such that the transcendental dimension of G over F is
infinite, that is, G contains an infinite number of elements that are algebraically independent over F.
Define A : X’ — G to be such that the variables Xi are mapped to elements that are algebraically
independent over F.

Let A be any partition of the variables X into {y1,...,Ym} U {z1,...,zn}. Denote byfux A the
polynomial f after substituting in every variable iK' the value assigned to it b¥ and after replacing
every variable inX by the variable assigned to it 8y

Claim 5.3. Over the fieldG,
RankMy, ) =2" .

Proof. In this proof, the Rank function is always taken over the field G. For simplicity, we denote in
this proof byg the polynomialfy a, and for everyt we denote byg: the polynomialf; 4 A (i. €., the
polynomial f; after substituting in every variable i/ the value assigned to it by and after replacing
every variable irX by the variable assigned to it [y).

Define the functiorA: [n] — {1,—1} by A(i) = 1 if A(X) € {y1,...,Ym} andA(i) = —1 if A(x) €
{z1,...,zZm}. For simplicity, we denote the s&t; also byBa. We will prove by induction or.(t) that
for everyt € Ba,

RankMg ) > 2/V/2
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ForL(t) =I(t) = 0, we definedf; = 1. HenceMy, is the 1x 1 identity matrix and its rank is 1. For

0 < L(t) <2, we know that(t) = 2, and we defined; = x;, - Xj, + 1. Sincet € B, the matrixMg, is the
2 x 2 identity matrix and its rank is 2.

ForL(t) > 2,
fe = % Xtitote ™ Tt fp Frg
{t17t2.,t3 GT(t)

o= Z A (Xt tot) OOt Oty
{tl,tz,tg ET(I)

Hence,

and byProposition 3.1

Mg, = Z A/(X{7t1~127t3) ’ Mgtl~92~93 :
{tl,tz,tg}eﬂ)(t)

Therefore, since ever (xy, +,,) is algebraically independent (over F) of all the other elements in the
domain ofA’ and all the coefficients that occur in any of the matrices in the®’sum

RankMg) > max RankKMgy g .g.) -
« gt)_{t17t2=t3}€93(t) K G G 9‘3)

By Lemma 5.1 there existy, 2,3 € Ba, such that{t],t3,3} € P(t). Thus, byProposition 3.2and by
the inductive hypothesis fdt, >, {3,

RankMg ) = RankKMg; ¢ ¢, ) = RanK Mg, ) - RankKMg ) - Rank Mg, )
> 202, l(0)/2 lf)/2 _ Jl1)/2

Since this is true for everye Ba, we can apply it td = ([n],0) € B and get
RankMg) > 2" .
SinceMyg is a matrix of size 2 x 2™, we actually have an equality in the last formula. O

Corollary 5.4. Over any field~, any multilinear formula for the polynomial f (as defined above) is of
size ri2logn)

Proof. Follows immediately fronCorollary 3.8andClaim 5.3 O

5.4 Proof of Theorem 1.1

Theorem 1.Xollows immediately fromCorollary 5.2andCorollary 5.4

5More preciselyA'(X 1, 1, 1,) is transcendental over the field F extended by every other element in the dondiriTbiat
field obviously contains any coefficient that occurs in any of the matrices in the sum.
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5.5 Proof ofLemmab.1
Before giving the proof oLemma 5.1 we will need to prove two other lemmas.

Lemma 5.5. Let A be a function A[n] — {1,—1}. Lett= (s1,%) € Ba be such that(t) > 2 and
[(s1),1(s2) > 0. Then, there exisitt, € Ba, such that{t,t,} is a proper partition of t.

Proof. Lets; = [i1, J1], S2 = [i2, J2]. Sincet € Ba, we haveA(sy) +A(s2) = 0. If A(s1) = A(sz) = 0 then
we can defing; = (s1,0), t2 = (0,s2). Otherwise, we can assume w..o.g. thés;) is negative and
A(sp) is positive.

If A(il) 75 A(iz), we can defing; = ([il,i]_], [iz, iz]), = ([il—l- 1, j]_], [iz—l— 1, jz]) Otherwise, we can
assume w.l.0.g. that(i1) = A(i2) = 1.

SinceA(sy) is negative and\(i1) = 1, there must exisf’ € s, such tha#\([i1, j']) = 0. We can then
definet; = ([i1, j'],0), t2 = ([J’ + 1, j1],S2). Since we requiret{t) > 2 andl(s1),l(s2) > 0, we have in
all cased (t1),1(t2) > 0, and hencéty,to} is a proper partition of. O

Lemma 5.6. Let A be a function A[n] — {1,—1}. Lett= (s1,%) € Ba be such that(t) > 2 and
[(s1),1(s2) > 0. Then, there exisitty,t3 € Ba, such that{ts,to,t3} is a partition of t, and

1. L(ty),L(ts) < 0.5-L(t).
2. L(tp) < 0.75-L(t).

3. I(tz) <max(l(s1),!(s2))-

Proof. First note that sinc&(s;),l(s) > 0, we have_(t) =I(t), and sincd(t) > 2 and is evenl_(t) =
I(t) > 4. We will describe a procedure for findigty, t3 with the required properties.
We start witht; = (0,0), f; = (s1,,) andfz = (0,0). Note that ={; of, ofs.

Claim 5.7. Let t},t},t; € Ba be such that t=t] ot, ot;. Assume that(t}),l(t;) <0.5-1(t) and that both
intervals in {, are non-empty, andt}) > 2. Then, there exis{'{t5,t5 € Ba, such thatt=t ot5 otf, and
1(t),1(t§) <0.5-1(t), and I(t5) < (t}).

Proof. By Lemma 5.5(applied tot}), there existy, f; € Ba, such thafi;, i3} is a proper partition off,.
Sincet =t} ot) ot} and since) =1 ofs, we have =t} ofj ofz0tj.

If 1(t)) +1(f1) < 0.5-1(t) then we can defing =t] ofy, t) =3, t§ =t5. Otherwise](f3) +1(t5) <
0.5-1(t), and we can defing =t;,t} =11, 1§ =fz0t3.

Since{fs,t3} is a proper partition of,, in both case$(t}) < (t}). O

We now continue with the proof dfemma 5.6 We applyLemma 5.7ont; = f1, t, =, t; =15,
and we substitute (i. e., redefirlg)=t}, f, =tJ, {3 =t5. We keep applyinglaim 5.7and substituting
in f1,{, {3, until the conditions ofClaim 5.7are not satisfied bi},{;,{3, namely, eithet(f,) < 2 or one
of the intervals irf; is empty. (Note that the process must stop bechisekeeps decreasing.) At this
point we can defing = fy, t, =, t = 3.

Sincety,t,t3 are the output ofClaim 5.7 t,tp,t3 € Ba, and {ty,tp,t3} is a partition oft, and
L(t1),L(t3) <0.5-1(t) =0.5-L(t). Itremains to prove that(t;) <0.75-L(t), andl (tz) <max(l(s1),l(s)).
Recall that there were two possibilities: eitthép) < 2 or one of the intervals ity is empty.
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In the first casel-(t2) <I(t2) < 2. SinceL(t) =1(t) > 4, we have in the first cask(t;) < 0.5-L(t),
andl (t2) <0.5-1(t) < max(l(s1),l(s2)).

In the second casé(ty) = 0.75-1(tz) < 0.75-1(t) = 0.75-L(t). Since the non-empty interval &f
is a sub-interval of eithes; or s, we havd (t2) < max(I(s1),l(s)). O

Proof ofLemma 5.1 Lett = (s1,%). If I(s1),1(s2) > 0, then the proof follows byemma 5.6 Other-
wise, one of the intervals;, s, is empty. W.I.0.g. assume that is empty. Then, sincec B, we
know thatl (s;) = I (t) is even. Partitiors, into two intervals{s),s,} with I (s}) =1(s,) = 0.5-1(s). The
proof now follows by applyind.emma 5.60ont’ = (s, s,) as follows.

Note thatl (t) = 0.75-1(t) = 0.75-1(t') = 0.75-L(t’). By Lemma 5.G&here exist;,ty,t3 € Ba, such
that {t,to,t3} is a partition oft’ (and hence also df, andL(t;),L(t3) < 0.5-L(t") < 0.75-L(t), and
L(t2) <I(t2) <max((sy),l(s,)) =0.5-1(t) < 0.75-L(t). O
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