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Abstract: We construct a sequence of gropg and explicit sets of generatoYs C Gy,
such that all generating sets have bounded size, and the associated Cayley graphs are all
expanders. The group; is the alternating groupy, the set of even permutations on the
elements{1,2,...,d}. The groupG, is the group of all even symmetries of the rooted
d-regular tree of depth. Our results hold for any large enough

We also describe a finitely generated infinite grd@sy with generating seY., given
with a mappingf, from G, to G,, for everyn, which send¥., to Y. In particular, under the
assumption described abow&, has property(t) with respect to the family of subgroups
ker(fn).

The proof is elementary, using only simple combinatorics and linear algebra. The re-
cursive structure of the groups, (iterated wreath products of the alternating gra\g)
allows for an inductive proof of expansion, using the group theoretic analogue (of Alon et
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al., 2001) of the zig-zag graph product (Reingold et al., 2002). The basis of the inductive
proof is a recent result by Kassabov (2005) on expanding generating sets for thédgroup
Essential use is made of the fact that our groups havedhanutator propertyev-
ery element is a commutator. We prove that direct products of such groups are expanding
even with highly correlated tuples of generators. Equivalently, highly dependent random
walks on several copies of these groups converge to stationarity on all of them essentially
as quickly as independent random walks. Moreover, our explicit construction of the gen-
erating set, above uses an efficient algorithm for solving certain equations over these
groups, which relies on the work of Nikolov (2003) on the commutator width of perfect
groups.

1 Introduction

1.1 Expander graphs

Expanders are graphs which are sparse but nevertheless highly connected. Expanders graphs have been
used to solve many fundamental problems in computer science, in topics including network design (e.qg.
[40, 41, 1]), complexity theory @9, 44, 48]), derandomization 36, 18, 19]), coding theory (§5, 46]),

and cryptography {[5]). Expander graphs have also found some applications in various areas of pure
mathematics, such as topology, measure theory, game theory and group theorg1e3@, 16, 31)).

Standard probabilistic argument89) show that almost every constant-degreed) graph is an
expander. However, most applications demand explicit constructions. Here we take the most stringent
definition of explicitness of an infinite family of graphs, requiring that a deterministic polynomial time
algorithm can compute the neighbors of any given vertex, from the vertex name and the index of the
graph in the family. This challenge of explicit construction led to an exciting and extensive body of
research.

Most of this work was guided by the algebraic characterization of expanders, develop&dir?].

They showed the intimate relation of (appropriate quantitative versions of) the combinatorial (isoperi-
metric) notion of expansion above, to the spectral gap in the adjacency matrix (or, almost equivalently,
the Laplacian) of the graph. This relationship is tight enough for almost all applications (but there are
some exceptions, e.g. seéxd] 10]).

Using this connection, an infinite family of regular graphs is defined to be an expander family if
for all of them the second largest eigenvalue of the normalized adjacency (i.e. random walk) matrix is
bounded above by the same constant that is smaller than 1.

This algebraic definition of expanders by eigenvalues naturally led researchers to consider algebraic
constructions where this eigenvalue can be estimated. The celebrated sequence of3gapdrs,[

3, 20, 29, 33, 35 provided such highly explicit families of constant-degree expanders. All of these
constructions are based on groups, and their analysis often appeals to deep results in mathematics.

The algebraic mould was broken recently #2][ where a simple, combinatorial construction of
constant-degree expander graphs was presented. The construction is iterative, generating the next graph
in the family from two previous ones via a novel graph product zZilgezagproduct. This product was
proved (using simple linear algebra) to simultaneously keep the degree small, and retain expansion.

THEORY OF COMPUTING, Volume 2 (2006), pp. 91-120 92


http://dx.doi.org/10.4086/toc

ITERATIVE CONSTRUCTION OFCAYLEY EXPANDER GRAPHS

Thus the iteration process need only be provided with an initial, fixed size expander “seed” graph, from
which all others are generated. The required parameters of the seed graph are easily shown to hold for a
random graph (which suffices for explicitness - it is of constant size), but it is also easy to construct one
explicitly.

Our main result in this paper is a similar iterative construction of expan@mgdeygraphs (which
we turn to define next) from one initial “seed” Cayley graph. In our case, the seed Cayley graph is
based on the groufy, the group of even permutations on the &e®2, ..., d}. In a recent breakthrough,
Kassabov22] explicitly constructed a bounded-size, expanding generating séfavhich yields the
seed expander Cayley graph we need.

Our construction may be seen as another step in exploring this fundamental notion of expansion, and
its relations to yet unexplored mathematical structures. It also further explores the power of the zig-zag
product in constructing even stronger expanders. It was already si@Mmét it can yield expansion
beyond the eigenvalue bound, and is shown here to yield Cayley expanders.

1.2 Expanding Cayley graphs

For a finite grougH and a (symmetric) set of elemeritsn it, the Cayley grapl&(H; T) has the elements

of H as vertices, and edges connect a pair of vertighsf their “ratio” gh~t is in T. We remark that

while most applications do not require the expanders to be “Cayley”, the recent paperems to
essentially require Cayley expanders to achieve nearly linear-sized locally testable codes (LTCs) and
probabilistically checkable proof (PCPs).

Many of the algebraic expander constructions mentioned above are Cayley graphs. In all of these, the
groups in question are linear matrix groups over finite fields, and their expansion follows from celebrated
results in mathematics, including Kazhdan'’s work on Prop&rfg5], Selberg’s 3/16 theorerd ], and
the resolution of the Ramanujan conjecture of Eichler, Deligne and Igusa (startiti@g])inl{ should be
noted that for some of the other algebraic constructions elementary proof of expansion exist, using only
a discrete Fourier transforra().

For other natural families of groups the question was considered both by mathematicians and com-
puter scientists. For example, for Abelian groups it is easy to see that any set of expanding generators
has to be at least logarithmic in the size of the group. Thus they cannot provide expanding Cayley graphs
of constant degree (a more general result appea$ih Lubotzky and Weiss generalized this negative
result for all solvable groups of bounded derived len@®j.|

Understanding which natural families of groups can be made expanding (with a fixed size generating
set) is a basic question, and little progress was made over the foundational results above in the last 15
years. However, in the last year several breakthroughs were made by Kassabov and IRK@8y24].

These results suggest that all the simple groups may have fixed size expanding generating sets. Of
particular interest to our work is the family of symmetric groups (of all permutations). Much work has
been devoted to analyzing the expansion of this group under a variety of generating sets in the context
of card shuffling (e.g. sed.], 27]). However, in all these papers the generating sets are huge, and did
not provide a clue to the status of this problem. In a recent breakthrough, Kas&apshrdwed that the
symmetric groups indeed have explicit, fixed-size expanding generators, independent on the group size.

The possibility that the zig-zag product and iterative construction may be used for Cayley expanders
was first revealed ind]. They discovered that the well-knovwgemi-directproduct on groups may be
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viewed (roughly speaking) as a special case of the zig-zag product of graphs. More precisely, the zig-
zag product of two Cayley graphs, with certain important restrictions on the structure of their generating
sets, is a Cayley graph of the semi-direct product of the associated groups. Thus one can generate larger
Cayley expanders of small degree from smaller ones. This observation was used to show that expansion
is nota group property — in some groups certain constant size sets will expand, while others will not.

This Cayley graph version of the zig-zag theorem raises the hope that, given a “seed” expander
Cayley graph, one can obtain a sequence of expander Cayley graphs via an iterative process using the
zig-zag theorem. However, unlike the case of unstructured graphs, the restrictions on generators alluded
to above for applying the zig-zag product on Cayley graphs, make iterations a highly nontrivial (and
illuminating) task. In B4] such a construction was given, which falls short of the task at hand on two
counts. First, the generating sets (and hence the degrees) of the groups in the family are not of constant
size, but rather grow slowly (roughly like |6@f the group size). Second, these generating sets are shown
to exist via a probabilistic argument, hence the resulting family is not explicit. Still, this construction
makes no assumptions, as the seed Cayley expander for the iteration is easily seen to exist.

In this paper we fix both problems. We give a sequence of gr@pand explicit generating sets
Y, for eachG, such that the Cayley graplX G, Ys) are expanding. MoreoveY, as bounded size,
independent ofi. Actually, we will later on see that the generatisare consistent with each other: In
the natural projection 0B, 1 to Gy, the sety,, 1 projects to the séx;.

The technique developed yields some results which do not require a seed Cayley graph at all. We
show how to obtain an explicit sequence of expan@ebreier graphs(The novelty is in the explicit-
ness, since byl[7] every regular graph with even degree is a Schreier graph). We then use the Schreier
graph sequence to construct a sequence of expabi@a@rswhich each graplX,.; is a lift of Xy, by
noticing that in our Schreier graph sequence each graph is actually a lift of its predecessor (lifts are
defined inSection9).

1.3 Our construction

Our groups are completely different from most groups previously used in this area. Indeed, they are very
natural combinatorial objects. L&{d, n) denote thel-regular tree of depth. The group of symmetries
of this tree allows permuting the children of every internal node arbitrarily. Thus every element of this
group may be described by a mapping of the internal nodes to the symmetricRyaigscribing how
to permute the children of every such node. Group product of two such elements is simply performing
the first set of permutations at every node, and then the next set. Our gbqugre subgroups of all
symmetries, allowing onlgvenpermutations at every internal nodeTfd,n). This natural restriction
avoids a huge Abelian quotient that would have rendered expansion impossible, as the group would
not even be generated by a constant number of generators. Our method of proof (sketched below) is
elementary, using only linear algebra. All other known proofs use representation theory of the groups
involved, and in most cases much deeper results as well.

There is a very natural inductive definition of the groups G is the alternating groupy of
all even permutations od elements (and is essentially the “seed group” of our constructiGn).1
can be obtained fromd copies ofG,, and one copy ofy acting on them simply by permuting the
copies. Formally, this is called a wreath product, dendgd; = G, Ag, and is a special case of a
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semidirect product, giving equivalent($,,1 = (Gn)? x Ag. Our assumption gives a small expanding
set of generators foky, and by induction we have such a set &y.

How does induction proceed? Naturally, we would like to use the zig-zag theorem for the semi-direct
product B, 42]. The technical requirement alluded to above is simply that we find an expanding gener-
ating set for(Gy,)¢, which need not be small, but must be an orbit under the actidg,afiven a (small)
expanding generating séifor G,. A natural candidate for such an orbit is all (even) permutations of the
balanced d-vectqrone which has every one of the element¥pbccurring the same number of times
(if |Yy| dividesd). It is the largest possible orbit, and the projection of a random element of the orbit to
any small subset of the coordinates is (almost) a random independent elervgimt each coordinate.

We now turn to study the second eigenvalue of the Cayley gra®)f under these generators. The
associated linear operator acts on the space of real functiof@9h Luckily, this space of functions
is simple to describe - it is thé-fold tensor product of the same space &y. What is not so lucky is
the dependence between the coordinates of a balanced vector. Inde&, eeh Abelian, this orbit
would not even be generating (i.e. the graph would not be connected). Here our special group structure
is important. A key fact (proved by NikoloWB[]) is that every element i, is a commutator. Construct
a new generating s&t by adding toY,, for each of its elements, the constituents of its representation
as a commutator. We use Nikolov’s proof to actually give a polynomial time algorithm for finding this
representation. Now take the orbit of all balanced vectors %yt be the generating set foBn)¢.

How can this revision take care of the dependencies? A simpler setting, to which we reduce our
analysis, is the following Cayley graph. The group is sim{f4)2, namely only two copies o,.

The generators are all paifg,g~*) for all g € Y,. Thus, there isompletecorrelation between the two
coordinates. The key point is that, using the special structuié,ofith positive probability a short

word in one of the two components will vanish, while in the second it will give an original generator of
Yy, thereby decoupling the dependence of the two components. So, quite surprisingly, this Cayley graph
on two copies is expanding despite the complete correlation (it is a nontrivial exercise to even establish
connectivity of this graph — note that it wouttt be connected haG, been Abelian, or if we took
instead the pairgg,g) for any groupGy). This construction (which we feel is of independent interest) is
quite special and mysterious, and naturally the description above hides many essential details. Still, it is
the heart of the matter.

Form > n there is a natural restriction mdpy, — G, - given a symmetry of the tree with depth
m consider its action on the subtree with deptlvith the same root. As we shall see, the generating
setYy is mapped toY, under this restriction. This gives rise to an infinite “limit grou@: given
with a generating set, and restriction map$, : G. — G, where f,(Yo) = Yn. In particular, under
the assumption oAy, the groupG., has propertyt) with respect to the family of subgroups kéy)
(Lubotzky’s property(t), a “baby” version of Kazhdan’s property (T), is definedSaction8).

1.4 Organization of this paper

In Section2 we define expander graphs and Cayley graphs, and present some useful reSeitsionB

we define the sequence of groups we useSdition4 we describe the expanding generating sets, and
prove the mairTheorem 4.1 that they are indeed expanding - by induction. The proof is based on a
main lemma Theorem 4.5 The lemma gives an expanding generating set for the g&Sugiven an
expanding generating set f@& (under certain conditions oB). Finally, in Section6 we present an
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algorithmic version of Nikolov's theorem, that every element in our family of groups has a commutator
representation that can be found efficiently.

We then turn to some corollaries of the main theorensduation7 we explicitly construct a sequence
of expanding Schreier graphs, free from the seed graph on the alternating grédgction8 we give
generators for a subgroup of the symmetry group ofrfiaite rootedd-regular tree. These generators,
when restricted to thiénite rootedd-regular tree with depth, generate an expander Cayley graph on the
(alternating) group of symmetries of this finite tree. As a corollary we deduce that this infinite group has
Lubotzky’s Property ) with respect to a natural infinite family of normal subgroups. TheBéntion9
we combine the previous two results to obtain a sequence of expanding graphs each of which is a lift of
the previous one.

2 Preliminaries

2.1 Graphs, eigenvalues and adjacency matrices

All graphs discussed in this paper are undirected, regular graphs. We allow multiple edges and self
loops, so graphs are best understood as symmetric nonnegative integer matrices with a fixed row-sum,
called thedegree For a graphX, we letV (X) denote its set of vertices aldX) its (multiset of) edges.

Let X be ak-regular graph, ant! = M its normalized adjacency matrix (divide the adjacency
matrix by the degrek to make it stochastic). We denote byX) the second largest (in absolute value)
eigenvalue oM. Thespectral gapof the graph is - A (X).

LetW be the vector space of real functions on the\§gX), with its standard., inner productMx
defines a linear operator Ol For f € W, the value of the functioM«(f) € W on a vertexx is the
average value of on all the neighbors of (counted with multiplicities).

LetW, be the one-dimensional subspace consisting of the constant functions, #hddetthe or-
thogonal complement. Since the constant functions are eigenvectdrsafresponding to the (largest)
eigenvalue 1, then

() = max [ Mw /|w]

where||w|| is theL, norm ofw.

Definition 2.1. An infinite family of graphsX, is called anexpander family if A(Xp) < u for some
u < 1independent af. The family is said to be (stronglgxplicitly described, if there is a polynomial
time algorithm which, on input and the name of a vertexin G, (in binary), outputs the neighbors of
vin Gp.

We will use the following two simple results, which describe how taking the tensor power of a graph,
and taking the power of a graph, affect the 2nd eigenvatue

Claim 2.2. Let X = (V,E) be a graph, and let M be the normalized adjacency matrix. Let;M
(Mx)®9, and defingj to be the graph (on the vertex setMvith normalized adjacency matrixgv Then
A(Y) = A(X).

Observation 2.3. Let X = (V,E) be a graphMy the normalized adjacency matrix avtl; = (Mx)X.

LetY be the graph (on vertex s&) with normalized adjacency matrMy. ThenA(Y) = A (X)K.
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We will use the following convexity result later: If the spectral gdp- A(Y)) of a graphy is not
too small, andj is a large subgraph &€ (on the same vertex set) then the spectral gl @falso not
too small.

Claim 2.4. LetY = (V,E1) C X = (V,Ey) (i.e. E1 C Ep) be s- and t-regular graphs respectively on the
same vertex setV. Then

1-A(X) = 2(1-A(Y)) -

We will later need the following result on vectors

[l )]

Claim 2.5. If for some vectors wwi, ..., w, all with norm1,

L
(A0 y wl<1-e

then )
(l/L)'.ZlHWOJFWiH/ZS l1—¢/4.

2.2 Groups and the wreath product
2.2.1 Cayley graphs

Let G be a finite group. We will represent groups multiplicatively, and 1 will denote the identity element
of the group. LetY be a multi-subset o6. We will always usesymmetricsetsY, namely the number
of occurrences ok andx~1 in Y is the same for every € G. |Y| will denote the size of the multiset
(counting multiplicities).

The Cayley graphC(G,Y) has vertex seG, and for every vertey € G andx € Y there is an edge
(g,0%). The graph CG,Y) is undirected (a¥ is symmetric) and igY|-regular. Forx € G let P be
the permutation matrix correspondingdge— gxin G. The normalized adjacency matrix ofG,Y) is
Yxey P/|Y|. We will also use the notatioBycy [P] to denote this average of operators.

Let W = W(G) be the vector space of functios — R as in the previous section. We will be
interested in the expansion properties of Cayley graphs on the @bButhe Cartesian product af
copies ofG. Note thatW/(GY) = W=d,

Observation 2.6. Let W, be the space of constant functions on the vertice&,0and letW, be its
orthogonal complement. L&t= (bs,...,by) be a lengthd vector in the alphabel||, L}, and letW; be

the vector spac@idzlwoi. Consider the spad&/®9, thed-th tensor power oV. The spac&V®? inherits

an inner product structure frol¥, where the inner product of two pure tensors is the product of the
inner products of the components of the tensors. The orthogonal decomp@gitio, +W, induces

an orthogonal decomposition

W®d — z VVB
be{]]. L}

to 29 subspaces by the distributive law for tensor products. Foxan@? the operatoP, preserves the
decomposition.
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Corollary 2.7. For any Cayley graph (Gd,\?), the normalized adjacency operatly_y [P preserves
the given decomposition of ¥¥, so

A(GY,Y) = maxmax|| E_[R(w w|| .
(@%,Y) = maxmax]| E [R(w) /[

That is, it suffices to bounfilE,.y [P«(w)]|| from above, for vectors w that are purely in one of these
29 — 1 subspaces.

The following two observations describe cases where we can ignore part of the coordinate3%f
when trying to estimat¢ E, v [P«(W)]||.

Observation 2.8. Letb = b1,...,bg whereb; =L fori <r andb; = || otherwise. Forv € V\It;:Wf‘r ®
W‘f’(d*r), the value of(w) does not depend oq, 1, .. ., X4

Proof. wis a real function orsY. The statement that € W5 andb; = || means thatv does not depend
on thei-th coordinate of its input. O

Observation 2.9. Let X ¢ GY be a set of group elements whose ldstr coordinates constitute some
fixed vectorx e GY~". Then for everyw € W9 the value of

I E [P (w)]|

XeX

does not depend on
Observation 2.3rom Section2.1translates nicely to the Cayley graph world

Observation 2.10.Let G be a groupY C G. DefineZ to be the set of all words of lengthin Y. Then
A(G,Z) = A(G,Y)k.

We end with an observation which simplifies the proof of explicitness for families of Cayley graphs.

Observation 2.11. A family of Cayley graph<C(Gp, Yn) is explicit if there are polynomial time algo-
rithms in log|Gy| for

e performing group multiplication i,
e computing inverses ifs,, and

e computing the seY,.

2.2.2 Wreath products and the zig-zag product

Let A andB be finite groups. Assume th&8 C S, that is, it acts by permutations on the $ft=
{1,...,d}. Define thewreath product' A:B of A andB to be the group whose elements are vectors
(a1,...,84,0), whereg; € Afor all i, ando € B. The group multiplication rule is

(al,...,ad,c)- (él,...,ﬁd,f) = (af(l)él,...,a,[(d)éd,or) .

IMore precisely, this is referred to as thermutationalwreath product in the literature.
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One can check that this defines a group structur&d The wreath product is a special case of a more
general construction - it is thgemi-direct producof A% andB, whereAd is the Cartesian product of
copies ofA. The group®A%, B are naturally embedded i B, and we will sometimes refer to elements
of A4 andB as elements o} B.

Let o c A, B C B be sets of generators. Suppaséas a special structure: it issingle B-orbit
This means that for some arbitramye «, the setx consists of all vectors obtained fraaby permuting
its coordinates by a permutation B1 We now define a segtin AiB by y= {xay| x,y € B}. One can
check thaty generateg\: B. The following theorem from4], following the zig-zag theorem o#p],
shows that if, f are sufficiently good expanding generators then 3o is

Theorem 2.12.[4] If « is a single B-orbit therd (A!B,y) < A (A%, «) + A (B, B).

Note that|y| = |8|?> depends only on the size #f while a could be large (it could be as large as
|B|). Also, it is easy to computggivena andf, as multiplications irA: B can be computed efficiently.

2.2.3 The commutator property

Let A be a group. Fog,h € A define thecommutator{g, h] to beghg*h~1. A has thecommutator
propertyif for every element € A there is a solution in the variablggy to the equatiom = [x,y]. (Note
that this is a stronger property than just the commutator subdfou being equal té\.) Nikolov [37]
proves

Theorem 2.13.[37] Let A be a group, and B & a group of permutations. If /8 have the commutator
property then so does¥B.

We shall need an algorithmic version of this theorem. For a gfgugpcommutator representation
algorithmgives, for an input € A, some paik,y € A such thata = [x,y].

Theorem 2.14. Let AB be as inTheorem 2.13 Suppose we are given commutator representation al-
gorithms for the groups M. Then we obtain such an algorithm for B. This algorithm calls the
algorithm on B one time, and the algorithm on A at most d times, and uses at ffthseX@a multipli-
cation operations on M. (The description of the algorithm appears in the proof of the theorem.)

We prove the theorem i8ection6.

3 Overview of the construction

In Section3.1 we will define our sequence of grou@. In Section4 we will show how to find gen-
erating subset¥,, C G, that give A(Gp,Y,) < 1/1000 with bounded sizév;|*. This will be based
on the assumption that there exists a small enough sifpsaft the alternating groupgy such that
A(Ag,Y1) < 1/1000.
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3.1 The family of groups

Definition 3.1. The groups in our construction are defined®y= A4 and, inductivelyG,.1 = Gnl Ag.

Another way to view the grou@, is as a subgroup of the full group of symmetries ofdheagular,
depthn tree (byd-regularity here we mean that each inner vertex dhaescendants). Each element
in the group of symmetries is uniquely defined by writing a permutation on each internal node of the
tree, indicating how the children of this vertex are permuted. In the sub@pali these permutations
should beeven The representation of an element@&f as a list of even permutations is polynomial in
log|Gn|. Multiplying two elements and inverting an element can be done in time which is polynomial in
the size of this representation

The following important corollary of heorem 2.14hows that for our groups, there is an efficient
commutator representation algorithm.

Lemma 3.2. If d > 5 then the groups Ghave the commutator property $ection2.2.3 Moreover, G
has a commutator representation algorithm that runs in time polynomialgtGy|.

Proof. G; = A4, and by B8] it has the commutator property. By induction, usifigeorem 2.13every
Gn has the commutator property. The existence of an efficient commutator representation algorithm
follows from Theorem 2.14Full details are given ilsection6. O

4 Main theorem

Theorem 4.1. Suppose that for some d there exists a set of generatarsA such thatd (Agq,Y1) <
1/1000and|Y;| < d%28/10%, Then there exist setg ¥ Gy such thatd Gy, Yy,) < 1/1000and |Y,| <
d¥/7/10%. Furthermore, ¥ can be computed in time polynomiallog|Gh|.

The graphsC(Gp,Yn) are the required sequence of Cayley graphs. TheYgatan be computed
efficiently, and we saw isection3.1 that group operations i, can also be computed efficiently, so
by Observation 2.1this is an explicit family of Cayley graphs.

The assumption of the theorem is true for very ladge

Theorem 4.2 (R2]). For every integer d> 0 there exists a subsetylbf the symmetric groupgSuch
that|Ug| < 10*" and A (S,Uq) < 1/1000

Corollary 4.3. Ifd > 10%° Then the conditions dfheorem 4.hold.

We will construct the expanding generatdfsC Gy, inductively. The basis of the induction is the
assumption in the theorem abdbi = Ay.

Let G = G,. We are giverY C G such thatA(G,Y) < 1/1000 andY| < d¥/7/10*. We want to
find a setr’ C G1Ag such thal (G2 Aq,Y’) < 1/1000 andY’| < d¥/7/10%C. We will useTheorem 2.12
The theorem requires an expanding generating seAfqwhich we already have), and an expanding
generating sef c GY which is a singleAg-orbit. Given any element of sudh Theorem 2.1produces
(explicitly) an expanding generating set 8t Aq = G 1.

Can we find an expanding, single-orbit, generating seGf# Here is a simple attempt that fails.
TakeT =Y9. The setr is expanding, a4 (G%,Y9) = A (G, Y) by Claim 2.2 Unfortunately)Y® contains
exponentially many\y-orbits. Another natural set to considerGf is the set obalanced vectors
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Definition 4.4. Let G be a group, andf C G. Ford > |Y|, defineY® to be the vectors iN¢ in which
everyu € Y appears exactlyd/|Y| ] times, and the rest of the elements are G. We call these vectors
balanced vectors Every two elements in the s¥t9 are equal up to a permutation of the coordinates.
Sinced > |Y| we may assume that the permutation is even. In other words, thé%es a single
Ag-orbit.

The sety@ looks promising, but is it expanding? Not always Gfis Abelian,Y@ does not even
generate @, since every element % has product of coordinates equal torli§ symmetric, and every
element ofY appears the same number of timesrif)). The groupsG, are far from being Abelian.
Indeed, every element @, has a representation as a commutator. It turns out that this property, along
with the existence of a small generating ¥efior G (assumed by induction) enables us to find a good
generating set fo&9. We will enlargeY somewhat to a set O Y, and see thax(¥ is expanding for
G

Definition 4.5. Let G be a group, and Ief C G. Suppose every elementc Y can be written as a
commutator inG, namelyy = aybyay *by, * for someay, by € G. Define

Y= U{ay byt byt ety byay U {1)

yeY
Y* is symmetric, andY*| < 7|Y]|.

Theorem 4.6. Let G be a group. Suppose that every element of Y is a commutator in GkleeNcbe
constants (to be chosen later). DefinéfaC G to be the multi-subset where every element of Y appears
c times. Define %= (c-Y)UY*, andA = A(G,Y). Ifd > k?-|X|” then

A (Gd, X(d)) < 0.01+ max{ (A + 7/C)7e’kc(1*/1)/106}

where X9 is the set of balanced vectors.

The proof is given irSection5. To get a feeling for the constants, note that the lakgendc are,
the better inequality we get in the theorekris large whenX is small.c is large whernX is much larger
thatY, sok gets smaller when gets larger. Nevertheless, it is not difficult to make both of them large
enough for our purposes.

Theorem 4.6s the required result for the inductive step - it remains to show that we can chdose
properly such that (G¢, X(9) is small enough forheorem 2.12

We proceed with the inductive step. We are given aYget G, of size at mosﬂYl\“ such that
A(Gn,Yn) < 1/1000. ApplyTheorem 4.Gwith ¢ = 10°,k = 10°). Then the conditions cfheorem 4.6
hold, and we obtain a s&t® ¢ GY such thath (G,X(¥) < 1/50 (just substitute ouk, ¢ in the theorem
to see this). Applyrheorem 2.120 obtain a subsé® C Gy, 1 of size|Y;|?, andA (Gp.1,P) < 1/1000+
1/50. DefineYy,1 to be the set of all words of length 2 . This is a set of sizeéY;|* and (by
Observation 2.104 (Gn1, Yn11) < (1/1000+ 1/50)? < 1/1000. This completes the inductive stefi]
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5 Proof of Theorem 4.6

The theorem appears Bectiond. LetG,Y, X, A be as defined ifheorem 4.6 We will use the notation
W = W(G) andW(G?),W defined inSection2.2.1 We need to prove that for evewyc W(GY) , such
that|lw|| = 1, at least one of the following upper bounds holds:

.
| E [R(w)]|| <001+A+— ,or (5.1)
xeX(d) C

| E [P(w)]| <0.01+eked-2/10 (5.2)
xeX(d)

We saw inSection2.2.1that it is enough to prove this fav € W5 whenb # {||}9. SinceX (@ is invariant
under permutation of the coordinates it is enough to prove the inequality for eveiy/™" ®V\/‘f@(d_r)
where 1<r < d (this isW; for bj =L for 1 <i <r andb; = || forr <i <d).

We split the proof to small and largecases. For smallwe will prove inequality .1), and for large
r we will prove inequality §.2).

Small r case Whenr < 0.1,/d/[X], the firstr coordinates of a random elementXt? are very
closely a random element X'. By Observation 2.8(w) only depends on the firstcoordinates of
X, sO it is enough to bounfiEycx: [B(w)]|| for w e W', By Claim 2.2 || Exexr [R(W)]|| < A(G,X)".
The worst case is when= 1. AsY C X we can useClaim 2.4to give an upper bound t&(G, X),
and we obtain inequalitys(1). This part is relatively easy, and we will not give a more detailed proof.
Notice however that the argument for smalorks foranygroupG, not only for our special sequence
of groups, and from the generating 3etve only used th& part - not they™* part.

Large r case Whenr is large the result is no longer true for any group (for any Abelian group there
exists anf € W24 such thatR,(f) = f for all y € Y(@). We will need theY* part of the generating
setX (recall that it is only defined when every element®fs a commutator). We will start with the
analysis of a different graph - the Cayley grap(G x G, {(y,y )|y € Y*}). We give a lower bound of
(1—A(G,Y))/21]Y*|? on the spectral gap of this graph $ection5.1 Afterward, inSection5.2, we
will give an upper bound ofiE, ) [P«(W)]|| using the spectral gap of this graph@nx G. This part is
again true for every grouf, not only our groups.

Notice that the spectral gap bound we get in @e G case is rather weak - much smaller than
the spectral gap of the original gragiG,Y). Whenr is large enough we are able to apply Bex G
result many times in parallel, amplifying the weaker upper boun@ inG. We will obtain the upper
bound 6.2).

5.1 Expansion ofG x G with correlated generators
Definition 5.1. Let G be a group, and l& C G be a subset db. Define

Y={(yyhlyeY}.

Theorem 5.2. Supposél (G,Y) < 1— ¢ for someeg, and that every element of Y is a commutator in G.
Then

o €
)<l ——
A(GxGY") <1 N2

THEORY OF COMPUTING, Volume 2 (2006), pp. 91-120 102


http://dx.doi.org/10.4086/toc

ITERATIVE CONSTRUCTION OFCAYLEY EXPANDER GRAPHS

We find Theorem 5.2yuite surprising. In the séf there iscomplete correlatiorbetween the two
coordinates, and it would seem that this correlation would prevent the graph from being an expander.
For example, ifG is Abelian andY generatess thenY does not even genera@x G, but only the
subgroup{(g,g~1) | g € G}. Also, for any groupG the set{(y,y) | y € Y} only generates the subgroup
{(9,9) | g € G}. In both cases the correlation in the generating set prevents the graph from being an
expander. We manage to decouple this correlation in the case of the special generatingvhetse
existence relies on the commutator propertyof

The key observation is that we can represent the elefyehtfor anyy € Y as a word of length 3
inY*. We prove this in the following observation.

Observation 5.3. Let Z be the set of words of length 3 in the 3t Then
C(GxG{(Y,)U(LY)}) CcC(CGxG,2Z) .

Proof. Recall that for every € Y the setr* contains the elementg, by, a, 'b, * wherey = a,byay by .
Observe that

(ay,a, 1)~ (by, by, ) - ((ay by ™), (ay ) ) = (1)
This gives the required representationnfl). We can obtair{1,y) similarly. O

It is easy to see that I€(G,Y) has spectral gap then the graplC(G x G,{(Y,1) U (1,Y)}) has
spectral gaE/2. We now have the decoupling we were looking for - the correlated generatizg set
contains the uncorrelated o€ 1) U (1,Y). More precisely, applZlaim 2.4to observatiorb.3, and
deduce that

Observation 5.4.C(G x G, Z) has spectral gap at least7|Y*|?.

Recall thatZ consists of all words of length 3 in the:. By Observation 2.10the spectral gap of
C(G x G,Y*) is at most 3 times smaller than the spectral gap(@ x G,Z), and the theorem is proved.

5.2 ReductiontoG x G

We bound the averaggE, .y« [P(w)]|| from above in terms ok (G x G,Y*) from Section5. 1
Forx € X9 write x = (X1,X2,X) Wherexy, X, € G andx € GY9-2. By the triangle inequality,

Claim 5.5. For every we W®¢

I E [BRW] <

E ” (PX1-,X27>7+ PXz-,XlX) (W)/ZH .
xeX(d) xeX(d)

By Observation 2.¢he value of| (P, x, x+ Pox.x) (W) /2| only depends on the first two coordinates
of x. We therefore group together all tlxewith equalx;, x,, replacingx by 1, a(d — 2)-length vector
of 1's, and it is enough to bounBl, y ) || (P, x,. 1+ Pex,.1)(W)/2||. The number of times each pair
X1,X2 appears in the average above is proportional to the number of extensigpscofo a vector
(x1,%2,X) € X(@. As d is much larger than 2, the number of such extensions is nearly equal for every

pair X, X2, and we obtain the following:
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Claim 5.6. If d > 100X| then for every we W=d

B 1 (Baxext Poxd(W)/21< E (B, 1+ Ry 1)(W)/2]+0.01wi| .

xeX(d)

The Q01 above pays for the fact that the number of extensions is only nearly equal.
The following lemma bounds the RHS Gfaim 5.6

Lemma5.7.1f A(G,Y) < 1—¢ and r> 2 then for every ve W' @ W41

ce def

yg(zH(Pyl,yz,f‘i'Pyz,yl,I)(W)/ZH < (1—W)IIWII = 4wl

We prove the lemma iSection5.2.1
CombiningClaim 5.6andLemma 5.7wve obtain

E [PX(W)]H < (A+0.01)|w|

xeX(d)

butA is too close to 1. The problem originates fr@taim 5.5 where we partitioned the s¥t9 into
pairs based on the value of the first 2 coordinates. This partition turns out to be too coarse. We will use a
finer partition ofX(@ by looking at the first pairs of coordinates, for some properly chosenr. This
will amplify the bound taA!.
We now define this finer partition precisely. Udt < S be the subgroup (of sizé)2generated by
the transposition§2k — 1,2k) for 1 < k <'t, and group together the elemekts(x) | c € Hi}. When
t = 1 we get the grouping into pairs discussed above. The argument lead@ligite 5.6 shows the
following:

Claim 5.8. If 2t < 0.1,/d/|X| then for every we W&d

E_[Pays(w)] H +0.01 .

GEHt

R < &,

xeX(d)
The casé = 1 is Claim 5.6 However, the weak upper boundwve had fort = 1 amplifies taA'.

Claim 5.9. Suppose that for every wwfz QWed-2

1
E(PYLYZ,I—F Pyz-,YL,I) (W)H < AHWH .

yeX2

Then for every ve W2 @ W®d-2

E

BB, [Prnow]| <atw

oeH;

The notatiorL denotes a vector of length-d2 in the first inequality, and a vector of length-c2t in the
second one.
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Proof. The proof is by induction ot The case = 1 is the assumption of the claim. For gendral

ygﬂ;:@t O']GEHt [PG(V’I) (W)} H N zg(z O'GIEtfl Pc(l’l’y’I) [PZI’ZZ’I+ P22,21,I(W)] H
y€x2([71)

S Atilzg(z H (P21,227I+ PZz.,Zl,I) (W) H S At ”WH .

Note that in the second line abowec H;_1 acts on the vectoy - not on the first — 2 coordinates. The
first inequality follows from the induction hypothesis fidy_;. The second inequality follows from the
induction hypothesis fa;. O

We can now complete the proof usidgG,Y) < 1— ¢. Pick an integet satisfying

0.05/d/|X| <2t <0.1\/d/|X|<r .
Then by the claims in this section, farc Wj@r @W®4-T of norm 1,

ce

_ 2'104‘)('3) <0.01+exp(s—mors

) <0.014exp(—

E [PX(W)]H <0.01+ (1

—cte
xeX(@ 2-104X|? 106 )

We plugged in 2> 0.05,/d/[X] > 0.05k|X 3. This concludes the proof Gheorem 4.6or larger.

5.2.1 Proof ofLemmab.7

Let 7 be the spectral gap &(G x G,{(y,y 1) | y € Y*}). FromTheorem 5.2ve have for every €
W, @ W

5 Ry+(w] | < -2l 53)
In Lemma 5.7Ave want to bound
yg(ZH( Y1.Y2, l+ Y2.Y1, 1)( )/ZH (54)

from above, for everyy € W' @ W®(@-1),

We will start with the case = 2. We will bound 6.4) in terms of the LHS of%.3). In order to do
that, we will have to deal with the fact that the norm #3) appears outside the expectation, while in
(5.4) it appears inside the expectation ($aim 5.1Q. Also, the average irb(4) is overy € X2, while
in (5.3 the average is overe Y* (seeClaim 5.11). After completing the proof in the case= 2, we
turn to prove the lemma for geneid(Claim 5.13.

Claim 5.10. For every ue W, @ W

}(Py,l + Pry)(u)

E
2

<(1-7/4 .
E < (1—7/4)ul
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Proof. FromClaim 2.5and 6.3

E

§ <@=7/4)ul -

%(Pyﬁy,l +1)(u)

Applying the unitary operatdp, , to each element above proves the claim. O

Claim 5.11. For every ue W, @ W

E

uj .
E, Jui

1
E (waz + PY27y1) (U)

T
<(1-——
= 80\X|)

Proof. Let p be the probability that for a randome X2 we havey; € Y* andy, = 1. Thenp >
(1/2¢)-1/|X]| (asX =c-YUY* andY* is larger tharY). Using a convexity argument similar @aim 2.4
we see that

1 1
yg@ 5(Rayz +Rey ) (U)] < p'yg(* 5 (R +Pry) ()| + (1= p) - lul
T
<p-(A=7/A[ul+Q-pllull < (1= p7)ful < (1- W)HUII
which proveClaim 5.11 O
We have shown that for everye W, @ W
1 T € ce
E ||=(R R <(l-—— <(l-———— <(1l-—F—= :

The last step follows frony*| < 10/X|/c (which is true sinc&X = cYUY* and|Y*| < 10Y|).
We have almost completed proving the lemma. We have the right upper bound, lbut fof=2
instead of inW®d,

Claim 5.12. If there exists\ > 0 such that for every & W2

E [%(Pyl-,YZ + Ry, (U)]

yex?

\sz\uu

then for every we W2 @ W®(4-2)

1
3R+ Ry D] | < 21w

yeXx?

Proof. Writew € W' @ W21 asw = 5 u; @ v whereu; € W2 andv; € W2(4-2), such that the; are
orthogonal andlvi|| = 1. We have

2

1
< 2%|wi?

15’ [Q(Pyl,yziJr Ry D) (W)]

2 1
—E2 H 15 (Ruye  Raya) (W)

and the result follows sindg(X)? < E(X?) for any random variablX. O
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6 Proof of Theorem 2.14

The theorem appears Bection2.2.3

Remark 6.1. This section contains equations in groups. Constants in the equations will be written in
Greek letters. Variables will be written in small Latin letters. Vectors of legthe underlined.

LetC = A!B, whereAis any group an® C §. Given an element € C we look for a “commutator
representation algorithm” that solves the equatien[cy, ¢y := c1co¢1 ~1c L. By assumption we have
such an algorithm foA andB. The proof below extends Nikolov’s proof iB7].

Any elementy € A} B has a unique representatior= 8 - & with 8 € B, o € A%, so it is enough to
solve, for every paitf € B, a € A%), the equatiorB o = [byx, bay|. Now

[bl)& bZX] = [b1, bz] .xbzbflbglybilbglx_bIlbgly_bgl

wherex? = b~1xb. In our cased is simply a permutation of the coordinatesxdfy b € B ¢ ;.
We obtain a pair of equations:
B = [b1,by], and
o = XD D2 Py, Ty bty byt

By assumption there is an algorithm that solfges [bs,by]. Fix some solutiorb; = B1,by = Bo. It

remains to solve
o = xPB B BBy BB B

Sincex? is a permutation (depending @) of the coordinates of, the following lemma solves a more
general system of equations.

Lemma 6.2. For any four permutationsy, 6>, 63,64 € § and for anya = oy, ... ., ag € A%, the follow-
ing system of d equations, one for edck i < d:

11
O = Xo4(i)Yo2(1) Xo5(i) Yo (i)

has a solution algorithm that calls the commutator representation algorithm on A at most d times, and
does at most @l) operations in the group A.

The rest of this section is devoted to the proof of this lemma.
Definition 6.3. We shall refer to thex; asconstantsand to thexi,yi,xi‘l,yi‘l asliterals.

There ared constants anddtliterals in our system. An important fact is that each literal appears
exactly oncen the system.
Let us solve first in the case that all fogirare the identity permutation. The system in this case is:

oy = [X1,Y1]
a2 = [X2,Y2]
g = [Xd, Yd]
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In this case the equations are independent (no variable appears in more than one equation). Each equation
asks for a commutator representation tore A. We solve the system of equations by calling the
commutator representation algorithm fafor each equation separately.

The solution for generad; is by reduction to a system similar to the one we obtained foothe 1
case. As long as there are variables that appear in more than one equation, we will remove equations by
“Gaussian elimination,” until we obtain a system of independent equations. We will then translate each
equation to a commutator representation equation like the ones above.

As mentioned, each literal appears exactly once in the system.xiﬁJL do not both appear in the
same equation, then we can eIiminait,eq1 from the system by substitution (payi@ 1) multiplica-
tions inA). This reduces the number of equations in the system by 1. Repeat the substitution operation
until it is no longer possible. Notice that the property that each literal appears exactly once is preserved
along the way.

Claim 6.4. The substitution process ends witklld equations

=W WVvle{l... L}
where W is some word in literals and constants. The equations are now independent - every literal
appears in the same equation as its inverse, or they both do not appear in the system. O

We will now reduce this system tb commutator representation problems in the gréupThe
following lemma finds a “hidden commutator” in each of the wofds

Lemma 6.5. [37] In every W there exist gh € {1,2,...,d} depending on |, such that
W = Z1XgZoYnZaXy *ZaYp *Zs
where the Zare words in literals and constants from the word {fhey do not contain é(l,xﬁfl since

each literal appears at most once in the system of equations).

The proof is in B7]. Given that such a hidden commutator exists, it is easy to find one in time
polynomial ind by looking at all the literals appearing Wi (there are at mostd?of those). Substitute
every variable appearing in thi& by 1. This does not affect any other equation - the equations are
independent at this point. We obtain a new equation

& = G1xg8aynGaxg “Cayn s -

This is now an equation in two variableg, x, - all the other words are constants. This is almost a
“commutator representation” equation. Indeed, if the fjvare all equal 1, we obtain the equation

8 = [Xg, Yn|

which is solved by calling the commutator algorithm An For generat; we transform the “hidden”
commutator to a “real” commutator by changing variables. Define Tsxgs and & = yné, 265t
Observe that

& = C18a[%g, Yin] G382Gs -
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Rewrite this equation as

(6184) 1 81(836285) 1 = [Rg, 9] -

The LHS is some constant elementdnand the equation requests a representation of this element as
a commutator. We can find a solution by calling the commutator representation algoritAmTdre
solution is in the variableg, Vi, but this is easily translated to a solution in our original variakleg,.

How many operations did we use? We called the commutator representation algorAtatnmost
d times (one call for each final equation=W). We called the commutator representation algorithm
on B one time. We use®(1) multiplications inB, andO(d) multiplications inA (there wereD(1) per
either removing an equation or solving a final equation).

We can now deduceemma 3.2 Definem(n) to be the cost (in bit operations) of multiplication in
Gn, and definee(n) to be the cost of computing the commutator representation of an elem@npt As
m(n+1) < (d+1)m(n) andm(1) = O(d?) we deduce than(n) < (d+1)™2.0(1). From the discussion
above we see tha{n+1) < (d+1)c(n) +m(n) - O(d) < (d + 1)c(n) +d"2.0O(1). This implies that
c(n) < d*-O(1) for large enoughd. Finally, as logGy| > d", Lemma 3.2ollows.

7 Expanding Schreier graphs

For a finite grouH, a subgroupd’ < H, and a (symmetric) set of elemeftsin it, the Schreier graph
Sch(H,H’,U) has vertex sel /H’ , and edgesgH’,ugH’) for everyu € U, resulting in aU|-regular
graph. IfH’ = {1} then ScliH, {1},U) is simply the Cayley graph &l,U).

In this section we prove an analogueTdfeorem 4.Xor Schreier graphs. Iiiheorem 4.iwe con-
structed a sequence of expanding Cayley graphs assuming the existence of a good “seed” Cayley graph.
Here we do the same for Schreier graphs. The difference here is that the “seed” Schreier graph is known
to exist by elementary arguments, and we do not rely on the strong theore&2d|.ofy [17], every
2d-regular graph is a Schreier graph, so a sequence of expanding Schreier graphs is implicit in any se-
guence of (even degree regular) expander graphs. However, it is generally hard to compute a Schreier
graph representation of a giverregular graph. In this section we explicitly provide the Schreier graph
representation of our graphs.

There is another way to describe Schreier graphs.H_bt a group acting transitively on a get
Define a graph Sdl,E,U) whose vertices arg, and whose edges afe ue) for allu € U ande € E.
Pick a vertexgy € E, and defineH’ = {h e H | hey = &), the stabilizer ofy. The graph we defined on
E is isomorphic to ScfH,H’,U) by takinghe, to hH’. The following definition gives an example of
groups acting on sets. This example will be the basis of a construction of expander Schreier graphs. To
fix notation, we redefine our basic objects:

Definition 7.1. Let Tn 4 be the rootedi-regular tree with depth, let Sym(n,d) be its group of symme-
tries, and lek, be the set of leaves @, 4, on which Syntn, d) acts naturally.

Expansion of a Cayley graph implies the expansion of all its Schreier graphs:
Claim 7.2. LetH be agroup , let H< H be a subgroup and let|d G be a subset. ThelScHH,H’,U)) <
A(C(H,U)).
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Proof. Letv: H/H’ — C be an eigenvector of the Schreier graph. Definél — C by v(h) = v(hH’).
Thenvis an eigenvector of (,U) with the same eigenvalue as O

In Theorem 4.1we constructed a sequence of Cayley graptG,CYn) whereG, is a subgroup of
Sym(n,d), and showed that it is an expander family under some assumption on the symmetric group
Ag, which is true for very largel. In light of Claim 7.2 the family SckGy, En, Y;,) is also a sequence
of expander graphs, under the same assumption. Below we construct expanding generatin@gets for
which are both simpler tha}, and do not require any assumptions (and work for much srdller

Reminder: for two group6, K, such thak < S, thewreath product GK has element&? x K and
multiplication rule

(917 M 7gd76) : (GJ.) A 7@(171‘-) = (gT(l)g]-? i "gT(d)gd7GT) °

Elements ofGY are naturally embedded i K by setting theK coordinate to be 1. The groug is
embedded itG K similarly by setting thez¢ coordinates to be 1.

Definition 7.3. Given a grouK < &, define a sequence of groups inductivelyy= K andK1 =
KntK (The groupsGy of Theorem 4.lare such groups witlk = Aq). Recall that each element in
Sym(n,d) is uniquely defined by writing a permutation & on each internal node df, 4, indicating
how the children of this vertex are permuted. The grégs the subgroup of Syfn,d) where the
permutation written on every internal vertex is an elemer ofThe groupK, acts on the sdE, (the
leaves of thal-regular depthn tree) via its embedding in Sy, d).

The following theorem is the Schreier graph analogu&heforem 4.1

Theorem 7.4. If there is a generating set @ K of size at mostd'/4/2) with A(K,[d],Q) < 1/4,
then there exist QC K, of size|Q|* such thatA (Ky, E,, Q) < 1/4, and Q, can be computed in time
polynomial inlog |Ey|.

The main difference fronTheorem 4.1s that in the Schreier case the §gis known to exist for
many groupsK. The claim below shows the existence of s@for K = § (for d large enough).

Claim 7.5. Let d > 100, and let U bel00 permutations in $ chosen randomly uniformly. Then
A (S, [d],U) < 1/4 with probability larger than 1/2.

For proofs seel[3] (or [9] for a weaker result which would result in a larger requiddd

Corollary 7.6. For every d> 4-100* there is a sequence of subsetsdJSynin,d) of size100¢* such
that A (Synin,d), Ey,Un) < 1/4. Furthermore, |} is computable in time polynomial Ing|Ep|.

Proof of Theorem 7.4 We will assume thatQ|* dividesd. The divisibility condition is not crucial,
but it simplifies the proof. We proceed by induction - the casel is the assumption of the theorem.
Assume the theorem holds for soméMe show that it holds fon+ 1.

Claim 7.7. Let Q&d) be the vectors in in which every element inQappears exactly 4 Qn| times (see

Definition 4.9. Let x= (Xg,...,Xq) be an element of @ Define U= {yxz|y,z€ Q} C Knt1. Then
A(Kn—kl; En+17U) < A(Km Ean) + A(Ka [d]a Q)
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We prove the claim later, and now proceed with the proof of the theorem. D@fineto be the set
of words of length 2 in the sé&t given byClaim 7.7 Then

A(Knt1,Ent1,Qnr1) = A (Kni1,Eni1,U)? < [A(Kn,En, Qn) + A (K, [d],Q))]% < (1/4+1/4)2 < 1/4

where the equality follows fron®bservation 2.3the first inequality iClaim 7.7and the second in-
equality is the induction assumption. By definitif®, 1| = |Q|*. This concludes the proof afheo-
rem7.4 O

Proof of Claim 7.7. The proof uses the zig-zag theoreA®]. Here is a quick definition of the zig-zag
product:

Definition 7.8. Let X,Y be regular graphs such that the degreé&Ca$ equal the size 0§. For every

v € X write the list of neighbors of as an array/i] for i € Y (the ordering of the list of neighbors is
arbitrary, and different lists may lead to different graphs). Define a gZaplinose vertices are pairs
(v,i), with ve X andi € Y. The neighbors of a vertefy,i) are the vertices reached by making the
following three steps:

e Step 1: Walk from(v,i) to (v, j) where(i, j) is an edge of.

e Step 2: Walk from(v, j) to (v[]j], j) wherev[j] is the j-th neighbor ofv in the grapHX.

e Step 3: Walk from(v[j], ) to (v[j],k) where(],k) is an edge o¥.

Z has degreédegy)?. It is called thezig-zag producof X andy, and we writeZ = X@Y.
Theorem 7.9 (B2)). If Z=X®@Y thenA(Z) < A(X)+A(Y).

Definef}vr, to be the multiset of size obtained by duplicating every element@f exactlyd/|Qy|
times. Notice that the vectoris simply a list of the elements @,. Let X = SchK,,En, Qn), Y =
SchK,[d],Q), andZ = Sch(Kn1,Ens1,U). We claim thatZ = X@Y. The proof ofClaim 7.7then
follows from Theorem 7.9notice thatd (X) = A (K, En, Qn)). The first requirement is that the degree
of X is equal to the size dj, and indeed they are both It remains to verify that edges &f are the
walks of length 3 of the zig-zag product. For everg X andi € Y definev|i] = xi(v) (the element
X € Ky acts onv € E,). The array]i] is the list of neighbors of in X{. An edge ofZ connectgv,i) to

yxz(v,i) (embedded ifkn1 asy=(1,1,...,1,y),z=(1,1,...,1,2z) andx = (X1,X2,...,Xd,1)). Let (i)
be a vertex o, and letj = z(i), andk = z(j) = yZ(i). Then

yxz(v,i) = yx(v, z(i)) = yX(V, j) = y(Xj(v),2(i)) = y(v[j]. ]) = (V[j].K) -

This is exactly the definition of an edge in the zig-zag product, and we have ptbaid 7.7 O
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8 Generators for an infinite group with property ( 7)

There are natural mappings, foK n between Syrn,d) and Syntk,d). Theembedding mapends an
elemento € Sym(k, d) to the element of Syfm, d) which acts on the firdt levels of the tree by. The
restriction mapsendsr € Sym(n,d) to its restriction to the firsk levels of the tree.

In Theorem 4.1ve constructed subsefs C G, < Sym(n,d) that generate®, as expanders. In this
section we will prove that the seYs are consistent: the restriction 4f to Sym(k, d) is exactlyYk. This
implies that there is a s&, of symmetries of the infinite rootediregular tree, which restricts ¥, for
anyn. A nice corollary is that the infinite group generated¥Yayhas propertyr (defined below) with
respect to some sequence of subgroups. In the next section we will use this consistency to construct a
sequence of expander graphs each of which is a lift of its predecessor.

Theorem 8.1. Let Y; C Gy be the groups and generating (multi)setsTéfeorem 4.1 Then for every
n >k > 2 the restriction of ¥ to Synfk,d) is equal ¥. The same holds for the setg @ Theorem 7.4

Corollary 8.2. Define ¥, to be the set of symmetries of the infinite tree whose restriction torSgms
Ynh. The sety¥ generates an infinite subgroup,®f the symmetries of the infinite tree, and the restriction
of G to Synin,d) is G, for all n > 2. The same holds for Qof Theorem 7.4

The following definition of property1) is from [30], page 49.

Definition 8.3. Let G be a finitely generated group, and ¥be a finite symmetric generating set for
G. Let L = {Ny}nen be a family of finite index normal subgroups®@ ThenG has property (7) with
respect toL if the family C(G/Nn,Y /Ny) is an expander family.

Corollary 8.4. Let N, be the kernel of the restriction function from,® G,. Then, under the assump-
tion on the alternating group described Trheorem 4.1the group G has property(t) with respect to
the family{Nn};_,.

Proof of Theorem 8.1 The proof will only deal with the (harder) case ¥f. Recall that elements in
Sym(n,d) are represented by writing a permutation on each internal vert&gofDefine thek-th level
of an elementi € Sym(n,d) to be the permutations written on tkeh level of T, 4 in this representation
of u.

The following claim is somewhat complicated to state, but its proof is an easy induction.

Claim 8.5. Let F j be sequence of functiong;F Syn{e,d)q — S, wherel <i < g and jis an internal
vertex of T, 4. Suppose that for vertices j in the k-th level af4T the output of Fj only depends on
levels1 up to (k—1) of its inputs (in particular F; is a constant function). Define;UW- Synin,d)
to be the set k() for 1 <i < ¢, and inductively, given the set,l&- uT,ug,...,ug in Syntn,d) define
uMt € Synin+ 1,d) by writing the permutation;F (uf, 3, ..., ug) in internal vertex number j ofql 1 g.
Then the restriction of i to Syntn, d) is u". O

Theorem 8.1now follows by observing that the séts are indeed constructed by the procedure in
Claim 8.5 (The only exception i¥; which was constructed differently, so the theorem'’s statement holds
only for n> 2). To show this, recall briefly how we constructéd ; given the se,.

o Construct the set,* defined inDefinition 4.5
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e Write X =c-YoUYp*.

e Pick an element € X4 ¢ Sym(n,d)¢, and embed it in Syfm+1,d).

e DefineZ = Y;xY1 by regarding the elements ¥f as elements in Syt -+1,d).
e DefineY,,1 to be the set of words of length 2 in the Zet

We will now verify that the(k+ 1)-level an element iy, is a function of levels 1 up t& of the
elements iry,,. We will also verify that the first level of elementsYh, 1 is indeed a constant independent
of n. We leave to the reader to verify that the condition€tdim 8.5hold precisely, which we feel is
rather too technical.

Observation 8.6. Let g be an element dB,,. Letg = [x,y] be the commutator representation derived in
Section6. Then levek of x andy depends only on levels 1 up kof g.

The observation follows by following the construction of the commutator representation, which is
simply induction on the level. We conclude that for element¥,in and therefore itX, thek-th level
depends only on levels 1 up kof the elements iiYy,.

Observation 8.7. Let g,h be elements in Syfw,d). Then levek of gh depends only on levels 1 up to
k of g andh.

Observation 8.8. Let x = (x1,...,%4) be an element of Sym,d)?. Embedx in Symn+1,d) as
(X1,...,Xd,1), represented by writing a permutation on every internal vertek,of 4. The permuta-
tion written on the root is the identity, and the permutations written on lkevell are permutations
written on levelk of X1, ..., Xg.

The two observations above imply that lekel 1 of elements irZ depend only on levels 1 up to
of X. Also, level 1 of elements id is independent af, since it depends on level 1 of element¥jrand
level 1 ofx which is the identity permutation. The same holds¥or; as elements there are products of
elements o (we useObservation 8.again). This concludes the proof of the theorem. O

9 A sequence of expanding lifts of graphs

Definition 9.1. Given a graphX, onn verticesvy, ..., V,, ad-lift of X is a graphy on nd verticesw; i
wherei € [n],k € [d]. For each edge = (v;,vj) of X choose a permutatioe € S, and connecwy; i
with w; o,k for all k € [d]. The verticesw; i for fixed i andk € [d] are called thdiber abovev;. The
fibers above an edge= (v;,v;) are connected by a perfect matching definecsly There are many
non-isomorphic lifts of a grap® depending on the choice of the permutatioasFor more information
on lifts see §).

In this section we show how to obtain an explicit sequence of expander graphs, each of which is a
d-lift of its predecessor for any (large enough)Actually, the sequence of Schreier graphs constructed
in the previous sections do.

Here are some basic properties of lifts which are not hard to prove:
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The degree of a vertexis equal to the degree of all the vertices in the fiber abowe a lift of a
regular graph is regular with the same degree.

The definition of a lift works fine for parallel edges and loops (where the loop counts as two edges
when computing the degree of a vertex).

Lifting is transitive: IfY is a lift of X andZ is a lift of Y thenZ is a lift of X.
If Y is alift of X thenA(Y) > A(X).

As an example, consider the grafflj which consists of a single vertex withloops on it. A lift
X1 of Xg is encoded byg permutationsos,...,0q € S. The graphX; has vertex sefd] and edges
(i,0(i)),i € [d],I € [g], making it a Z-regular graph.

Linial raised the following conjecture:

Conjecture 9.2 (Linial). For every graph and everyd there exists a-lift Y of X such thatA (Y) <
max(A(X),0(v/d)).

Ford = 2 a slightly weaker version of the conjecture was provedjn [

The conjecture yields a method to construct a sequence of expander graphs each of which is a lift
of its predecessor. Pick any regular graphwith A(X1) = 1/2. Now choose a sequence of graphs
such thatd (Xn11) < A(Xn) andXpy1 is a lift of X, (we need the degree of the initial graph to be large
enough for this to work).

Theorem 9.3. Let X, = Sch Ky, En, Qn) be the family of graphs ofheorem 7.4 ThenX,,;1 is a d-lift
of X for alln > 1.

By Corollary 7.6we obtain the required sequence of expanding lifts:

Corollary 9.4. Let K= S with d > 4-100%, and let QC K, be the generating set given 6. Let X,
be the sequence constructedlineorem 9.3Theni (X,) < 1/4 for all n andX,;1 is a d-lift of X, for
alln>1.

The proof of Theorem 9.3s by induction. The following two claims show how to construct a
Schreier graph of a wreath produgt H which is naturally a lift of a Schreier graph bf. These two
claims will be used in the induction step.

Claim 9.5. Let G H be groups acting on & Ey respectively. H is a subgroup of the symmetric group
on By, so the group GH is defined, and its elements are written(gsh) where g= (gy)yeg, and he H.
Then GH acts on k& x E4 by (g, h)(x,y) = (gy(x), h(y)).

Proof. We need to show that for two elemertgsh), (3, h) € GiH and an elemertix,y) € Eg x Ey

(@M [@Mxy)] =[(@h- @] xy) .
And indeed,

(80 [(@ 1) xy)] = (9.h)(E(X),hy)) = (Gry) - Gy:h-M)(xy) = [(@.h)- @] (xy) -
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Claim 9.6. Let G/H be as inClaim 9.5 and let U be a subset of &1. Then SctiGiH,Eg x Eq,U) is
a |Eg|-lift of SchH,En,U). (Notice that we have identified U with its restriction to H).

Proof. The vertices of SofG!H,Eg x E4,U) are pairs(x,y) with x € Eg andy € Ey. Partition these
vertices to subsetS, = {(x,y) | x € Eg}. We will show that ScfGiH,Eg x E4,U) is a|Eg|-lift of
Sch(H,Ey,U) where the fiber abovee Ey is S;. In order to prove this, we need to show that for every
edgee = (y1,y2) of Sch(H,Ey,U) there corresponds a perfect matching betwgg@ands,,.

Edges in ScfH,En,U) are of the form(y,uy), fory € E4 andu € U. Write u= (g,h) in GiH, so
uy = h(y). In SchGiH,Eg x Ey,U), a vertex(x,y) is connected tai(x,y) = (gy(x),h(y)). This is a
perfect matching betwee®y andS, ) sincegy is a permutation oEg for y fixed. O

Can we useClaim 9.6to obtain a sequence of expanding lifts? Saction8 we constructed an
expander sequendé, = Sch(Kn, Qn, En) where eachQy is the restriction of a single s&.,. Since
Knt1 = Kn K we deduce bylaim 9.6that SctiKn 1, Qw, Ent1) is a lift of SCh K, Qw, [d]) = X1, while
we wantedXn 1 to be a lift of X,. The following observation comes to the rescue (notice the change of
order in the wreath product).

Observation 9.7. Let K,, be the sequence of groups definedriB. ConsiderK, as a subset of the
permutation group o&,. ThenK,, 1 = KK,.

We can now us€laim 9.6to conclude that Sa,. 1, Q) is ad-lift of Sch(K;, Q«), which proves
Theorem 9.3 O
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