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Graphs

Eyal Rozenman∗ Aner Shalev† Avi Wigderson‡

Received: August 4, 2005; published: April 25, 2006.

Abstract: We construct a sequence of groupsGn, and explicit sets of generatorsYn ⊂Gn,
such that all generating sets have bounded size, and the associated Cayley graphs are all
expanders. The groupG1 is the alternating groupAd, the set of even permutations on the
elements{1,2, . . . ,d}. The groupGn is the group of all even symmetries of the rooted
d-regular tree of depthn. Our results hold for any large enoughd.

We also describe a finitely generated infinite groupG∞ with generating setY∞, given
with a mappingfn from G∞ to Gn for everyn, which sendsY∞ toYn. In particular, under the
assumption described above,G∞ has property(τ) with respect to the family of subgroups
ker( fn).

The proof is elementary, using only simple combinatorics and linear algebra. The re-
cursive structure of the groupsGn (iterated wreath products of the alternating groupAd)
allows for an inductive proof of expansion, using the group theoretic analogue (of Alon et
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al., 2001) of the zig-zag graph product (Reingold et al., 2002). The basis of the inductive
proof is a recent result by Kassabov (2005) on expanding generating sets for the groupAd.

Essential use is made of the fact that our groups have thecommutator property:ev-
ery element is a commutator. We prove that direct products of such groups are expanding
even with highly correlated tuples of generators. Equivalently, highly dependent random
walks on several copies of these groups converge to stationarity on all of them essentially
as quickly as independent random walks. Moreover, our explicit construction of the gen-
erating setsYn above uses an efficient algorithm for solving certain equations over these
groups, which relies on the work of Nikolov (2003) on the commutator width of perfect
groups.

1 Introduction

1.1 Expander graphs

Expanders are graphs which are sparse but nevertheless highly connected. Expanders graphs have been
used to solve many fundamental problems in computer science, in topics including network design (e.g.
[40, 41, 1]), complexity theory ([49, 44, 48]), derandomization ([36, 18, 19]), coding theory ([45, 46]),
and cryptography ([15]). Expander graphs have also found some applications in various areas of pure
mathematics, such as topology, measure theory, game theory and group theory (e.g. [21, 30, 16, 31]).

Standard probabilistic arguments ([39]) show that almost every constant-degree (≥ 3) graph is an
expander. However, most applications demand explicit constructions. Here we take the most stringent
definition of explicitness of an infinite family of graphs, requiring that a deterministic polynomial time
algorithm can compute the neighbors of any given vertex, from the vertex name and the index of the
graph in the family. This challenge of explicit construction led to an exciting and extensive body of
research.

Most of this work was guided by the algebraic characterization of expanders, developed in [47, 5, 2].
They showed the intimate relation of (appropriate quantitative versions of) the combinatorial (isoperi-
metric) notion of expansion above, to the spectral gap in the adjacency matrix (or, almost equivalently,
the Laplacian) of the graph. This relationship is tight enough for almost all applications (but there are
some exceptions, e.g. see [50, 10]).

Using this connection, an infinite family of regular graphs is defined to be an expander family if
for all of them the second largest eigenvalue of the normalized adjacency (i.e. random walk) matrix is
bounded above by the same constant that is smaller than 1.

This algebraic definition of expanders by eigenvalues naturally led researchers to consider algebraic
constructions where this eigenvalue can be estimated. The celebrated sequence of papers [32, 14, 5,
3, 20, 29, 33, 35] provided such highly explicit families of constant-degree expanders. All of these
constructions are based on groups, and their analysis often appeals to deep results in mathematics.

The algebraic mould was broken recently by [42], where a simple, combinatorial construction of
constant-degree expander graphs was presented. The construction is iterative, generating the next graph
in the family from two previous ones via a novel graph product, thezig-zagproduct. This product was
proved (using simple linear algebra) to simultaneously keep the degree small, and retain expansion.
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Thus the iteration process need only be provided with an initial, fixed size expander “seed” graph, from
which all others are generated. The required parameters of the seed graph are easily shown to hold for a
random graph (which suffices for explicitness - it is of constant size), but it is also easy to construct one
explicitly.

Our main result in this paper is a similar iterative construction of expandingCayleygraphs (which
we turn to define next) from one initial “seed” Cayley graph. In our case, the seed Cayley graph is
based on the groupAd, the group of even permutations on the set{1,2, . . . ,d}. In a recent breakthrough,
Kassabov [22] explicitly constructed a bounded-size, expanding generating set forAd, which yields the
seed expander Cayley graph we need.

Our construction may be seen as another step in exploring this fundamental notion of expansion, and
its relations to yet unexplored mathematical structures. It also further explores the power of the zig-zag
product in constructing even stronger expanders. It was already shown [10] that it can yield expansion
beyond the eigenvalue bound, and is shown here to yield Cayley expanders.

1.2 Expanding Cayley graphs

For a finite groupH and a (symmetric) set of elementsT in it, the Cayley graphC(H;T) has the elements
of H as vertices, and edges connect a pair of verticesg,h if their “ratio” gh−1 is in T. We remark that
while most applications do not require the expanders to be “Cayley”, the recent paper [7] seems to
essentially require Cayley expanders to achieve nearly linear-sized locally testable codes (LTCs) and
probabilistically checkable proof (PCPs).

Many of the algebraic expander constructions mentioned above are Cayley graphs. In all of these, the
groups in question are linear matrix groups over finite fields, and their expansion follows from celebrated
results in mathematics, including Kazhdan’s work on PropertyT [25], Selberg’s 3/16 theorem [43], and
the resolution of the Ramanujan conjecture of Eichler, Deligne and Igusa (starting in [12]). It should be
noted that for some of the other algebraic constructions elementary proof of expansion exist, using only
a discrete Fourier transform [20].

For other natural families of groups the question was considered both by mathematicians and com-
puter scientists. For example, for Abelian groups it is easy to see that any set of expanding generators
has to be at least logarithmic in the size of the group. Thus they cannot provide expanding Cayley graphs
of constant degree (a more general result appears in [26]). Lubotzky and Weiss generalized this negative
result for all solvable groups of bounded derived length [28].

Understanding which natural families of groups can be made expanding (with a fixed size generating
set) is a basic question, and little progress was made over the foundational results above in the last 15
years. However, in the last year several breakthroughs were made by Kassabov and Nikolov [22, 23, 24].
These results suggest that all the simple groups may have fixed size expanding generating sets. Of
particular interest to our work is the family of symmetric groups (of all permutations). Much work has
been devoted to analyzing the expansion of this group under a variety of generating sets in the context
of card shuffling (e.g. see [11, 27]). However, in all these papers the generating sets are huge, and did
not provide a clue to the status of this problem. In a recent breakthrough, Kassabov [22] showed that the
symmetric groups indeed have explicit, fixed-size expanding generators, independent on the group size.

The possibility that the zig-zag product and iterative construction may be used for Cayley expanders
was first revealed in [4]. They discovered that the well-knownsemi-directproduct on groups may be
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viewed (roughly speaking) as a special case of the zig-zag product of graphs. More precisely, the zig-
zag product of two Cayley graphs, with certain important restrictions on the structure of their generating
sets, is a Cayley graph of the semi-direct product of the associated groups. Thus one can generate larger
Cayley expanders of small degree from smaller ones. This observation was used to show that expansion
is nota group property – in some groups certain constant size sets will expand, while others will not.

This Cayley graph version of the zig-zag theorem raises the hope that, given a “seed” expander
Cayley graph, one can obtain a sequence of expander Cayley graphs via an iterative process using the
zig-zag theorem. However, unlike the case of unstructured graphs, the restrictions on generators alluded
to above for applying the zig-zag product on Cayley graphs, make iterations a highly nontrivial (and
illuminating) task. In [34] such a construction was given, which falls short of the task at hand on two
counts. First, the generating sets (and hence the degrees) of the groups in the family are not of constant
size, but rather grow slowly (roughly like log∗ of the group size). Second, these generating sets are shown
to exist via a probabilistic argument, hence the resulting family is not explicit. Still, this construction
makes no assumptions, as the seed Cayley expander for the iteration is easily seen to exist.

In this paper we fix both problems. We give a sequence of groupsGn, and explicit generating sets
Yn for eachGn, such that the Cayley graphsC(Gn,Yn) are expanding. Moreover,Yn as bounded size,
independent ofn. Actually, we will later on see that the generatorsYn are consistent with each other: In
the natural projection ofGn+1 to Gn the setYn+1 projects to the setYn.

The technique developed yields some results which do not require a seed Cayley graph at all. We
show how to obtain an explicit sequence of expandingSchreier graphs. (The novelty is in the explicit-
ness, since by [17] every regular graph with even degree is a Schreier graph). We then use the Schreier
graph sequence to construct a sequence of expandersXn in which each graphXn+1 is a lift of Xn, by
noticing that in our Schreier graph sequence each graph is actually a lift of its predecessor (lifts are
defined inSection9).

1.3 Our construction

Our groups are completely different from most groups previously used in this area. Indeed, they are very
natural combinatorial objects. LetT(d,n) denote thed-regular tree of depthn. The group of symmetries
of this tree allows permuting the children of every internal node arbitrarily. Thus every element of this
group may be described by a mapping of the internal nodes to the symmetric groupSd, describing how
to permute the children of every such node. Group product of two such elements is simply performing
the first set of permutations at every node, and then the next set. Our groupsGn are subgroups of all
symmetries, allowing onlyevenpermutations at every internal node ofT(d,n). This natural restriction
avoids a huge Abelian quotient that would have rendered expansion impossible, as the group would
not even be generated by a constant number of generators. Our method of proof (sketched below) is
elementary, using only linear algebra. All other known proofs use representation theory of the groups
involved, and in most cases much deeper results as well.

There is a very natural inductive definition of the groupsGn. G1 is the alternating groupAd of
all even permutations ond elements (and is essentially the “seed group” of our construction).Gn+1

can be obtained fromd copies ofGn, and one copy ofAd acting on them simply by permuting the
copies. Formally, this is called a wreath product, denotedGn+1 = Gn oAd, and is a special case of a
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semidirect product, giving equivalentlyGn+1 = (Gn)d o Ad. Our assumption gives a small expanding
set of generators forAd, and by induction we have such a set forGn.

How does induction proceed? Naturally, we would like to use the zig-zag theorem for the semi-direct
product [4, 42]. The technical requirement alluded to above is simply that we find an expanding gener-
ating set for(Gn)d, which need not be small, but must be an orbit under the action ofAd, given a (small)
expanding generating setYn for Gn. A natural candidate for such an orbit is all (even) permutations of the
balanced d-vector, one which has every one of the elements ofYn occurring the same number of times
(if |Yn| dividesd). It is the largest possible orbit, and the projection of a random element of the orbit to
any small subset of the coordinates is (almost) a random independent element ofYn in each coordinate.

We now turn to study the second eigenvalue of the Cayley graph of(Gn)d under these generators. The
associated linear operator acts on the space of real functions on(Gn)d. Luckily, this space of functions
is simple to describe - it is thed-fold tensor product of the same space forGn. What is not so lucky is
the dependence between the coordinates of a balanced vector. Indeed, hadGn been Abelian, this orbit
would not even be generating (i.e. the graph would not be connected). Here our special group structure
is important. A key fact (proved by Nikolov [37]) is that every element inGn is a commutator. Construct
a new generating set̃Yn by adding toYn, for each of its elements, the constituents of its representation
as a commutator. We use Nikolov’s proof to actually give a polynomial time algorithm for finding this
representation. Now take the orbit of all balanced vectors overỸn to be the generating set for(Gn)d.

How can this revision take care of the dependencies? A simpler setting, to which we reduce our
analysis, is the following Cayley graph. The group is simply(Gn)2, namely only two copies ofGn.
The generators are all pairs(g,g−1) for all g∈ Ỹn. Thus, there iscompletecorrelation between the two
coordinates. The key point is that, using the special structure ofỸn, with positive probability a short
word in one of the two components will vanish, while in the second it will give an original generator of
Yn, thereby decoupling the dependence of the two components. So, quite surprisingly, this Cayley graph
on two copies is expanding despite the complete correlation (it is a nontrivial exercise to even establish
connectivity of this graph – note that it wouldnot be connected hadGn been Abelian, or if we took
instead the pairs(g,g) for any groupGn). This construction (which we feel is of independent interest) is
quite special and mysterious, and naturally the description above hides many essential details. Still, it is
the heart of the matter.

For m≥ n there is a natural restriction mapGm → Gn - given a symmetry of the tree with depth
m consider its action on the subtree with depthn with the same root. As we shall see, the generating
setYm is mapped toYn under this restriction. This gives rise to an infinite “limit group”G∞ given
with a generating setY∞ and restriction mapsfn : G∞ → Gn, where fn(Y∞) = Yn. In particular, under
the assumption onAd, the groupG∞ has property(τ) with respect to the family of subgroups ker( fn)
(Lubotzky’s property(τ), a “baby” version of Kazhdan’s property (T), is defined inSection8).

1.4 Organization of this paper

In Section2 we define expander graphs and Cayley graphs, and present some useful results. InSection3
we define the sequence of groups we use. InSection4 we describe the expanding generating sets, and
prove the mainTheorem 4.1- that they are indeed expanding - by induction. The proof is based on a
main lemma (Theorem 4.6). The lemma gives an expanding generating set for the groupGd given an
expanding generating set forG (under certain conditions onG). Finally, in Section6 we present an
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algorithmic version of Nikolov’s theorem, that every element in our family of groups has a commutator
representation that can be found efficiently.

We then turn to some corollaries of the main theorem. InSection7 we explicitly construct a sequence
of expanding Schreier graphs, free from the seed graph on the alternating group. InSection8 we give
generators for a subgroup of the symmetry group of theinfinite rootedd-regular tree. These generators,
when restricted to thefinite rootedd-regular tree with depthn, generate an expander Cayley graph on the
(alternating) group of symmetries of this finite tree. As a corollary we deduce that this infinite group has
Lubotzky’s Property (τ) with respect to a natural infinite family of normal subgroups. Then inSection9
we combine the previous two results to obtain a sequence of expanding graphs each of which is a lift of
the previous one.

2 Preliminaries

2.1 Graphs, eigenvalues and adjacency matrices

All graphs discussed in this paper are undirected, regular graphs. We allow multiple edges and self
loops, so graphs are best understood as symmetric nonnegative integer matrices with a fixed row-sum,
called thedegree. For a graphX, we letV(X) denote its set of vertices andE(X) its (multiset of) edges.

Let X be ak-regular graph, andM = MX its normalized adjacency matrix (divide the adjacency
matrix by the degreek to make it stochastic). We denote byλ (X) the second largest (in absolute value)
eigenvalue ofM. Thespectral gapof the graph is 1−λ (X).

Let W be the vector space of real functions on the setV(X), with its standardL2 inner product.MX

defines a linear operator onW: For f ∈W, the value of the functionMX( f ) ∈W on a vertexx is the
average value off on all the neighbors ofx (counted with multiplicities).

Let W|| be the one-dimensional subspace consisting of the constant functions, and letW⊥ be the or-
thogonal complement. Since the constant functions are eigenvectors ofM corresponding to the (largest)
eigenvalue 1, then

λ (X) = max
w∈W⊥

‖Mw‖/‖w‖

where‖w‖ is theL2 norm ofw.

Definition 2.1. An infinite family of graphsXn is called anexpander family if λ (Xn) ≤ µ for some
µ < 1 independent ofn. The family is said to be (strongly)explicitly described, if there is a polynomial
time algorithm which, on inputn and the name of a vertexv in Gn (in binary), outputs the neighbors of
v in Gn.

We will use the following two simple results, which describe how taking the tensor power of a graph,
and taking the power of a graph, affect the 2nd eigenvalueλ :

Claim 2.2. Let X = (V,E) be a graph, and let MX be the normalized adjacency matrix. Let MY =
(MX)⊗d, and defineY to be the graph (on the vertex set Vd) with normalized adjacency matrix MY. Then
λ (Y) = λ (X).

Observation 2.3. Let X = (V,E) be a graph,MX the normalized adjacency matrix andMY = (MX)k.
Let Y be the graph (on vertex setV) with normalized adjacency matrixMY. Thenλ (Y) = λ (X)k.
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We will use the following convexity result later: If the spectral gap(1−λ (Y)) of a graphY is not
too small, andY is a large subgraph ofX (on the same vertex set) then the spectral gap ofX is also not
too small.

Claim 2.4. Let Y = (V,E1)⊂ X = (V,E2) (i.e. E1 ⊂ E2) be s- and t-regular graphs respectively on the
same vertex set V . Then

1−λ (X)≥ s
t
(1−λ (Y)) .

We will later need the following result on vectors

Claim 2.5. If for some vectors w0,w1, . . . ,wL, all with norm1,

(1/L) · ‖
L

∑
i=1

wi‖ ≤ 1− ε

then

(1/L) ·
L

∑
i=1

‖w0 +wi‖/2≤ 1− ε/4 .

2.2 Groups and the wreath product

2.2.1 Cayley graphs

Let G be a finite group. We will represent groups multiplicatively, and 1 will denote the identity element
of the group. LetY be a multi-subset ofG. We will always usesymmetricsetsY, namely the number
of occurrences ofx andx−1 in Y is the same for everyx ∈ G. |Y| will denote the size of the multiset
(counting multiplicities).

TheCayley graphC(G,Y) has vertex setG, and for every vertexg∈ G andx∈Y there is an edge
(g,gx). The graph C(G,Y) is undirected (asY is symmetric) and is|Y|-regular. Forx ∈ G let Px be
the permutation matrix corresponding tog→ gx in G. The normalized adjacency matrix of C(G,Y) is
∑x∈Y Px/|Y|. We will also use the notationEx∈Y [Px] to denote this average of operators.

Let W = W(G) be the vector space of functionsG → R as in the previous section. We will be
interested in the expansion properties of Cayley graphs on the groupGd, the Cartesian product ofd
copies ofG. Note thatW(Gd) = W⊗d.

Observation 2.6. Let W|| be the space of constant functions on the vertices ofG, and letW⊥ be its
orthogonal complement. Let̄b = (b1, . . . ,bd) be a length-d vector in the alphabet{||,⊥}, and letWb̄ be
the vector space⊗d

i=1Wbi . Consider the spaceW⊗d, thed-th tensor power ofW. The spaceW⊗d inherits
an inner product structure fromW, where the inner product of two pure tensors is the product of the
inner products of the components of the tensors. The orthogonal decompositionW = W||+W⊥ induces
an orthogonal decomposition

W⊗d = ∑
b̄∈{||,⊥}d

Wb̄

to 2d subspaces by the distributive law for tensor products. For anyx∈Gd the operatorPx preserves the
decomposition.
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Corollary 2.7. For any Cayley graph C(Gd,Ȳ), the normalized adjacency operatorEx∈Ȳ [Px] preserves
the given decomposition of W⊗d, so

λ (Gd,Ȳ) = max
b̄6=||d

max
w∈Wb̄

‖ E
x∈Ȳ

[Px(w)]‖/‖w‖ .

That is, it suffices to bound‖Ex∈Ȳ [Px(w)]‖ from above, for vectors w that are purely in one of these
2d−1 subspaces.

The following two observations describe cases where we can ignore part of the coordinates ofx∈Gd

when trying to estimate‖Ex∈Ȳ[Px(w)]‖.

Observation 2.8. Let b̄ = b1, . . . ,bd wherebi =⊥ for i ≤ r andbi = || otherwise. Forw∈Wb̄ = W⊗r
⊥ ⊗

W⊗(d−r)
|| , the value ofPx(w) does not depend onxr+1, . . . ,xd.

Proof. w is a real function onGd. The statement thatw∈Wb̄ andbi = || means thatw does not depend
on thei-th coordinate of its input.

Observation 2.9. Let X̄ ⊂ Gd be a set of group elements whose lastd− r coordinates constitute some
fixed vector ¯x∈Gd−r . Then for everyw∈W⊗d the value of

‖ E
x∈X̄

[Px(w)]‖

does not depend on ¯x.

Observation 2.3from Section2.1translates nicely to the Cayley graph world

Observation 2.10.Let G be a group,Y ⊂ G. DefineZ to be the set of all words of lengthk in Y. Then
λ (G,Z) = λ (G,Y)k.

We end with an observation which simplifies the proof of explicitness for families of Cayley graphs.

Observation 2.11. A family of Cayley graphsC(Gn,Yn) is explicit if there are polynomial time algo-
rithms in log|Gn| for

• performing group multiplication inGn,

• computing inverses inGn, and

• computing the setYn.

2.2.2 Wreath products and the zig-zag product

Let A and B be finite groups. Assume thatB ⊂ Sd, that is, it acts by permutations on the set[d] =
{1, . . . ,d}. Define thewreath product1 A oB of A andB to be the group whose elements are vectors
(a1, . . . ,ad,σ), whereai ∈ A for all i, andσ ∈ B. The group multiplication rule is

(a1, . . . ,ad,σ) · (ã1, . . . , ãd,τ) = (aτ(1)ã1, . . . ,aτ(d)ãd,στ) .

1More precisely, this is referred to as thepermutationalwreath product in the literature.
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One can check that this defines a group structure onAoB. The wreath product is a special case of a more
general construction - it is thesemi-direct productof Ad andB, whereAd is the Cartesian product ofd
copies ofA. The groupsAd,B are naturally embedded inA oB, and we will sometimes refer to elements
of Ad andB as elements ofAoB.

Let α ⊂ Ad,β ⊂ B be sets of generators. Supposeα has a special structure: it is asingle B-orbit.
This means that for some arbitrary ¯a∈ α, the setα consists of all vectors obtained from ¯a by permuting
its coordinates by a permutation inB. We now define a setγ in A oB by γ = {xāy | x,y∈ β}. One can
check thatγ generatesA oB. The following theorem from [4], following the zig-zag theorem of [42],
shows that ifα,β are sufficiently good expanding generators then so isγ.

Theorem 2.12. [4] If α is a single B-orbit thenλ (AoB,γ)≤ λ (Ad,α)+λ (B,β ).

Note that|γ| = |β |2 depends only on the size ofβ , while α could be large (it could be as large as
|B|). Also, it is easy to computeγ givenα andβ , as multiplications inAoB can be computed efficiently.

2.2.3 The commutator property

Let A be a group. Forg,h ∈ A define thecommutator[g,h] to beghg−1h−1. A has thecommutator
propertyif for every elementa∈A there is a solution in the variablesx,y to the equationa= [x,y]. (Note
that this is a stronger property than just the commutator subgroup[A,A] being equal toA.) Nikolov [37]
proves

Theorem 2.13.[37] Let A be a group, and B⊂Sd a group of permutations. If A,B have the commutator
property then so does AoB.

We shall need an algorithmic version of this theorem. For a groupA, a commutator representation
algorithmgives, for an inputa∈ A, some pairx,y∈ A such thata = [x,y].

Theorem 2.14. Let A,B be as inTheorem 2.13. Suppose we are given commutator representation al-
gorithms for the groups A,B. Then we obtain such an algorithm for AoB. This algorithm calls the
algorithm on B one time, and the algorithm on A at most d times, and uses at most O(d) extra multipli-
cation operations on A,B. (The description of the algorithm appears in the proof of the theorem.)

We prove the theorem inSection6.

3 Overview of the construction

In Section3.1 we will define our sequence of groupsGn. In Section4 we will show how to find gen-
erating subsetsYn ⊂ Gn that giveλ (Gn,Yn) < 1/1000 with bounded size|Y1|4. This will be based
on the assumption that there exists a small enough subsetY1 of the alternating groupAd such that
λ (Ad,Y1) < 1/1000.
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3.1 The family of groups

Definition 3.1. The groups in our construction are defined byG1 = Ad and, inductively,Gn+1 = Gn oAd.

Another way to view the groupGn is as a subgroup of the full group of symmetries of thed-regular,
depthn tree (byd-regularity here we mean that each inner vertex hasd descendants). Each element
in the group of symmetries is uniquely defined by writing a permutation on each internal node of the
tree, indicating how the children of this vertex are permuted. In the subgroupGn all these permutations
should beeven. The representation of an element ofGn as a list of even permutations is polynomial in
log|Gn|. Multiplying two elements and inverting an element can be done in time which is polynomial in
the size of this representation

The following important corollary ofTheorem 2.14shows that for our groupsGn there is an efficient
commutator representation algorithm.

Lemma 3.2. If d ≥ 5 then the groups Gn have the commutator property ofSection2.2.3. Moreover, Gn

has a commutator representation algorithm that runs in time polynomial inlog|Gn|.

Proof. G1 = Ad, and by [38] it has the commutator property. By induction, usingTheorem 2.13, every
Gn has the commutator property. The existence of an efficient commutator representation algorithm
follows fromTheorem 2.14. Full details are given inSection6.

4 Main theorem

Theorem 4.1. Suppose that for some d there exists a set of generators Y1 ⊂ Ad such thatλ (Ad,Y1) <
1/1000and |Y1| ≤ d1/28/1040. Then there exist sets Yn ⊂ Gn such thatλ (Gn,Yn) < 1/1000and |Yn| ≤
d1/7/1040. Furthermore, Yn can be computed in time polynomial inlog|Gn|.

The graphsC(Gn,Yn) are the required sequence of Cayley graphs. The setsYn can be computed
efficiently, and we saw inSection3.1 that group operations inGn can also be computed efficiently, so
by Observation 2.11this is an explicit family of Cayley graphs.

The assumption of the theorem is true for very larged:

Theorem 4.2 ([22]). For every integer d≥ 0 there exists a subset Ud of the symmetric group Sd such
that |Ud| ≤ 10107

andλ (Sd,Ud)≤ 1/1000.

Corollary 4.3. If d ≥ 10109
Then the conditions ofTheorem 4.1hold.

We will construct the expanding generatorsYn ⊂ Gn inductively. The basis of the induction is the
assumption in the theorem aboutG1 = Ad.

Let G = Gn. We are givenY ⊂ G such thatλ (G,Y) < 1/1000 and|Y| ≤ d1/7/1040. We want to
find a setY′ ⊂GoAd such thatλ (GoAd,Y′) < 1/1000 and|Y′| ≤ d1/7/1040. We will useTheorem 2.12.
The theorem requires an expanding generating set forAd (which we already have), and an expanding
generating setT ⊂Gd which is a singleAd-orbit. Given any element of suchT, Theorem 2.12produces
(explicitly) an expanding generating set forGoAd = Gn+1.

Can we find an expanding, single-orbit, generating set forGd? Here is a simple attempt that fails.
TakeT =Yd. The setYd is expanding, asλ (Gd,Yd) = λ (G,Y) by Claim 2.2. Unfortunately,Yd contains
exponentially manyAd-orbits. Another natural set to consider inGd is the set ofbalanced vectors:
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Definition 4.4. Let G be a group, andY ⊂ G. Ford > |Y|, defineY(d) to be the vectors inYd in which
everyu∈Y appears exactlybd/|Y|c times, and the rest of the elements are 1∈G. We call these vectors
balanced vectors. Every two elements in the setY(d) are equal up to a permutation of the coordinates.
Sinced > |Y| we may assume that the permutation is even. In other words, the setY(d) is a single
Ad-orbit.

The setY(d) looks promising, but is it expanding? Not always. IfG is Abelian,Y(d) does not even
generate Gd, since every element inY(d) has product of coordinates equal to 1 (Y is symmetric, and every
element ofY appears the same number of times inY(d)). The groupsGn are far from being Abelian.
Indeed, every element ofGn has a representation as a commutator. It turns out that this property, along
with the existence of a small generating setY for G (assumed by induction) enables us to find a good
generating set forGd. We will enlargeY somewhat to a setX ⊃Y, and see thatX(d) is expanding for
Gd.

Definition 4.5. Let G be a group, and letY ⊂ G. Suppose every elementy ∈ Y can be written as a
commutator inG, namelyy = aybya−1

y b−1
y for someay,by ∈G. Define

Y∗ =
⋃
y∈Y

{ay,by,a
−1
y ,b−1

y ,a−1
y b−1

y ,byay}∪{1} .

Y∗ is symmetric, and|Y∗| ≤ 7|Y|.

Theorem 4.6. Let G be a group. Suppose that every element of Y is a commutator in G. Let c,k∈ N be
constants (to be chosen later). Define c·Y ⊂G to be the multi-subset where every element of Y appears
c times. Define X= (c·Y)∪Y∗, andλ = λ (G,Y). If d ≥ k2 · |X|7 then

λ (Gd,X(d)) < 0.01+max
{

(λ +7/c),e−kc(1−λ )/106
}

where X(d) is the set of balanced vectors.

The proof is given inSection5. To get a feeling for the constants, note that the largerk andc are,
the better inequality we get in the theorem.k is large whenX is small.c is large whenX is much larger
thatY, sok gets smaller whenc gets larger. Nevertheless, it is not difficult to make both of them large
enough for our purposes.

Theorem 4.6is the required result for the inductive step - it remains to show that we can choosec,k
properly such thatλ (Gd,X(d)) is small enough forTheorem 2.12.

We proceed with the inductive step. We are given a setYn ⊂ Gn of size at most|Y1|4 such that
λ (Gn,Yn) < 1/1000. ApplyTheorem 4.6(with c = 103,k = 105). Then the conditions ofTheorem 4.6
hold, and we obtain a setX(d) ⊂ Gd such thatλ (G,X(d)) < 1/50 (just substitute ourk,c in the theorem
to see this). ApplyTheorem 2.12to obtain a subsetP⊂Gn+1 of size|Y1|2, andλ (Gn+1,P) < 1/1000+
1/50. DefineYn+1 to be the set of all words of length 2 inP. This is a set of size|Y1|4 and (by
Observation 2.10) λ (Gn+1,Yn+1) < (1/1000+1/50)2 < 1/1000. This completes the inductive step.
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5 Proof of Theorem 4.6

The theorem appears inSection4. Let G,Y,X,λ be as defined inTheorem 4.6. We will use the notation
W = W(G) andW(Gd),Wb̄ defined inSection2.2.1. We need to prove that for everyw∈W(Gd)⊥ such
that‖w‖= 1, at least one of the following upper bounds holds:

‖ E
x∈X(d)

[Px(w)]‖ ≤ 0.01+λ +
7
c

, or (5.1)

‖ E
x∈X(d)

[Px(w)]‖ ≤ 0.01+e−kc(1−λ )/106
. (5.2)

We saw inSection2.2.1that it is enough to prove this forw∈Wb̄ whenb̄ 6= {||}d. SinceX(d) is invariant

under permutation of the coordinates it is enough to prove the inequality for everyw∈W⊗r
⊥ ⊗W⊗(d−r)

||
where 1≤ r ≤ d (this isWb̄ for bi =⊥ for 1≤ i ≤ r andbi = || for r < i ≤ d).

We split the proof to small and larger cases. For smallr we will prove inequality (5.1), and for large
r we will prove inequality (5.2).

Small r case: Whenr ≤ 0.1
√

d/|X|, the firstr coordinates of a random element inX(d) are very
closely a random element inXr . By Observation 2.8Px(w) only depends on the firstr coordinates of
x, so it is enough to bound‖Ex∈Xr [Px(w)]‖ for w ∈W⊗r

⊥ . By Claim 2.2‖Ex∈Xr [Px(w)]‖ ≤ λ (G,X)r .
The worst case is whenr = 1. As Y ⊂ X we can useClaim 2.4to give an upper bound toλ (G,X),
and we obtain inequality (5.1). This part is relatively easy, and we will not give a more detailed proof.
Notice however that the argument for smallr works foranygroupG, not only for our special sequence
of groups, and from the generating setX we only used theY part - not theY∗ part.

Large r case: Whenr is large the result is no longer true for any group (for any Abelian group there
exists anf ∈W⊗d such thatPy( f ) = f for all y ∈ Y(d)). We will need theY∗ part of the generating
setX (recall that it is only defined when every element ofG is a commutator). We will start with the
analysis of a different graph - the Cayley graphC(G×G,{(y,y−1)|y∈Y∗}). We give a lower bound of
(1−λ (G,Y))/21|Y∗|2 on the spectral gap of this graph inSection5.1. Afterward, inSection5.2, we
will give an upper bound on‖Ex∈X(d) [Px(w)]‖ using the spectral gap of this graph onG×G. This part is
again true for every groupG, not only our groups.

Notice that the spectral gap bound we get in theG×G case is rather weak - much smaller than
the spectral gap of the original graphC(G,Y). Whenr is large enough we are able to apply theG×G
result many times in parallel, amplifying the weaker upper bound inG×G. We will obtain the upper
bound (5.2).

5.1 Expansion ofG×G with correlated generators

Definition 5.1. Let G be a group, and letY ⊂G be a subset ofG. Define

Ỹ = {(y,y−1) | y∈Y} .

Theorem 5.2. Supposeλ (G,Y) < 1− ε for someε, and that every element of Y is a commutator in G.
Then

λ (G×G,Ỹ∗)≤ 1− ε

21|Y∗|2
.
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We find Theorem 5.2quite surprising. In the set̃Y there iscomplete correlationbetween the two
coordinates, and it would seem that this correlation would prevent the graph from being an expander.
For example, ifG is Abelian andY generatesG thenỸ does not even generateG×G, but only the
subgroup{(g,g−1) | g∈ G}. Also, for any groupG the set{(y,y) | y∈Y} only generates the subgroup
{(g,g) | g ∈ G}. In both cases the correlation in the generating set prevents the graph from being an
expander. We manage to decouple this correlation in the case of the special generating setY∗, whose
existence relies on the commutator property ofG.

The key observation is that we can represent the element(y,1) for anyy∈Y as a word of length 3
in Ỹ∗. We prove this in the following observation.

Observation 5.3. Let Z be the set of words of length 3 in the set̃Y∗. Then

C(G×G,{(Y,1)∪ (1,Y)})⊂C(G×G,Z) .

Proof. Recall that for everyy∈Y the setY∗ contains the elementsay,by,a−1
y b−1

y wherey= aybya−1
y b−1

y .
Observe that

(ay,a
−1
y ) · (by,b

−1
y ) · ((a−1

y b−1
y ),(a−1

y b−1
y )−1) = (y,1) .

This gives the required representation of(y,1). We can obtain(1,y) similarly.

It is easy to see that ifC(G,Y) has spectral gapε then the graphC(G×G,{(Y,1)∪ (1,Y)}) has
spectral gapε/2. We now have the decoupling we were looking for - the correlated generating setZ
contains the uncorrelated one(Y,1)∪ (1,Y). More precisely, applyClaim 2.4to observation5.3, and
deduce that

Observation 5.4.C(G×G,Z) has spectral gap at leastε/7|Y∗|2.

Recall thatZ consists of all words of length 3 in thẽY∗. By Observation 2.10, the spectral gap of
C(G×G,Ỹ∗) is at most 3 times smaller than the spectral gap ofC(G×G,Z), and the theorem is proved.

5.2 Reduction toG×G

We bound the average‖Ex∈X(d) [Px(w)]‖ from above in terms ofλ (G×G,Ỹ∗) from Section5.1.
For x∈ Xd write x = (x1,x2, x̄) wherex1,x2 ∈G andx̄∈Gd−2. By the triangle inequality,

Claim 5.5. For every w∈W⊗d

‖ E
x∈X(d)

[Px(w)]‖ ≤ E
x∈X(d)

‖(Px1,x2,x̄ +Px2,x1,x̄)(w)/2‖ .

By Observation 2.9the value of‖(Px1,x2,x̄+Px2,x1,x̄)(w)/2‖ only depends on the first two coordinates
of x. We therefore group together all thex with equalx1,x2, replacing ¯x by 1̄, a(d−2)-length vector
of 1’s, and it is enough to boundEx∈X(d) ‖(Px1,x2,1̄ +Px2,x1,1̄)(w)/2‖. The number of times each pair
x1,x2 appears in the average above is proportional to the number of extensions ofx1,x2 to a vector
(x1,x2, x̄) ∈ X(d). As d is much larger than 2, the number of such extensions is nearly equal for every
pairx1,x2, and we obtain the following:
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Claim 5.6. If d ≥ 100|X| then for every w∈W⊗d

E
x∈X(d)

‖(Px1,x2,x̄ +Px2,x1,x̄)(w)/2‖ ≤ E
y∈X2

‖(Py1,y2,1̄ +Py2,y1,1̄)(w)/2‖+0.01‖w‖ .

The 0.01 above pays for the fact that the number of extensions is only nearly equal.
The following lemma bounds the RHS ofClaim 5.6.

Lemma 5.7. If λ (G,Y) < 1− ε and r≥ 2 then for every w∈W⊗r
⊥ ⊗W⊗(d−r)

E
y∈X2

‖(Py1,y2,1̄ +Py2,y1,1̄)(w)/2‖ ≤ (1− cε

2·104|X|3
)‖w‖ def= ∆‖w‖ .

We prove the lemma inSection5.2.1.
CombiningClaim 5.6andLemma 5.7we obtain∥∥∥∥ E

x∈X(d)
[Px(w)]

∥∥∥∥≤ (∆+0.01)‖w‖

but ∆ is too close to 1. The problem originates fromClaim 5.5, where we partitioned the setX(d) into
pairs based on the value of the first 2 coordinates. This partition turns out to be too coarse. We will use a
finer partition ofX(d) by looking at the firstt pairs of coordinates, for some properly chosent ≤ r. This
will amplify the bound to∆t .

We now define this finer partition precisely. LetHt < Sd be the subgroup (of size 2t) generated by
the transpositions(2k−1,2k) for 1≤ k≤ t, and group together the elements{σ(x) | σ ∈ Ht}. When
t = 1 we get the grouping into pairs discussed above. The argument leading toClaim 5.6shows the
following:

Claim 5.8. If 2t ≤ 0.1
√

d/|X| then for every w∈W⊗d∥∥∥∥ E
x∈X(d)

[Px(w)]
∥∥∥∥≤ E

y∈X2t

∥∥∥∥ E
σ∈Ht

[
Pσ(y,1̄)(w)

]∥∥∥∥+0.01 .

The caset = 1 isClaim 5.6. However, the weak upper bound∆ we had fort = 1 amplifies to∆t .

Claim 5.9. Suppose that for every w∈W⊗2
⊥ ⊗W⊗d−2

E
y∈X2

∥∥∥∥1
2
(Py1,y2,1̄ +Py2,y1,1̄)(w)

∥∥∥∥≤ ∆‖w‖ .

Then for every w∈W⊗2t
⊥ ⊗W⊗d−2t

E
y∈X2t

∥∥∥∥ E
σ∈Ht

[
Pσ(y,1̄)(w)

]∥∥∥∥≤ ∆t‖w‖ .

The notation̄1 denotes a vector of length d−2 in the first inequality, and a vector of length d−2t in the
second one.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 91–120 104

http://dx.doi.org/10.4086/toc


ITERATIVE CONSTRUCTION OFCAYLEY EXPANDER GRAPHS

Proof. The proof is by induction ont. The caset = 1 is the assumption of the claim. For generalt

E
y∈X2t

∥∥∥∥ E
σ∈Ht

[
Pσ(y,1̄)(w)

]∥∥∥∥ = E
z∈X2

y∈X2(t−1)

∥∥∥∥ E
σ∈Ht−1

Pσ(1,1,y,1̄)
[
Pz1,z2,1̄ +Pz2,z1,1̄(w)

]∥∥∥∥
≤ ∆t−1 E

z∈X2

∥∥(Pz1,z2,1̄ +Pz2,z1,1̄)(w)
∥∥≤ ∆t‖w‖ .

Note that in the second line aboveσ ∈Ht−1 acts on the vectory - not on the first 2t−2 coordinates. The
first inequality follows from the induction hypothesis forHt−1. The second inequality follows from the
induction hypothesis forH1.

We can now complete the proof usingλ (G,Y) < 1− ε. Pick an integert satisfying

0.05
√

d/|X| ≤ 2t ≤ 0.1
√

d/|X| ≤ r .

Then by the claims in this section, forw∈W⊗r
⊥ ⊗W⊗d−r of norm 1,∥∥∥∥ E

x∈X(d)
[Px(w)]

∥∥∥∥≤ 0.01+
(
1− cε

2·104|X|3
)t ≤ 0.01+exp

( −ctε
2·104|X|3

)
≤ 0.01+exp

(−kcε

106

)
.

We plugged in 2t ≥ 0.05
√

d/|X| ≥ 0.05k|X|3. This concludes the proof ofTheorem 4.6for larger.

5.2.1 Proof ofLemma 5.7

Let τ be the spectral gap ofC(G×G,{(y,y−1) | y ∈ Y∗}). FromTheorem 5.2we have for everyu ∈
W⊥⊗W ∥∥∥∥ E

y∈Y∗

[
Py,y−1(u)

]∥∥∥∥≤ (1− τ)‖u‖ . (5.3)

In Lemma 5.7we want to bound

E
y∈X2

‖(Py1,y2,1̄ +Py2,y1,1̄)(w)/2‖ (5.4)

from above, for everyw∈W⊗r
⊥ ⊗W⊗(d−r).

We will start with the cased = 2. We will bound (5.4) in terms of the LHS of (5.3). In order to do
that, we will have to deal with the fact that the norm in (5.3) appears outside the expectation, while in
(5.4) it appears inside the expectation (seeClaim 5.10). Also, the average in (5.4) is overy∈ X2, while
in (5.3) the average is overy∈Y∗ (seeClaim 5.11). After completing the proof in the cased = 2, we
turn to prove the lemma for generald (Claim 5.12).

Claim 5.10. For every u∈W⊥⊗W

E
y∈Y∗

∥∥∥∥1
2
(Py,1 +P1,y)(u)

∥∥∥∥≤ (1− τ/4)‖u‖ .
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Proof. FromClaim 2.5and (5.3)

E
y∈Y∗

∥∥∥∥1
2
(Py,y−1 + I)(u)

∥∥∥∥≤ (1− τ/4)‖u‖ .

Applying the unitary operatorP1,y to each element above proves the claim.

Claim 5.11. For every u∈W⊥⊗W

E
y∈X2

∥∥∥∥1
2
(Py1,y2 +Py2,y1)(u)

∥∥∥∥≤ (1− τ

8c|X|
)‖u‖ .

Proof. Let p be the probability that for a randomy ∈ X2 we havey1 ∈ Y∗ and y2 = 1. Then p ≥
(1/2c) ·1/|X| (asX = c·Y∪Y∗ andY∗ is larger thanY). Using a convexity argument similar toClaim 2.4
we see that

E
y∈X2

∥∥∥∥1
2
(Py1,y2 +Py2,y1)(u)

∥∥∥∥≤ p· E
y∈Y∗

∥∥∥∥1
2
(Py,1 +P1,y)(u)

∥∥∥∥+(1− p) · ‖u‖

≤ p· (1− τ/4)‖u‖+(1− p)‖u‖ ≤ (1− pτ)‖u‖ ≤ (1− τ

8c|X|
)‖u‖

which provesClaim 5.11.

We have shown that for everyu∈W⊥⊗W

E
y∈X2

∥∥∥∥1
2
(Py1,y2 +Py2,y1)(u)

∥∥∥∥≤ (
1− τ

8c|X|
)
‖u‖ ≤

(
1− ε

21·8|Y∗|2 · |X|
)
‖u‖ ≤

(
1− cε

2·104|X|3
)
‖u‖ .

The last step follows from|Y∗| ≤ 10|X|/c (which is true sinceX = cY∪Y∗ and|Y∗| ≤ 10|Y|).
We have almost completed proving the lemma. We have the right upper bound, but foru ∈W⊗2

instead of inW⊗d.

Claim 5.12. If there existsλ > 0 such that for every u∈W⊗2
⊥

E
y∈X2

∥∥∥∥[
1
2
(Py1,y2 +Py2,y1)(u)]

∥∥∥∥≤ λ‖u‖

then for every w∈W⊗2
⊥ ⊗W⊗(d−2)

E
y∈X2

∥∥∥∥[
1
2
(Py1,y2,1̄ +Py2,y1,1̄)(w)]

∥∥∥∥≤ λ‖w‖ .

Proof. Write w∈W⊗r
⊥ ⊗W⊗(d−r) asw= ∑ui ⊗vi whereui ∈W⊗2

⊥ andvi ∈W⊗(d−2), such that thevi are
orthogonal and‖vi‖= 1. We have

E
y

∥∥∥∥[
1
2
(Py1,y2,1̄ +Py2,y1,1̄)(w)]

∥∥∥∥2

= E
y ∑

i

∥∥∥∥[
1
2
(Py1,y2 +Py2,y1)(ui)]

∥∥∥∥2

≤ λ
2‖w‖2

and the result follows sinceE(X)2 ≤ E(X2) for any random variableX.
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6 Proof of Theorem 2.14

The theorem appears inSection2.2.3.

Remark 6.1. This section contains equations in groups. Constants in the equations will be written in
Greek letters. Variables will be written in small Latin letters. Vectors of lengthd are underlined.

LetC = AoB, whereA is any group andB⊂ Sd. Given an elementγ ∈C we look for a “commutator
representation algorithm” that solves the equationγ = [c1,c2] := c1c2c1

−1c2
−1. By assumption we have

such an algorithm forA andB. The proof below extends Nikolov’s proof in [37].
Any elementγ ∈ A oB has a unique representationc = β ·α with β ∈ B, α ∈ Ad, so it is enough to

solve, for every pair(β ∈ B,α ∈ Ad), the equationβα = [b1x,b2y]. Now

[b1x,b2y] = [b1,b2] ·xb2b−1
1 b−1

2 yb−1
1 b−1

2 x−b−1
1 b−1

2 y−b−1
2

wherexb = b−1xb. In our casexb is simply a permutation of the coordinates ofx by b∈ B⊂ Sd.
We obtain a pair of equations:

β = [b1,b2], and

α = xb2b−1
1 b−1

2 yb−1
1 b−1

2 x−b−1
1 b−1

2 y−b−1
2 .

By assumption there is an algorithm that solvesβ = [b1,b2]. Fix some solutionb1 = β1,b2 = β2. It
remains to solve

α = xβ2β
−1
1 β

−1
2 yβ

−1
1 β

−1
2 x−β

−1
1 β

−1
2 y−β

−1
2 .

Sincexβ is a permutation (depending onβ ) of the coordinates ofx, the following lemma solves a more
general system of equations.

Lemma 6.2. For any four permutationsσ1,σ2,σ3,σ4 ∈ Sd and for anyα = α1, . . . ,αd ∈ Ad, the follow-
ing system of d equations, one for each1≤ i ≤ d:

αi = xσ1(i)yσ2(i)x
−1
σ3(i)

y−1
σ4(i)

has a solution algorithm that calls the commutator representation algorithm on A at most d times, and
does at most O(d) operations in the group A.

The rest of this section is devoted to the proof of this lemma.

Definition 6.3. We shall refer to theαi asconstantsand to thexi ,yi ,x
−1
i ,y−1

i asliterals.

There ared constants and 4d literals in our system. An important fact is that each literal appears
exactly oncein the system.

Let us solve first in the case that all fourσi are the identity permutation. The system in this case is:

α1 = [x1,y1]
α2 = [x2,y2]
· · ·
αd = [xd,yd]
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In this case the equations are independent (no variable appears in more than one equation). Each equation
asks for a commutator representation forαi ∈ A. We solve the system of equations by calling the
commutator representation algorithm forA for each equation separately.

The solution for generalσi is by reduction to a system similar to the one we obtained for theσi = 1
case. As long as there are variables that appear in more than one equation, we will remove equations by
“Gaussian elimination,” until we obtain a system of independent equations. We will then translate each
equation to a commutator representation equation like the ones above.

As mentioned, each literal appears exactly once in the system. Ifxi ,x
−1
i do not both appear in the

same equation, then we can eliminatexi ,x
−1
i from the system by substitution (payingO(1) multiplica-

tions inA). This reduces the number of equations in the system by 1. Repeat the substitution operation
until it is no longer possible. Notice that the property that each literal appears exactly once is preserved
along the way.

Claim 6.4. The substitution process ends with L≤ d equations

δl = Wl ∀l ∈ {1, . . . ,L}

where Wl is some word in literals and constants. The equations are now independent - every literal
appears in the same equation as its inverse, or they both do not appear in the system.

We will now reduce this system toL commutator representation problems in the groupA. The
following lemma finds a “hidden commutator” in each of the wordsWl :

Lemma 6.5. [37] In every Wl there exist g,h∈ {1,2, . . . ,d} depending on l, such that

Wl = Z1xgZ2yhZ3x−1
g Z4y−1

h Z5

where the Zi are words in literals and constants from the word Wl (they do not contain x±1
g ,x±1

h since
each literal appears at most once in the system of equations).

The proof is in [37]. Given that such a hidden commutator exists, it is easy to find one in time
polynomial ind by looking at all the literals appearing inWl (there are at most 2d of those). Substitute
every variable appearing in theZi by 1. This does not affect any other equation - the equations are
independent at this point. We obtain a new equation

δl = ζ1xgζ2yhζ3x−1
g ζ4y−1

h ζ5 .

This is now an equation in two variablesxg,xh - all the other words are constants. This is almost a
“commutator representation” equation. Indeed, if the fiveζi are all equal 1, we obtain the equation

δl = [xg,yh]

which is solved by calling the commutator algorithm onA. For generalζi we transform the “hidden”
commutator to a “real” commutator by changing variables. Define ˜xg = ζ3xgζ4 andζh = yhζ

−1
2 ζ

−1
3 .

Observe that
δl = ζ1ζ4[x̃g, ỹh]ζ3ζ2ζ5 .

THEORY OFCOMPUTING, Volume 2 (2006), pp. 91–120 108

http://dx.doi.org/10.4086/toc


ITERATIVE CONSTRUCTION OFCAYLEY EXPANDER GRAPHS

Rewrite this equation as
(ζ1ζ4)−1

δl (ζ3ζ2ζ5)−1 = [x̃g, ỹh] .

The LHS is some constant element inA, and the equation requests a representation of this element as
a commutator. We can find a solution by calling the commutator representation algorithm onA. The
solution is in the variables ˜xg, ỹh, but this is easily translated to a solution in our original variablesxg,yh.

How many operations did we use? We called the commutator representation algorithm inA at most
d times (one call for each final equationvl = Wl ). We called the commutator representation algorithm
on B one time. We usedO(1) multiplications inB, andO(d) multiplications inA (there wereO(1) per
either removing an equation or solving a final equation).

We can now deduceLemma 3.2. Definem(n) to be the cost (in bit operations) of multiplication in
Gn, and definec(n) to be the cost of computing the commutator representation of an element inGn. As
m(n+1) < (d+1)m(n) andm(1) = O(d2) we deduce thatm(n) < (d+1)n+2 ·O(1). From the discussion
above we see thatc(n+ 1) < (d+ 1)c(n)+ m(n) ·O(d) < (d+ 1)c(n)+ dn+3 ·O(1). This implies that
c(n) < d4n ·O(1) for large enoughd. Finally, as log|Gn|> dn, Lemma 3.2follows.

7 Expanding Schreier graphs

For a finite groupH, a subgroupH ′ < H, and a (symmetric) set of elementsU in it, theSchreier graph
Sch(H,H ′,U) has vertex setH/H ′ , and edges(gH′,ugH′) for everyu∈U , resulting in a|U |-regular
graph. IfH ′ = {1} then Sch(H,{1},U) is simply the Cayley graph C(H,U).

In this section we prove an analogue ofTheorem 4.1for Schreier graphs. InTheorem 4.1we con-
structed a sequence of expanding Cayley graphs assuming the existence of a good “seed” Cayley graph.
Here we do the same for Schreier graphs. The difference here is that the “seed” Schreier graph is known
to exist by elementary arguments, and we do not rely on the strong theorem of [22]. By [17], every
2d-regular graph is a Schreier graph, so a sequence of expanding Schreier graphs is implicit in any se-
quence of (even degree regular) expander graphs. However, it is generally hard to compute a Schreier
graph representation of a givend-regular graph. In this section we explicitly provide the Schreier graph
representation of our graphs.

There is another way to describe Schreier graphs. LetH be a group acting transitively on a setE.
Define a graph Sch(H,E,U) whose vertices areE, and whose edges are(e,ue) for all u∈U ande∈ E.
Pick a vertexe0 ∈ E, and defineH ′ = {h∈ H | he0 = e0), the stabilizer ofe0. The graph we defined on
E is isomorphic to Sch(H,H ′,U) by takinghe0 to hH′. The following definition gives an example of
groups acting on sets. This example will be the basis of a construction of expander Schreier graphs. To
fix notation, we redefine our basic objects:

Definition 7.1. Let Tn,d be the rootedd-regular tree with depthn, let Sym(n,d) be its group of symme-
tries, and letEn be the set of leaves ofTn,d, on which Sym(n,d) acts naturally.

Expansion of a Cayley graph implies the expansion of all its Schreier graphs:

Claim 7.2. Let H be a group , let H′ < H be a subgroup and let U⊂G be a subset. Thenλ (Sch(H,H ′,U))≤
λ (C(H,U)).
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Proof. Let v : H/H ′ → C be an eigenvector of the Schreier graph. Define ˆv : H → C by v̂(h) = v(hH′).
Thenv̂ is an eigenvector of C(H,U) with the same eigenvalue asv.

In Theorem 4.1we constructed a sequence of Cayley graphs C(Gn,Yn) whereGn is a subgroup of
Sym(n,d), and showed that it is an expander family under some assumption on the symmetric group
Ad, which is true for very larged. In light of Claim 7.2, the family Sch(Gn,En,Yn) is also a sequence
of expander graphs, under the same assumption. Below we construct expanding generating sets forGn,
which are both simpler thanYn and do not require any assumptions (and work for much smallerd).

Reminder: for two groupsG,K, such thatK < Sd, thewreath product GoK has elementsGd×K and
multiplication rule

(g1, . . . ,gd,σ) · (g̃1, . . . , g̃d,τ) = (gτ(1)g̃1, . . . ,gτ(d)g̃d,στ) .

Elements ofGd are naturally embedded inG oK by setting theK coordinate to be 1. The groupK is
embedded inGoK similarly by setting theGd coordinates to be 1.

Definition 7.3. Given a groupK < Sd, define a sequence of groups inductively byK1 = K andKn+1 =
Kn oK (The groupsGn of Theorem 4.1are such groups withK = Ad). Recall that each element in
Sym(n,d) is uniquely defined by writing a permutation inSd on each internal node ofTn,d, indicating
how the children of this vertex are permuted. The groupKn is the subgroup of Sym(n,d) where the
permutation written on every internal vertex is an element ofK. The groupKn acts on the setEn (the
leaves of thed-regular depthn tree) via its embedding in Sym(n,d).

The following theorem is the Schreier graph analogue ofTheorem 4.1.

Theorem 7.4. If there is a generating set Q⊂ K of size at most(d1/4/2) with λ (K, [d],Q) ≤ 1/4,
then there exist Qn ⊂ Kn of size|Q|4 such thatλ (Kn,En,Qn) ≤ 1/4, and Qn can be computed in time
polynomial inlog|En|.

The main difference fromTheorem 4.1is that in the Schreier case the setQ is known to exist for
many groupsK. The claim below shows the existence of suchQ for K = Sd (for d large enough).

Claim 7.5. Let d≥ 100, and let U be100 permutations in Sd chosen randomly uniformly. Then
λ (Sd, [d],U)≤ 1/4 with probability larger than 1/2.

For proofs see [13] (or [9] for a weaker result which would result in a larger requiredd).

Corollary 7.6. For every d≥ 4 ·1004 there is a sequence of subsets Un ⊂ Sym(n,d) of size1004 such
that λ (Sym(n,d),En,Un) < 1/4. Furthermore, Un is computable in time polynomial inlog|En|.

Proof of Theorem 7.4: We will assume that|Q|4 dividesd. The divisibility condition is not crucial,
but it simplifies the proof. We proceed by induction - the casen = 1 is the assumption of the theorem.
Assume the theorem holds for somen. We show that it holds forn+1.

Claim 7.7. Let Q(d)
n be the vectors in Qdn in which every element in Qn appears exactly d/|Qn| times (see

Definition 4.4). Let x= (x1, . . . ,xd) be an element of Q(d)
n . Define U= {yxz | y,z∈ Q} ⊂ Kn+1. Then

λ (Kn+1,En+1,U)≤ λ (Kn,En,Qn)+λ (K, [d],Q).
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We prove the claim later, and now proceed with the proof of the theorem. DefineQn+1 to be the set
of words of length 2 in the setU given byClaim 7.7. Then

λ (Kn+1,En+1,Qn+1) = λ (Kn+1,En+1,U)2 ≤
[
λ (Kn,En,Qn)+λ (K, [d],Q))

]2 ≤ (1/4+1/4)2 ≤ 1/4

where the equality follows fromObservation 2.3, the first inequality isClaim 7.7and the second in-
equality is the induction assumption. By definition|Qn+1| = |Q|4. This concludes the proof ofTheo-
rem 7.4

Proof ofClaim 7.7. The proof uses the zig-zag theorem [42]. Here is a quick definition of the zig-zag
product:

Definition 7.8. Let X,Y be regular graphs such that the degree ofX is equal the size ofY. For every
v∈ X write the list of neighbors ofv as an arrayv[i] for i ∈ Y (the ordering of the list of neighbors is
arbitrary, and different lists may lead to different graphs). Define a graphZ whose vertices are pairs
(v, i), with v ∈ X and i ∈ Y. The neighbors of a vertex(v, i) are the vertices reached by making the
following three steps:

• Step 1: Walk from(v, i) to (v, j) where(i, j) is an edge ofY.

• Step 2: Walk from(v, j) to (v[ j], j) wherev[ j] is the j-th neighbor ofv in the graphX.

• Step 3: Walk from(v[ j], j) to (v[ j],k) where( j,k) is an edge ofY.

Z has degree(degY)2. It is called thezig-zag productof X andY, and we writeZ = X©z Y.

Theorem 7.9 ([42]). If Z = X©z Y thenλ (Z)≤ λ (X)+λ (Y).

DefineQ̃n to be the multiset of sized obtained by duplicating every element ofQn exactlyd/|Qn|
times. Notice that the vectorx is simply a list of the elements of̃Qn. Let X = Sch(Kn,En,Q̃n), Y =
Sch(K, [d],Q), andZ = Sch(Kn+1,En+1,U). We claim thatZ = X©z Y. The proof ofClaim 7.7then
follows from Theorem 7.9(notice thatλ (X) = λ (Kn,En,Qn)). The first requirement is that the degree
of X is equal to the size ofY, and indeed they are bothd. It remains to verify that edges ofZ are the
walks of length 3 of the zig-zag product. For everyv ∈ X and i ∈ Y definev[i] = xi(v) (the element
xi ∈ Kn acts onv∈ En). The arrayv[i] is the list of neighbors ofv in X. An edge ofZ connects(v, i) to
yxz(v, i) (embedded inKn+1 asy = (1,1, . . . ,1,y), z= (1,1, . . . ,1,z) andx = (x1,x2, . . . ,xd,1)). Let (v, i)
be a vertex ofZ, and let j = z(i), andk = z( j) = yz(i). Then

yxz(v, i) = yx(v,z(i)) = yx(v, j) = y(x j(v),z(i)) = y(v[ j], j) = (v[ j],k) .

This is exactly the definition of an edge in the zig-zag product, and we have provedClaim 7.7.
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8 Generators for an infinite group with property ( τ)

There are natural mappings, fork≤ n between Sym(n,d) and Sym(k,d). Theembedding mapsends an
elementσ ∈ Sym(k,d) to the element of Sym(n,d) which acts on the firstk levels of the tree byσ . The
restriction mapsendsτ ∈ Sym(n,d) to its restriction to the firstk levels of the tree.

In Theorem 4.1we constructed subsetsYn ⊂Gn < Sym(n,d) that generatedGn as expanders. In this
section we will prove that the setsYn are consistent: the restriction ofYn to Sym(k,d) is exactlyYk. This
implies that there is a setY∞ of symmetries of the infinite rootedd-regular tree, which restricts toYn for
anyn. A nice corollary is that the infinite group generated byY∞ has propertyτ (defined below) with
respect to some sequence of subgroups. In the next section we will use this consistency to construct a
sequence of expander graphs each of which is a lift of its predecessor.

Theorem 8.1. Let Yn ⊂ Gn be the groups and generating (multi)sets ofTheorem 4.1. Then for every
n≥ k≥ 2 the restriction of Yn to Sym(k,d) is equal Yk. The same holds for the sets Qn of Theorem 7.4.

Corollary 8.2. Define Y∞ to be the set of symmetries of the infinite tree whose restriction to Sym(n,d) is
Yn. The set Y∞ generates an infinite subgroup G∞ of the symmetries of the infinite tree, and the restriction
of G∞ to Sym(n,d) is Gn for all n≥ 2. The same holds for Qn of Theorem 7.4.

The following definition of property (τ) is from [30], page 49.

Definition 8.3. Let G be a finitely generated group, and letY be a finite symmetric generating set for
G. Let L = {Nn}n∈N be a family of finite index normal subgroups inG. ThenG has property (τ) with
respect toL if the family C(G/Nn,Y/Nn) is an expander family.

Corollary 8.4. Let Nn be the kernel of the restriction function from G∞ to Gn. Then, under the assump-
tion on the alternating group described inTheorem 4.1, the group G∞ has property(τ) with respect to
the family{Nn}∞

n=2.

Proof ofTheorem 8.1. The proof will only deal with the (harder) case ofYn. Recall that elements in
Sym(n,d) are represented by writing a permutation on each internal vertex ofTn,d. Define thek-th level
of an elementu∈ Sym(n,d) to be the permutations written on thek-th level ofTn,d in this representation
of u.

The following claim is somewhat complicated to state, but its proof is an easy induction.

Claim 8.5. Let Fi, j be sequence of functions Fi, j : Sym(∞,d)q → Sd, where1≤ i ≤ q and j is an internal
vertex of T∞,d. Suppose that for vertices j in the k-th level of T∞,d, the output of Fi, j only depends on
levels1 up to (k− 1) of its inputs (in particular Fi,1 is a constant function). Define U1 ⊂ Sym(n,d)
to be the set Fi,1() for 1≤ i ≤ q, and inductively, given the set Un = un

1,u
n
2, . . . ,u

n
q in Sym(n,d) define

un+1
i ∈Sym(n+1,d) by writing the permutation Fi, j(un

1,u
n
2, . . . ,u

n
q) in internal vertex number j of Tn+1,d.

Then the restriction of un+1
i to Sym(n,d) is un

i .

Theorem 8.1now follows by observing that the setsYn are indeed constructed by the procedure in
Claim 8.5. (The only exception isY1 which was constructed differently, so the theorem’s statement holds
only for n≥ 2). To show this, recall briefly how we constructedYn+1 given the setYn.

• Construct the setYn
∗ defined inDefinition 4.5.
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• Write X = c·Yn∪Yn
∗.

• Pick an elementx∈ X(d) ⊂ Sym(n,d)d, and embed it in Sym(n+1,d).

• DefineZ = Y1xY1 by regarding the elements ofY1 as elements in Sym(n+1,d).

• DefineYn+1 to be the set of words of length 2 in the setZ.

We will now verify that the(k+1)-level an element inYn+1 is a function of levels 1 up tok of the
elements inYn. We will also verify that the first level of elements inYn+1 is indeed a constant independent
of n. We leave to the reader to verify that the conditions ofClaim 8.5hold precisely, which we feel is
rather too technical.

Observation 8.6. Let g be an element ofGn. Let g = [x,y] be the commutator representation derived in
Section6. Then levelk of x andy depends only on levels 1 up tok of g.

The observation follows by following the construction of the commutator representation, which is
simply induction on the level. We conclude that for elements inYn

∗, and therefore inX, thek-th level
depends only on levels 1 up tok of the elements inYn.

Observation 8.7. Let g,h be elements in Sym(∞,d). Then levelk of gh depends only on levels 1 up to
k of g andh.

Observation 8.8. Let x = (x1, . . . ,xd) be an element of Sym(n,d)d. Embedx in Sym(n+1,d) as
(x1, . . . ,xd,1), represented by writing a permutation on every internal vertex ofTn+1,d. The permuta-
tion written on the root is the identity, and the permutations written on levelk+ 1 are permutations
written on levelk of x1, . . . ,xd.

The two observations above imply that levelk+1 of elements inZ depend only on levels 1 up tok
of X. Also, level 1 of elements inZ is independent ofn, since it depends on level 1 of elements inY1 and
level 1 ofx which is the identity permutation. The same holds forYn+1 as elements there are products of
elements ofZ (we useObservation 8.7again). This concludes the proof of the theorem.

9 A sequence of expanding lifts of graphs

Definition 9.1. Given a graphX, on n verticesv1, . . . ,vn, a d-lift of X is a graphY on nd verticeswi,k

wherei ∈ [n],k ∈ [d]. For each edgee= (vi ,v j) of X choose a permutationσe ∈ Sd, and connectwi,k

with w j,σe(k) for all k ∈ [d]. The verticeswi,k for fixed i andk ∈ [d] are called thefiber abovevi . The
fibers above an edgee= (vi ,v j) are connected by a perfect matching defined byσe. There are many
non-isomorphic lifts of a graphX depending on the choice of the permutationsσe. For more information
on lifts see [6].

In this section we show how to obtain an explicit sequence of expander graphs, each of which is a
d-lift of its predecessor for any (large enough)d. Actually, the sequence of Schreier graphs constructed
in the previous sections do.

Here are some basic properties of lifts which are not hard to prove:
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• The degree of a vertexv is equal to the degree of all the vertices in the fiber abovev, so a lift of a
regular graph is regular with the same degree.

• The definition of a lift works fine for parallel edges and loops (where the loop counts as two edges
when computing the degree of a vertex).

• Lifting is transitive: IfY is a lift of X andZ is a lift of Y thenZ is a lift of X.

• If Y is a lift of X thenλ (Y)≥ λ (X).

As an example, consider the graphX0 which consists of a single vertex withq loops on it. A lift
X1 of X0 is encoded byq permutationsσ1, . . . ,σq ∈ Sd. The graphX1 has vertex set[d] and edges
(i,σl (i)), i ∈ [d], l ∈ [q], making it a 2q-regular graph.

Linial raised the following conjecture:

Conjecture 9.2 (Linial). For every graphX and everyd there exists ad-lift Y of X such thatλ (Y) ≤
max(λ (X),O(

√
d)).

For d = 2 a slightly weaker version of the conjecture was proved in [8].
The conjecture yields a method to construct a sequence of expander graphs each of which is a lift

of its predecessor. Pick any regular graphX1 with λ (X1) = 1/2. Now choose a sequence of graphsXn

such thatλ (Xn+1)≤ λ (Xn) andXn+1 is a lift of Xn (we need the degree of the initial graph to be large
enough for this to work).

Theorem 9.3. Let Xn = Sch(Kn,En,Qn) be the family of graphs ofTheorem 7.4. ThenXn+1 is a d-lift
of Xn for all n≥ 1.

By Corollary 7.6we obtain the required sequence of expanding lifts:

Corollary 9.4. Let K = Sd with d≥ 4 ·1004, and let Q⊂ Kn be the generating set given in7.6. LetXn

be the sequence constructed inTheorem 9.3. Thenλ (Xn)≤ 1/4 for all n andXn+1 is a d-lift of Xn for
all n≥ 1.

The proof ofTheorem 9.3is by induction. The following two claims show how to construct a
Schreier graph of a wreath productG oH which is naturally a lift of a Schreier graph ofH. These two
claims will be used in the induction step.

Claim 9.5. Let G,H be groups acting on EG,EH respectively. H is a subgroup of the symmetric group
on EH , so the group GoH is defined, and its elements are written as(g,h) where g= (gy)y∈EH and h∈H.
Then GoH acts on EG×EH by (g,h)(x,y) = (gy(x),h(y)).

Proof. We need to show that for two elements(g,h),(g̃, h̃) ∈GoH and an element(x,y) ∈ EG×EH

(g,h)
[
(g̃, h̃)(x,y))

]
=

[
(g,h) · (g̃, h̃)

]
(x,y) .

And indeed,

(g,h)
[
(g̃, h̃)(x,y))

]
= (g,h)(g̃y(x), h̃(y)) = (gh̃(y) · g̃y,h· h̃)(x,y) =

[
(g,h) · (g̃, h̃)

]
(x,y) .
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Claim 9.6. Let G,H be as inClaim 9.5, and let U be a subset of GoH. Then Sch(G oH,EG×EH ,U) is
a |EG|-lift of Sch(H,EH ,U). (Notice that we have identified U with its restriction to H).

Proof. The vertices of Sch(G oH,EG×EH ,U) are pairs(x,y) with x∈ EG andy∈ EH . Partition these
vertices to subsetsSy = {(x,y) | x ∈ EG}. We will show that Sch(G oH,EG×EH ,U) is a |EG|-lift of
Sch(H,EH ,U) where the fiber abovey∈ EH is Sy. In order to prove this, we need to show that for every
edgee= (y1,y2) of Sch(H,EH ,U) there corresponds a perfect matching betweenSy1 andSy2.

Edges in Sch(H,EH ,U) are of the form(y,uy), for y∈ EH andu∈U . Write u = (g,h) in G oH, so
uy= h(y). In Sch(G oH,EG×EH ,U), a vertex(x,y) is connected tou(x,y) = (gy(x),h(y)). This is a
perfect matching betweenSy andSh(y) sincegy is a permutation ofEG for y fixed.

Can we useClaim 9.6 to obtain a sequence of expanding lifts? InSection8 we constructed an
expander sequenceXn = Sch(Kn,Qn,En) where eachQn is the restriction of a single setQ∞. Since
Kn+1 = Kn oK we deduce byClaim 9.6that Sch(Kn+1,Q∞,En+1) is a lift of Sch(K,Q∞, [d]) = X1, while
we wantedXn+1 to be a lift ofXn. The following observation comes to the rescue (notice the change of
order in the wreath product).

Observation 9.7. Let Kn be the sequence of groups defined in7.3. ConsiderKn as a subset of the
permutation group onEn. ThenKn+1 = K oKn.

We can now useClaim 9.6to conclude that Sch(Kn+1,Q∞) is ad-lift of Sch(Kn,Q∞), which proves
Theorem 9.3.
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