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Abstract: In theCovering Steinerproblem, we are given an undirected graph with edge-
costs, and some subsets of vertices calledgroups, with each group being equipped with a
non-negative integer value (called itsrequirement); the problem is to find a minimum-cost
tree which spans at least the required number of vertices from every group. The Covering
Steiner problem is a common generalization of thek-MST and the Group Steiner problems;
indeed, when all the vertices of the graph lie in one group with a requirement ofk, we get
thek-MST problem, and when there are multiple groups with unit requirements, we obtain
the Group Steiner problem.

While many covering problems (e.g., the covering integer programs such as set cover)
become easier to approximate as the requirements increase, the Covering Steiner problem
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remains at least as hard to approximate as the Group Steiner problem; in fact, the best
guarantees previously known for the Covering Steiner problem wereworsethan those for
Group Steiner as the requirements became large. In this work, we present an improved
approximation algorithm whose guarantee equals the best known guarantee for the Group
Steiner problem.

1 Introduction

We present an improved approximation algorithm for the Covering Steiner problem. This problem has
the following property that goes against the norm for covering problems: its approximability cannot
get better as the covering requirements increase. Thus the approximation ratio of the general Covering
Steiner problem is at least as large as for the case of all unit requirements, which is just the Group
Steiner problem. In this work, we improve on the known approximation algorithms for the Covering
Steiner problem given by Even et al. [3] and Konjevod et al. [11]. Our results match the approximation
guarantee of the known randomized algorithm for the Group Steiner problem due to Garg et al. [6]
(see the paper of Charikar et al. [2] for a deterministic algorithm). A suitable melding of a randomized
rounding approach with a deterministic “threshold rounding” method leads to our result.

Let G = (V,E) be an undirected graph with a non-negative cost functionc defined on its edges. Let
a family G = {g1,g2, . . .,gk} of k subsets ofV be given; we refer to these setsg1,g2, . . . ,gk asgroups.
For each groupgi , a non-negative integerr i ≤ |gi | is also given, called therequirementof the group.
The Covering Steiner problem onG is to find a minimum-cost tree inG that contains at leastr i vertices
from each groupgi ; the special case of unit requirements (i.e.,r i = 1 for all i) corresponds to the Group
Steiner problem. We denote the number of vertices inG by n, the size of the largest group byN, and the
largest requirement of a group byK. Logarithms in this paper will be to the base two unless specified
otherwise.

As in the paper of Garg et al. [6], we focus on the case where the given graphG = (V,E) is a
tree, since the notion of probabilistic tree embeddings [1] can be used to reduce an arbitrary instance
of the problem to a instance on a tree. Specifically, via the result of Fakcharoenphol et al. [4], a ρ–
approximation algorithm on tree-instances implies anO(ρ logn)–approximation algorithm for arbitrary
instances. In fact, we can assume that the instance is arooted tree instance where the root vertex must
be included in the tree that we output; this assumption can be discharged by running the algorithm over
all choices of the root and picking the best tree.

Given an instance of the Covering Steiner tree problem, one can get anO(k) approximation algo-
rithm using well-known ideas without resorting to the reduction to tree instances outlined above. Indeed,
one can use the 2-approximation algorithm (given by Garg [5]) for the rootedr i-MST on each groupgi

separately, and return the union of thek trees obtained. However, in case the number of groupsk is
large, one may prefer an algorithm whose dependence on the number of groupsk is better than linear,
perhaps at the expense of additional logarithmic terms. And indeed, such results are possible: for the
special case of the Group Steiner tree problem (whereK = 1), the current-best approximation bound
for tree instancesis O(logk · logN). For the Covering Steiner problem, the current-best approximation
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algorithm for tree instances isO((logk+ logK) · logN) [3, 11]; also, an approximation bound of

O

(
logN · log2k

log(2(logN) · (logk)/ logK)

)
is also presented in [11], which is better ifK ≥ 2a(logk)2

wherea > 0 is a constant. As mentioned above,
we need to multiply each of these three approximation bounds byO(logn) to obtain the corresponding
results for general graphs.

Note that the above approximation ratiosget worseas the requirements increase, i.e., asK increases.
This is unusual for covering problems, where the approximability usuallygets betteras the coverage
requirements increase. This is well-known, for instance, in the case of covering integer programs which
include the set cover problem; the “multiple coverage” version of set cover is one where each element
of the ground set needs to be covered by at least a given number of sets. In particular, the approximation
ratio improves from logarithmic toO(1) (or even 1+o(1)) for families of such problems where the min-
imum covering requirementB grows asΩ(logm), whenm is the number of constraints (see, e.g., [12]).
In light of these results, it is natural to ask whether the approximation guarantee for the Covering Steiner
problem can be better than that for the Group Steiner problem.

This question can easily be answered in the negative; indeed, given a rooted tree instance of the
Group Steiner problem and an integerK, we can create an instance of the Covering Steiner problem
as follows: increase the requirement of every group from 1 toK, connectK−1 dummy leaves to the
root with edge-cost zero and add these leaves to all the groups. It is easily seen that any solution to this
Covering Steiner instance can be transformed to a solution to the original Group Steiner instance with
no larger cost, and that the two instances have the same optimal solution value. Therefore, the Covering
Steiner problem is at least as hard to approximate as the Group Steiner problem. (This fact was pointed
out to us by Robert Krauthgamer.)

We are thus led to the question: can the Covering Steiner problem be approximated as well as the
Group Steiner problem? The following theorem answers this question in the affirmative:

Theorem 1.1.There is a randomized polynomial-time approximation algorithm for the covering Steiner
problem which, with high probability, produces an feasible solution with an approximation ratio of (i)
O(logN · logk) for tree instances, and (ii) O(logn· logN · logk) for general instances.

This implies an improvement ofΘ((logn)/ log logn) over previous results in some situations; in-
deed, this is achieved when, say,k = log2+Θ(1) n andK = nΘ(1). (The reason we takek� log2n in this
example is that the problem on trees is approximable to withinO(k) as noted earlier, and so ifk was
small, we would have a good approximation algorithm anyway.)

The bounds for tree instances are essentially the best possible in the following asymptotic sense:
the paper of Halperin and Krauthgamer [8] shows that, for any constantε > 0, anO((log(n+ k))2−ε)-
approximation algorithm for the Covering Steiner problem implies that NP⊂ ZTIME[exp{(logn)O(1)}].
(Technically, the hardness is shown for the rooted version of the problem, but this is without loss of
generality, since the rooted version can be reduced to the unrooted version by introducing a new group
g0 containing only the root vertexr and having unit requirement.) Furthermore, since we adopt a natural
linear programming (LP) relaxation considered by Garg et al. [6] and Konjevod et al. [11], we would
like to note that the integrality gap of this relaxation for tree-instances of Group Steiner isΩ(logk ·
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logN/ log logN) [7]. Since this integrality gap naturally extends to the Covering Steiner problem as
well, this suggests that our techniques cannot improve the approximation guarantee substantially.

1.1 Our Techniques

Our approach to solving the Covering Steiner problem is to iteratively round an LP relaxation of the
problem suggested by Konjevod et al. [11]. Given a partial solution to the problem, we consider the
fractional solution of the LP for the current residual problem, and extend the partial solution using either
a randomized rounding approach or a direct deterministic approach.

Informally, in order to do better than the approach of Konjevod et al. [11], the main technical issue we
handle is as follows. LetOPT denote the optimal solution value of a given tree instance. In essence, each
iteration of [11] adds an expected cost ofO(OPT · logN) to the solution constructed so far, and reduces
the total requirement by a constant fraction (in expectation). Since the initial total requirement is at most
k ·K, we thus expect to run forO(logk+ logK) iterations, resulting in a total cost ofO(OPT · (logk+
logK) logN) with high probability. To eliminate the logK term from their approximation guarantee, we
show, roughly, that every iteration has to satisfy one of two cases: either (i) a good fraction of the groups
have their requirement cut by a constant factor via a threshold rounding scheme, while paying only a
cost ofO(OPT), or (ii) a randomized rounding scheme is expected to fully cover a constant fraction of
the groups. Achip gamepresented inSection3 is used to bound the number of iterations where case (i)
holds; Janson’s inequality [9] and some deterministic arguments are used for case (ii). In the interest of
the cleanest exposition, we have not attempted to optimize our constants.

2 Preliminaries

The analysis of our algorithm will use an inequality due to Janson [9], which we now state. LetΩ
be a set of elements, and let us pick a random setR by picking eache∈ Ω independentlywith some
probability pe. Let {A j ⊆ Ω | j ∈ J} be some family of subsets ofΩ, and we say thatj ∼ j ′ if j 6= j ′

andA j ∩A j ′ 6= /0. DefineB j to be the event thatA j ⊆ R, and let∆ = ∑ j< j ′: j∼ j ′ Pr[B j ∩B j ′ ]. If Yj is the
indicator variable for eventB j , let µ j = E[Yj ] = Pr[B j ], andµ = ∑ j∈J µi . Then Janson’s inequality says
that

Theorem 2.1. For anyδ ∈ [0,1],

Pr
[
∑

j

Yj ≤ (1−δ )µ
]
≤ exp

{
− δ 2 µ

2+(∆/µ)

}
. (2.1)

3 A Chip Game

Consider the followingchip game. We initially have chips arranged ink groups, with each groupgi

having some numbern(init )
i ≤ K of chips. Chips are iteratively removed from the groups in a manner

described below; a group is calledactiveif the number of chips in it is nonzero. The game proceeds in
rounds: in each round, we choose roughly half of the currently active groups and halve their sizes, until
there are no more active groups left. Formally, the game is as follows:
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1. At the start of some round, letni denote the number of chips in groupgi . Let A denote the number
of groups currently active; i.e.,A = |{i | ni 6= 0}|.

2. We choose any set of at leastdA/2e activegroups.

3. For each of these chosen groupsgi , we removeat leastdni/2e chips, causing the new number
of chips in groupgi to become at mostbni/2c. Note that this may cause some of the groups to
become inactive.

4. If there are no more chips left, we stop, else we go back to Step 1.

In the analysis below, it will not matter that two constants in Steps 2 and 3 above were 1/2 each; any
two constantsa,b∈ (0,1) lead to the same asymptotic result in the following lemma.

Lemma 3.1. The maximum number of rounds possible in the above chip game is O(logk · logK).

Proof. To bound the number of rounds, we proceed as follows. We now modify the game into an
equivalent format. We initially start with 1+ blogn(init )

i c chips in each groupgi ; once again, a group
is active if and only if its number of chips is nonzero. Now, in any round, we choose at least half
of the currently-active groups, and remove at leastonechip from each of them. Note that this simple
“logarithmic transformation” does not cause the maximum number of rounds to decrease, and hence
we can analyze the game on this transformed instance. LetN1 be the number of rounds in which at
leastk/2 groups are active. In each of these rounds, at leastk/4 chips get removed. However, since
the total number of chips is at mostk(1+ logK), the number of such roundsN1 is at most 4(1+ logK).
Proceeding in this manner, we see that the total number of rounds isO(logk · logK), as claimed.

The proof above indicates how to prove that the bound proved above inLemma 3.1is tight, and there
are runs of the chip game which requireΘ(logk · logK) rounds. Suppose all the groups start off with
exactlyK chips. We first repeatedly keep choosing thesameset ofdk/2e groups for removing chips, and
do this until all these groups become inactive; we needΘ(logK) rounds for this. We are now left with
aboutk/2 active groups. Once again, we repeatedly keep removing chips from the same set of about
k/4 active groups, until all of these become inactive. Proceeding in this manner, we can go for a total of
Θ(logk · logK) rounds.

4 The Algorithm and Analysis

In this section, we present our algorithm for the Covering Steiner problem, and analyse it. As mentioned
in the introduction, we will assume that the input consists of arooted treeT, where the rootr must be
included in the output solution. Furthermore, we assume (without loss of generality) that every vertex
belonging to a group is a leaf ofT, and that every leaf belongs to some group.

4.1 The Basic Approach

As in previous papers on the Covering Steiner and Group Steiner problems, the broad idea of the al-
gorithm is to proceed in iterations; each iteration produces a subtree rooted atr that provides some
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additional coverage not provided by the previous iterations. This process is continued until the required
coverage is accomplished, and the union of all the trees constructed is returned as output.

Consider a generic iteration; we will use the following notation. Letr ′i denote the residual require-
ment of groupgi ; call the groupgi activeif and only if this residual requirementr ′i > 0, and letk′ be the
number of groups currently active. The leaves ofgi already covered in previous iterations are removed
from gi ; with a slight abuse of notation, we refer to this shrunk version of the groupgi also asgi . All
the edges chosen in previous iterations have their cost reduced to zero: we should not have to “pay” for
these edges if we choose them again. For any non-root nodeu, let pe(u) denote the edge connectingu
to its parent; for any edgeenot incident on the root, letpe(e) denote the parent edge ofe. Finally, given
an edgee= (u,v) whereu is the parent ofv, bothT(v) andT(e) denote the subtree ofG rooted atv.

The following integer programming relaxation for the residual problem was proposed by Konjevod
et al. [11]:

Z∗ = min∑
e

cexe

subject to ∑
j∈gi

xpe( j) = r ′i ∀ activegi (4.1)

∑
j∈(T(e)∩gi)

xpe( j) ≤ r ′ixe ∀ activegi ,∀e∈ E(T) (4.2)

xpe(e) ≥ xe ∀enot incident onr (4.3)

xe∈ [0,1]

Note that forcing each variablexe to have values in{0,1} instead of values in the real interval[0,1] gives
us a ILP formulation of the Covering Steiner problem; indeed, in this case, the variablexe being set to
1 corresponds to the edgee being in the solution tree. Since we relax the problem and allow thexe’s to
take values in a larger range ([0,1] instead of{0,1}), it follows that the optimal valueZ∗ of this LP is a
lower bound onOPT, the optimal solution value of the integer linear program, and hence of the original
Covering Steiner instance.

In each iteration we start with the residual problem, solve the above LP optimally, and then round the
resulting fractional solution as described below inSection4.2. As noted in [11], it is interesting to note
that the integrality gap of the above relaxation can be quite large: when we write the LP relaxation for
the original instance, the integrality gap can be arbitrarily close toK. Hence it is essential that we satisfy
the requirementspartially in each iterationt, re-solvethe LP for the residual problem, and continue.

4.2 Rounding the Fractional Solution

Let {xe} denote an optimal solution to the LP relaxation for some generic iterationt, and letZ∗t be the
optimal LP value. We now show how to round such an optimal solution to partially cover some of the
residual requirements. In all of the discussion below, only currently active groups will be considered.
For any leafj, we callxpe( j) theflow into j. The constraint (4.1) ensures that total flow into the leaves
of a groupgi is exactlyr ′i . For α ≥ 1, we define a groupgi to be(p,α)-coveredif a total flow of at
leastpr′i goes into the elements (i.e., leaves) ofgi which receive individual flow values of at least 1/α.
An α-scalingof the solution{xe} is the scaled-up solution{x̂e} where we set ˆxe←min{α xe,1}, for all
edgese.
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The iteration proceeds as follows. We defineG1 to be the set of active groups that are(1/2,4)-
covered; i.e., at least half of the flow into these groups goes to elements that get individual flows of at
least a quarter. We will consider two cases based on whether the number of groups inG1 is at leastk′/2
or not.

Case I: |G1| ≥ k′/2. In this case, we simply take a 4-scaling of the LP solution andpick the edges that
are rounded up to 1. By the monotonicity constraintxpe(e) ≥ xe in the LP, the edges thus picked will
form a connected subtree containing the root.

Moreover, we claim that every group inG1 has at least half of its requirement covered by this process.
Indeed, any groupgi ∈G1 is (1/2,4)-covered (i.e., it has at leastr ′i/2 of its member leaves receiving flows
of value at least 1/4); hence the 4-scaling ensures that the picked edges cover at leastr ′i/2. Since we
are in the case whenG1 is large, we know that at least half of the currently active groups have their
requirements reduced by at least half. But nowLemma 3.1for the chip game implies that the total
number of iterations where Case I can hold is at mostO(logk · logK). Furthermore, we pay a cost of at
most 4·Z∗t ≤ 4·OPT in each such iterationt, implying the following result:

Lemma 4.1. The total cost incurred in Case-I iterations, where|G1| ≥ k′/2, is

cost(Case I iterations)= O(logk · logK ·OPT). (4.4)

(Let us emphasize again that throughout the paper,OPT refers to the cost of the optimal solution for the
original Covering Steiner instance.) Now suppose Case I does not hold, and thus we consider:

Case II: |G1| < k′/2; i.e., fewer than half the groups are(1/2,4)-covered. In this case, we further
categorize the groups inG\G1 as follows. Letλ = c′ logN, for a sufficiently large absolute constantc′.
We defineG2 to be the set of active groups that arenot (3/4,λ )-covered: i.e., at least one fourth of the
flow into these groups goes to elements that receive very little flow (at most 1/λ each). Finally, letG3

be the set of active groups that do not lie inG1∪G2.
We now use a modification of the rounding procedure used previously by Garg et al. [6] and Kon-

jevod et al. [11]. Let {x′e} be aλ -scaling of the LP solution; i.e.,x′e = min{λ ·xe,1} for eache. Now, we
do the following for each edge independently:

• For every edgee incident on the root, wepick ewith probabilityx′e.

• For every other edgeewith its parent denotedf , pick ewith probabilityx′e/x′f .

Let H denote the subgraph ofG induced by the edges that were picked; the solution we return isTH , the
connected subtree ofH that contains the rootr. We now set the costs of all chosen edges to 0, so as to
not count their costs in future iterations. It is easy to verify that the probability of the evente∈ TH for
some edgee is x′e (see, e.g., [6, Lemma 3.1]), and hence linearity of expectation implies:

E[cost(TH)] = ∑
e∈E

x′e≤ λ ·∑
e∈E

xe = λ ·OPT. (4.5)

We next analyze the expected coverage properties of this randomized rounding procedure. Let us
first consider anygi ∈ G3; by definition,gi must be(3/4,λ )-covered, butnot (1/2,4)-covered. In other
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words, if we consider the leaves ofgi whose individual flow values lie in the range[1/λ ,1/4], the total
flow into them is at least(3/4−1/2)r ′i = r ′i/4. Since the flow into any one of these leaves is no more
than 1/4, there are at leastr ′i such leaves in the groupgi . Finally, since all these leaves have individual
flow values of at least 1/λ , all of them get chosen with probability 1 into our random subtreeTH , and
hence every group inG3 has all of its requirement satisfied with probability 1.

This leaves us with groups inG2. For any such groupgi ∈ G2, let g′i be the subset of elements ofgi

which have individual in-flow values of at most 1/λ , and letfi denote the total flow into the elements of
g′i . The following fact follows from the very definition ofG2.

Fact 4.2. For anygi ∈ G2, the flow fi ≥ r ′i/4.

If we defineYi j for each leafj ∈ g′i to be the indicator variable indicating thatj was chosen, then it
suffices to give a lower bound onXi = ∑ j∈g′i

Yi j , the number of elements ofg′i that get covered by the
above randomized rounding. For this, we plan to employ Janson’s inequality (Theorem 2.1). Since each
of the flows fi is at most 1/λ , the scaled-up valuex′pe( j) ≤ 1 for eachj ∈ g′i even after theλ -scaling,
and henceµi

.= E[Xi ] = ∑ j∈g′i
E[Yi j ] = fiλ . We need a few further definitions in order to apply Janson’s

inequality. LetA j be the path from the leafj to the rootr, and letA′j be the prefix ofA j , the edgese of
which satisfyxe < 1/λ . (When we say “prefix” here, we viewA j as starting from the leafj and going
up to the rootr.) Note that in our rounding, the edgese of A j which do not lie in A′j satisfyxe≥ 1/λ ,
and hence will be chosen with probability 1. Thus,Yi j is 1 if and only ifA′j is contained in the chosen
subtreeTH . Now for two leavesj, j ′ ∈ g′i , we will define two relations:

• j ∼ j ′ if and only if (a) j 6= j ′ and (b) the pathsA j ,A j ′ intersect in at least one edge; i.e., the least
common ancestor ofj and j ′ in G is not the rootr. If j ∼ j ′, let lca( j, j ′) denote the least common
ancestraledge of j and j ′ in T ′.

• j ∼′ j ′ if and only if (a) j 6= j ′ and (b) the pathsA′j ,A
′
j ′ intersect in at least one edge. This is

basically the same as the previous definition, except that we now work with the pathsA′j instead
of A j . Also note that ifj ∼′ j ′, thenlca( j, j ′) is well-defined.

To use Janson’s inequality, define

∆′i = ∑
j, j ′∈g′i : j∼′ j ′,xlca( j, j′)>0

x′pe( j)x
′
pe( j ′)

x′lca( j, j ′)
. (4.6)

It is easy to verify that this is indeed∑ j∼′ j ′ E[Yi j Yi j ′ ]; indeed, if we condition on the eventYi j = 1, we
know that thelca( j, j ′) must be contained inTH , and hence the conditional probability of the event
Yi j ′ = 1 can be shown to bex′pe( j ′)/x′lca( j, j ′). Since fi ≥ r ′i/4 byFact 4.2, we getr ′i ≤ 4 fi = 4µi/λ , which
is at mostµi/2 if c′ is large enough. Now Janson’s inequality shows that

Pr[Xi ≤ r ′i ]≤ exp
{
− µi/4

2+∆′i/µi

}
. (4.7)

Let us now bound∆′i , by considering the following closely-related quantity:

∆i = ∑
j, j ′∈g′i : j∼ j ′,xlca( j, j′)>0

xpe( j)xpe( j ′)

xlca( j, j ′)
. (4.8)
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The ways in which∆i differs from∆′i are that: (i) the sum is over pairs( j, j ′) which satisfyj ∼ j ′, instead
of j ∼′ j ′; and (ii) the summand involves terms such asxpe( j) instead ofx′pe( j).

Now, [11, Theorem 3.2] shows that∆i ≤ r ′i(r
′
i−1+ r ′i lnN). The reader can verify that any pair( j, j ′)

that appears in the sum for∆′i , also appears in∆i ; furthermore, for any such pair,

xpe( j)xpe( j ′)

xlca( j, j ′)
= λ ·

x′pe( j)x
′
pe( j ′)

x′lca( j, j ′)
.

Thus,∆′i ≤ λ ·∆i , and hence∆′i = O((r ′i)
2 log2N), by [11, Theorem 3.2]. Now plugging this into (4.7),

along with the factsµi = fi λ = fi c′ logN and fi ≥ r ′i/4, we get that there is an absolute constantc′′ ∈
(0,1) such that

Pr[Xi ≥ r ′i ]≥ c′′ . (4.9)

Applying the linearity of expectation to (4.9) shows us that the expected number of groups inG2 that get
all of their requirement covered in this iteration is at leastc′′ · |G2|.

To summarize, the expected number of groups whose requirement is fully covered is at least

c′′ · |G2|+ |G3| ≥ c′′ · |G2∪G3| ≥ c′′ k′/2 ,

the last inequality holding since we are in Case II andG1 < k′/2. Applying Markov’s inequality gives
us that we cover a constant fraction of the groups with constant probability, ensuring that the probability
that not all groups are satisfied afteralogk iterations in which Case II held is at most 1/4 (for some large
enougha).

Also, summing up the expected cost (4.5) over all iterations (using the linearity of expectation), and
then using Markov’s inequality, we see that with probability at least 1/2,

cost(Case II iterations)= O(logk · logN ·OPT) . (4.10)

Combining (4.4) and (4.10) and noting thatK ≤ N, we get the proof ofTheorem 1.1.

5 Open Questions

It would be nice to resolve the approximability of the Group Steiner and Covering Steiner problems
on general graph instances; we currently lose a logarithmic factor due to the step of approximating
general graphs by distributions over tree metrics. As a practical matter, it would be interesting to employ
frameworks such as those of [10] to approximately solve the linear program by combinatorial means, or
to develop a new combinatorial approximation algorithm matching our bounds.
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