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Abstract: In the Covering Steineproblem, we are given an undirected graph with edge-
costs, and some subsets of vertices cadjenips with each group being equipped with a
non-negative integer value (called rfequiremeny, the problem is to find a minimum-cost
tree which spans at least the required number of vertices from every group. The Covering
Steiner problem is a common generalization ofkldST and the Group Steiner problems;
indeed, when all the vertices of the graph lie in one group with a requireméningf get
thek-MST problem, and when there are multiple groups with unit requirements, we obtain
the Group Steiner problem.

While many covering problems (e.g., the covering integer programs such as set cover)
become easier to approximate as the requirements increase, the Covering Steiner problem
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remains at least as hard to approximate as the Group Steiner problem; in fact, the best
guarantees previously known for the Covering Steiner problem wersethan those for
Group Steiner as the requirements became large. In this work, we present an improved
approximation algorithm whose guarantee equals the best known guarantee for the Group
Steiner problem.

1 Introduction

We present an improved approximation algorithm for the Covering Steiner problem. This problem has
the following property that goes against the norm for covering problems: its approximability cannot
get better as the covering requirements increase. Thus the approximation ratio of the general Covering
Steiner problem is at least as large as for the case of all unit requirements, which is just the Group
Steiner problem. In this work, we improve on the known approximation algorithms for the Covering
Steiner problem given by Even et aB] and Konjevod et al.11]. Our results match the approximation
guarantee of the known randomized algorithm for the Group Steiner problem due to Garg6gt al. [
(see the paper of Charikar et &] for a deterministic algorithm). A suitable melding of a randomized
rounding approach with a deterministic “threshold rounding” method leads to our result.

Let G = (V,E) be an undirected graph with a non-negative cost funatidefined on its edges. Let
a family § = {01,092, ...,0«} of k subsets o¥ be given; we refer to these sajg gy, ...,0«x asgroups
For each groum;, a non-negative integet < |gi| is also given, called theequirementof the group.
The Covering Steiner problem @his to find a minimum-cost tree i@ that contains at least vertices
from each groum;; the special case of unit requirements (ite= 1 for all i) corresponds to the Group
Steiner problem. We denote the number of vertices by n, the size of the largest group by, and the
largest requirement of a group By, Logarithms in this paper will be to the base two unless specified
otherwise.

As in the paper of Garg et al6], we focus on the case where the given gr&pk- (V,E) is a
tree, since the notion of probabilistic tree embeddirisfn be used to reduce an arbitrary instance
of the problem to a instance on a tree. Specifically, via the result of Fakcharoenphol4dt alpf
approximation algorithm on tree-instances impliesdp logn)—approximation algorithm for arbitrary
instances. In fact, we can assume that the instanceoistadtree instance where the root vertex must
be included in the tree that we output; this assumption can be discharged by running the algorithm over
all choices of the root and picking the best tree.

Given an instance of the Covering Steiner tree problem, one can detikarapproximation algo-
rithm using well-known ideas without resorting to the reduction to tree instances outlined above. Indeed,
one can use the 2-approximation algorithm (given by G&fgffr the rootedr;-MST on each group;
separately, and return the union of tkérees obtained. However, in case the number of grduigs
large, one may prefer an algorithm whose dependence on the number of grigupstter than linear,
perhaps at the expense of additional logarithmic terms. And indeed, such results are possible: for the
special case of the Group Steiner tree problem (wiete 1), the current-best approximation bound
for tree instancess O(logk-logN). For the Covering Steiner problem, the current-best approximation
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algorithm for tree instances @&((logk+ logK) - logN) [3, 11]; also, an approximation bound of

logN - log?k
<Iog(2(logN) -(logk)/log K))

is also presented irL[l], which is better ifK > 2a(ogk? wherea > 0 is a constant. As mentioned above,
we need to multiply each of these three approximation bound3(lygn) to obtain the corresponding
results for general graphs.

Note that the above approximation ratget worseas the requirements increase, i.e Kdacreases.
This is unusual for covering problems, where the approximability uswgty betteras the coverage
requirements increase. This is well-known, for instance, in the case of covering integer programs which
include the set cover problem; the “multiple coverage” version of set cover is one where each element
of the ground set needs to be covered by at least a given number of sets. In particular, the approximation
ratio improves from logarithmic t®(1) (or even 1 o(1)) for families of such problems where the min-
imum covering requiremer® grows as2(logm), whenmis the number of constraints (see, e.§2]].
In light of these results, it is natural to ask whether the approximation guarantee for the Covering Steiner
problem can be better than that for the Group Steiner problem.

This question can easily be answered in the negative; indeed, given a rooted tree instance of the
Group Steiner problem and an inted€r we can create an instance of the Covering Steiner problem
as follows: increase the requirement of every group from K teonnectk — 1 dummy leaves to the
root with edge-cost zero and add these leaves to all the groups. It is easily seen that any solution to this
Covering Steiner instance can be transformed to a solution to the original Group Steiner instance with
no larger cost, and that the two instances have the same optimal solution value. Therefore, the Covering
Steiner problem is at least as hard to approximate as the Group Steiner problem. (This fact was pointed
out to us by Robert Krauthgamer.)

We are thus led to the question: can the Covering Steiner problem be approximated as well as the
Group Steiner problem? The following theorem answers this question in the affirmative:

Theorem 1.1. There is a randomized polynomial-time approximation algorithm for the covering Steiner
problem which, with high probability, produces an feasible solution with an approximation ratio of (i)
O(logN - logk) for tree instances, and (ii) @ogn-logN - logk) for general instances.

This implies an improvement @((logn)/loglogn) over previous results in some situations; in-
deed, this is achieved when, sy- log?*®® n andK = n®@. (The reason we take>> log?n in this
example is that the problem on trees is approximable to widik) as noted earlier, and so kfwas
small, we would have a good approximation algorithm anyway.)

The bounds for tree instances are essentially the best possible in the following asymptotic sense:
the paper of Halperin and Krauthgam&t §hows that, for any constaat> 0, anO((log(n+ k))?~¢)-
approximation algorithm for the Covering Steiner problem implies thatNET IME [exp{ (logn)° }].
(Technically, the hardness is shown for the rooted version of the problem, but this is without loss of
generality, since the rooted version can be reduced to the unrooted version by introducing a new group
go containing only the root vertexand having unit requirement.) Furthermore, since we adopt a natural
linear programming (LP) relaxation considered by Garg etGlaphd Konjevod et al.11], we would
like to note that the integrality gap of this relaxation for tree-instances of Group SteifHtagk -
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logN/loglogN) [7]. Since this integrality gap naturally extends to the Covering Steiner problem as
well, this suggests that our techniques cannot improve the approximation guarantee substantially.

1.1 Our Techniques

Our approach to solving the Covering Steiner problem is to iteratively round an LP relaxation of the
problem suggested by Konjevod et &l1]. Given a partial solution to the problem, we consider the
fractional solution of the LP for the current residual problem, and extend the partial solution using either
a randomized rounding approach or a direct deterministic approach.

Informally, in order to do better than the approach of Konjevod efld], fhe main technical issue we
handle is as follows. L&DPT denote the optimal solution value of a given tree instance. In essence, each
iteration of [L1] adds an expected cost @{OPT -logN) to the solution constructed so far, and reduces
the total requirement by a constant fraction (in expectation). Since the initial total requirement is at most
k- K, we thus expect to run fad(logk + logK) iterations, resulting in a total cost €(OPT - (logk +
logK)logN) with high probability. To eliminate the ldg term from their approximation guarantee, we
show, roughly, that every iteration has to satisfy one of two cases: either (i) a good fraction of the groups
have their requirement cut by a constant factor via a threshold rounding scheme, while paying only a
cost ofO(OPT), or (ii) a randomized rounding scheme is expected to fully cover a constant fraction of
the groups. Achip gamepresented irbection3 is used to bound the number of iterations where case (i)
holds; Janson’s inequalit@] and some deterministic arguments are used for case (ii). In the interest of
the cleanest exposition, we have not attempted to optimize our constants.

2 Preliminaries

The analysis of our algorithm will use an inequality due to Jan€pnwhich we now state. Lef
be a set of elements, and let us pick a randonmRsey picking eache € Q independentlywith some
probability pe. Let {Aj C Q| j € J} be some family of subsets 61, and we say thaj ~ j’ if j # j’
andAjNAj # 0. DefineB; to be the event tha; C R, and letA = ¥ ;. Pr(BjNB;]. If Yj is the
indicator variable for everi, let uj = E[Yj] = Pr[Bj], andu = ¥ jc; ti. Then Janson’s inequality says
that

Theorem 2.1. For any§ < [0,1],

2
Pr(YY < (1-8)u] gexp{—z_f(:/“)}. 2.1)
|

3 A Chip Game

Consider the foIIowing_hip game We initially have chips arranged kgroups, with each groug
having some number; nit) < K of chips. Chips are iteratively removed from the groups in a manner
described below; a group is calledtiveif the number of chips in it is nonzero. The game proceeds in
rounds: in each round, we choose roughly half of the currently active groups and halve their sizes, until

there are no more active groups left. Formally, the game is as follows:
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1. Atthe start of some round, let denote the number of chips in grogp Let A denote the number
of groups currently active; i.eA = |{i | nj # 0}|.

2. We choose any set of at leggt/2| activegroups.

3. For each of these chosen groupswe removeat least[n;/2] chips, causing the new number
of chips in groupg; to become at mostn;/2|. Note that this may cause some of the groups to
become inactive.

4. If there are no more chips left, we stop, else we go back to Step 1.

In the analysis below, it will not matter that two constants in Steps 2 and 3 above y&eadh; any
two constants, b € (0,1) lead to the same asymptotic result in the following lemma.

Lemma 3.1. The maximum number of rounds possible in the above chip gaméoglOlogK).

Proof. To bound the number of rounds, we proceed as follows. We now modify the game into an
equivalent format. We initially start with % Llogni('”'”J chips in each group;; once again, a group

is active if and only if its number of chips is nonzero. Now, in any round, we choose at least half
of the currently-active groups, and remove at leas chip from each of them. Note that this simple
“logarithmic transformation” does not cause the maximum number of rounds to decrease, and hence
we can analyze the game on this transformed instance NL.ée the number of rounds in which at
leastk/2 groups are active. In each of these rounds, at lke&kthips get removed. However, since

the total number of chips is at mdgtl + logK), the number of such round is at most 41+ logK).
Proceeding in this manner, we see that the total number of rou@($ogk - logK), as claimed. [

The proof above indicates how to prove that the bound proved abdwsnima 3.1is tight, and there
are runs of the chip game which requi@€logk - logK) rounds. Suppose all the groups start off with
exactlyK chips. We first repeatedly keep choosing sheneset of[k/2] groups for removing chips, and
do this until all these groups become inactive; we n@édgK) rounds for this. We are now left with
aboutk/2 active groups. Once again, we repeatedly keep removing chips from the same set of about
k/4 active groups, until all of these become inactive. Proceeding in this manner, we can go for a total of
O(logk-logK) rounds.

4 The Algorithm and Analysis

In this section, we present our algorithm for the Covering Steiner problem, and analyse it. As mentioned
in the introduction, we will assume that the input consists micedtreeT, where the root must be
included in the output solution. Furthermore, we assume (without loss of generality) that every vertex
belonging to a group is a leaf @f, and that every leaf belongs to some group.

4.1 The Basic Approach

As in previous papers on the Covering Steiner and Group Steiner problems, the broad idea of the al-
gorithm is to proceed in iterations; each iteration produces a subtree rootethatt provides some

THEORY OF COMPUTING, Volume 2 (2006), pp. 53-64 57


http://dx.doi.org/10.4086/toc

A. GUPTA AND A. SRINIVASAN

additional coverage not provided by the previous iterations. This process is continued until the required
coverage is accomplished, and the union of all the trees constructed is returned as output.

Consider a generic iteration; we will use the following notation. t.etenote the residual require-
ment of groupy;; call the groupy; activeif and only if this residual requirement > 0, and letk’ be the
number of groups currently active. The leavegiohlready covered in previous iterations are removed
from g;; with a slight abuse of notation, we refer to this shrunk version of the ggpajso asg;. All
the edges chosen in previous iterations have their cost reduced to zero: we should not have to “pay” for
these edges if we choose them again. For any non-rootumddepe(u) denote the edge connecting
to its parent; for any edgenot incident on the root, lete(e) denote the parent edge @fFinally, given
an edgee = (u,Vv) whereu is the parent of, both T (v) andT (e) denote the subtree & rooted atv.

The following integer programming relaxation for the residual problem was proposed by Konjevod
etal. [L1]:

Z"* =miny CeXe
e
subject to > Xoe(j) =i v activeg; 4.1)
J€Gi
Xpe(j) < FiXe V activeg;,vVee E(T) 4.2)
je(T(e)ngi)
Xoe(e) = Xe Venot incident orr (4.3)
Xe € [0,1]

Note that forcing each variable to have values ig0, 1} instead of values in the real interyal 1] gives
us a ILP formulation of the Covering Steiner problem; indeed, in this case, the vaxidiéng set to
1 corresponds to the edgédeing in the solution tree. Since we relax the problem and allowdbdo
take values in a larger rang@®(1] instead of{0, 1}), it follows that the optimal valug* of this LP is a
lower bound orOPT, the optimal solution value of the integer linear program, and hence of the original
Covering Steiner instance.
In each iteration we start with the residual problem, solve the above LP optimally, and then round the
resulting fractional solution as described belowsiection4.2. As noted in 1], it is interesting to note
that the integrality gap of the above relaxation can be quite large: when we write the LP relaxation for
the original instance, the integrality gap can be arbitrarily closé tHence it is essential that we satisfy
the requirementpartially in each iteration, re-solvethe LP for the residual problem, and continue.

4.2 Rounding the Fractional Solution

Let {xe} denote an optimal solution to the LP relaxation for some generic itergtamd letZ* be the
optimal LP value. We now show how to round such an optimal solution to partially cover some of the
residual requirements. In all of the discussion below, only currently active groups will be considered.
For any leafj, we callx,(j) theflow into j. The constraint4.1) ensures that total flow into the leaves

of a groupg; is exactlyr!. Foro > 1, we define a group; to be (p, a)-coveredif a total flow of at
leastpr] goes into the elements (i.e., leavesppivhich receive individual flow values of at leastd.

An a-scalingof the solution{x.} is the scaled-up solutiofX.} where we sex.“— min{axe, 1}, for all

edges.
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The iteration proceeds as follows. We defigieto be the set of active groups that dfg'2,4)-
covered; i.e., at least half of the flow into these groups goes to elements that get individual flows of at
least a quarter. We will consider two cases based on whether the number of gréups at leask’/2
or not.

Case I:|91] > K'/2. In this case, we simply take a 4-scaling of the LP solutioniokithe edges that
are rounded up to 1. By the monotonicity constraite > Xe in the LP, the edges thus picked will
form a connected subtree containing the root.

Moreover, we claim that every group$ has at least half of its requirement covered by this process.
Indeed, any group; € G1 is (1/2,4)-covered (i.e., it has at leagy 2 of its member leaves receiving flows
of value at least 24); hence the 4-scaling ensures that the picked edges cover at J&asBince we
are in the case whe§) is large, we know that at least half of the currently active groups have their
requirements reduced by at least half. But nosmma 3.1for the chip game implies that the total
number of iterations where Case | can hold is at n@($bgk - logK). Furthermore, we pay a cost of at
most 4 Z <4-OPT in each such iteratiof) implying the following result:

Lemma 4.1. The total cost incurred in Case-| iterations, whega| > K'/2, is
cost(Case | iterations) O(logk-logK - OPT). (4.4)

(Let us emphasize again that throughout the papef; refers to the cost of the optimal solution for the
original Covering Steiner instance.) Now suppose Case | does not hold, and thus we consider:

Case II: |G1] < K'/2; i.e., fewer than half the groups af&/2,4)-covered. In this case, we further
categorize the groups &\ G1 as follows. LetA = c’logN, for a sufficiently large absolute constant
We defineg, to be the set of active groups that avet (3/4,1)-covered: i.e., at least one fourth of the
flow into these groups goes to elements that receive very little flow (at midseach). Finally, leG3
be the set of active groups that do not lieGinu G».

We now use a modification of the rounding procedure used previously by Garg &t ahd Kon-
jevod et al. L1]. Let {x;} be ai-scaling of the LP solution; i.ex; = min{A - xe, 1} for eache. Now, we
do the following for each edge independently:

e For every edge incident on the root, weick ewith probability x,.
e For every other edgewith its parent denoted, pick ewith probability x /X .

Let H denote the subgraph & induced by the edges that were picked; the solution we retuip, ie
connected subtree &f that contains the roat We now set the costs of all chosen edges to 0, so as to
not count their costs in future iterations. It is easy to verify that the probability of the everit; for
some edgeis x; (see, e.g.,d, Lemma 3.1]), and hence linearity of expectation implies:

E[cos(Ty)] = EExg <A Z;XG =A-OPT. (4.5)

We next analyze the expected coverage properties of this randomized rounding procedure. Let us
first consider any; € Gs; by definition,g; must be(3/4, 1)-covered, buhot (1/2,4)-covered. In other
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words, if we consider the leaves gfwhose individual flow values lie in the range/A,1/4], the total
flow into them is at least3/4— 1/2)r{ =r{/4. Since the flow into any one of these leaves is no more
than 1/4, there are at leasf such leaves in the group. Finally, since all these leaves have individual
flow values of at least /A, all of them get chosen with probability 1 into our random subfigeand
hence every group i3 has all of its requirement satisfied with probability 1.

This leaves us with groups . For any such group; € G, let g/ be the subset of elements gf
which have individual in-flow values of at mostA, and letf; denote the total flow into the elements of
g. The following fact follows from the very definition .

Fact 4.2. For anyg; € G, the flow fi > r//4.

If we defineY;; for each leafj € g to be the indicator variable indicating thptvas chosen, then it
suffices to give a lower bound 0 = ¥ jy Yij, the number of elements of that get covered by the
above randomized rounding. For this, we plan to employ Janson’s inequdigp(em 2.). Since each
of the flowsf; is at most ¥4, the scaled-up valug,.(j) < 1 for eachj € g even after thel-scaling,
and hencegyj = E[X] = ¥ ;4 E[Yjj] = fiA. We need a few further definitions in order to apply Janson’s
inequality. LetA; be the path from the legfto the rootr, and letA] be the prefix ofAj, the edge of
which satisfyxe < 1/4. (When we say “prefix” here, we view; as starting from the legf and going
up to the root.) Note that in our rounding, the edgesf A; which do notlie in A’j satisfyxe > 1/A,
and hence will be chosen with probability 1. Th¥fg,is 1 if and only ifA’j is contained in the chosen
subtre€eTy. Now for two leaveg, j’ € gi, we will define two relations:

e j~j'ifandonlyif (a) j # j’ and (b) the patha,A; intersect in at least one edge; i.e., the least
common ancestor gfandj’ in Gis not the root. If j ~ j’, letlca(j, ) denote the least common
ancestrakdge of j andj’ in T'.

e j~'j'ifand only if (a) j # |’ and (b) the path#\, A}, intersect in at least one edge. This is
basically the same as the previous definition, except that we now work with the/ﬁaithﬁead
of A;. Also note that ifj ~' j’, thenlca(j, j’) is well-defined.

To use Janson’s inequality, define

X X
AI/ _ Z P)e(/(l) pe(i’) ) (46)
hired: i~V Xeaj jn >0 Tleal], i)
It is easy to verify that this is indeeﬁwj, E[Y; Yij/]; indeed, if we condition on the evel = 1, we
know that thelca(j, j’) must be contained ifiy, and hence the conditional probability of the event
Yij; = 1 can be shown to bépe“,)/xl’ca(j_j,). Sincef; > r{ /4 by Fact 4.2 we getr{ < 4f; = 4u;/A, which
is at mosty; /2 if ¢’ is large enough. Now Janson’s inequality shows that
pi/4
PriXi <r] <exp{ — —~——1 . 4.7
Let us now bound\,, by considering the following closely-related quantity:

Xpel( i) Xpe( i’
A = Zpe())7pe(i) (4.8)
Biegs INT x>0 dealind)
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The ways in whichl; differs fromA{ are that: (i) the sum is over pai§, j’) which satisfyj ~ j’, instead
of j ~' j’; and (ii) the summand involves terms suchkgs;) instead ol’x;)e(j).

Now, [11, Theorem 3.2] shows th& <r{(r/ —1+r/InN). The reader can verify that any pair, j’)
that appears in the sum fé¥, also appears if;; furthermore, for any such pair,

/ /
Xoe()Xpeli’) _ 5 Xoei)pe(i)
cha(jvj,) X{ca(j,j/)

Thus,Al < A -4, and hencé\ = O((ri’)zlogzN), by [11, Theorem 3.2]. Now plugging this int@ (7),
along with the factgy = fiA = fic'logN and f; > r{ /4, we get that there is an absolute constnt
(0,1) such that

PiX >r{]>c" . (4.9)

Applying the linearity of expectation t@l(9) shows us that the expected number of grouithat get
all of their requirement covered in this iteration is at le&st|,|.
To summarize, the expected number of groups whose requirement is fully covered is at least

|92 +[Gal > ¢ |G2UGs| > "K' /2,

the last inequality holding since we are in Case Il &d< k'/2. Applying Markov’s inequality gives
us that we cover a constant fraction of the groups with constant probability, ensuring that the probability
that not all groups are satisfied aftdogk iterations in which Case Il held is at mostdl(for some large
enougha).

Also, summing up the expected co4dtf) over all iterations (using the linearity of expectation), and
then using Markov’s inequality, we see that with probability at leg&t 1

cost(Case Il iterations) O(logk-logN - OPT) . (4.10)

Combining @.4) and @.10 and noting thaK < N, we get the proof oTheorem 1.1

5 Open Questions

It would be nice to resolve the approximability of the Group Steiner and Covering Steiner problems
on general graph instances; we currently lose a logarithmic factor due to the step of approximating
general graphs by distributions over tree metrics. As a practical matter, it would be interesting to employ
frameworks such as those df(] to approximately solve the linear program by combinatorial means, or

to develop a new combinatorial approximation algorithm matching our bounds.
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