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Abstract: We give a general method for proving quantum lower bounds for problems
with small range. Namely, we show that, for any symmetric problem defined on functions
f:{1,....,N} — {1,...,M}, its polynomial degree is the same for &> N. Therefore,

if we have a quantum query lower bound for some (possibly quite large) tdnghich

is shown using the polynomials method, we immediately get the same lower bound for
all rangesM > N. In particular, we gef2(N/3) andQ(N%/3) quantum lower bounds for
collision and element distinctness with small range, respectively. As a corollary, we obtain
a better lower bound on the polynomial degree of the two-level AND-OR tree.
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1 Introduction

Quantum computing provides speedups for many search problems. The most famous example is Grover's
algorithm [14], which computes OR ofN variables withO(y/N) queries. Other examples include
counting B], estimating mean and media@q 19], finding collisions [/], determining element dis-
tinctness 11, 5], finding triangles in a graphlB] and verifying matrix productsl?]. For many of these
problems, we can also prove that known quantum algorithms are optimal or nearly optimal.
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In at least two cases, the lower bounds match the best known algorithm only with an additional “large
range” assumption. For example, consider the collision probfe] fvhich models collision-free hash
functions. We have to distinguish if a functidn {1,...,N} — {1,...,M} is one-to-one or two-to-one.

A quantum algorithm can solve the problem w@bN/3) queries (evaluations df) [7], which is better
than the®(N%/?) queries required classically. A lower bound by Aaronson andZsidys thaQ(N/3)
quantum queries are requiredMf > 3N /2. If M = N, the lower bound become3(N/4).

A similar problem exists for element distinctness. (Again, we are giveft,...,N} — {1,...,M}
but f can be arbitrary and we have to determine if thereigrd # j, f(i) = f(j).) If M = Q(N?), the
lower bound isQ(NZ/?’) [2], which matches the best algorithr][ But, if M = N, the lower bound is
only Q(v/N) or Q(1/NTogN), depending on the model ], 16].

Thus, it might be possible that a quantum algorithm could use the $ftdl decrease the num-
ber of queries. While unlikely, this cannot be ruled out. Remember that classically, sorting requires
Q(Nlog,N) steps in the general case but o@YN) steps if the items to be sorted are all from the set
{1,...,N} (Bucket Sort, 13]).

In this paper, we show that the collision and element distinctness problems re{dlfé®) and
Q(NY3) queries even if the rangi is equal toN. Our result follows from a general result on the
polynomial degree of Boolean functions.

We show that, for any symmetric propeiyof functionsf : {1,2,...,N} — {1,2,...,M}, its poly-
nomial degree is the same for 8l > N. The polynomial degree af provides a lower bound for both
classical and quantum query complexity. (This was first shown by Nisan and Sz&fdythe clas-
sical case and then extended to the quantum case by Beals@itfat. 1 = 2 and Aaronsonl], 2] for
M > 2.) Thus, one can prove lower bounds on quantum query complexity of a furgctoynlower-
bounding the polynomial degree ¢f This is known as th@olynomials methodbr proving quantum
lower bounds$, 10, 2].

Our result means that, if we have a quantum lower bound for a symmetric pr@psingwn by the
polynomials method for some range siMewe also have the same quantum lower bound fdvialt N.
As particular cases, we get lower bounds on the collision and element distinctness problems with small
range. Since many quantum lower bounds are shown using the polynomials method, our result may have
other applications.

A corollary of our lower bound on element distinctness with small range is that the polynomial
degree of the two-level AND—OR tree t? variables isQ(N?%/3). This improves over the previously
known lower bound of2(,/NTogN) by Shi [21].

Related work. The Q(N/3) lower bound for the collision problem with small range was indepen-
dently discovered by the author of this paper and Kutifj,[at about the same time, with completely
different proofs. Kutin 17] takes the proof of th@(Nl/?’) lower bound for the collision problem with
a large rangeZ] and changes it so that it works for &1 > N. Our result is more general because it
applies to any symmetric property and any lower bound shown by the polynomials method. On the other
hand, Kutin’s proof has the advantage that it also simplifies the lower bound for the collision problem
with large range by Aaronson and SH].[
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2 Preliminaries

2.1 Quantum query model

Let [k] denote the sefl,... k}. Let F(N,M) be the set of alff : [N] — [M]. We are given a function
f € F(N,M) by an oracle that answers queries. In one query, we can givthe oracle and it returns
f(i) to us.

We would like to know whethef has a certain property (for example, whetlieis one-to-one).
More formally, we would like to compute a partial functign: ¥ — {0, 1}, whered” C F(N,M). In
particular, we are interested in the following two properties:

Problem 1: Collision. ¢(f) = 1 if the input functionf is one-to-oneg¢(f) =0 if f is two-to-one
(i.e., if, for everyk e [M], there are either zero or two= [N] satisfyingf (x) =K). ¢(f) is undefined for
all otherf.

Problem 2: Element distinctness¢ (f) = 1 if the input functionf is one-to-one¢(f) = 0 if there
existi, j, i # J, f(i) = f()).

A quantum algorithm witil' queries is a sequence of unitary transformations

Uy—0;—-U; -0t —---—Ur_1— 0O — UrT.

TheUj’s can be arbitrary unitary transformations that do not depené(th..., f(N). Ot is a query
(oracle) transformation. To defirf@:, we represent basis states|ab, z) wherei consists offlogN]
bits, b is [logM] bits andz consists of all other bits. The@; maps]i,b,2) to |i,(b+ f(i)) modM,z).

The computation starts with a std®. Then, we applyJo, Oy, ..., Of, Ut and measure the final
state. The result of the computation is the rightmost bit of the state obtained by the measurement.

The quantum algorithm computeswith errore if, for every f € F(N,M) such that () is defined,
the probability that the rightmost bit &ff OtUt_1 - - - OfUp|0) equalsp(f) is at least 1- €. (Throughout
this paperg is an arbitrary but fixed value, with@ & < 1/2.)

2.2 Polynomial lower bound

We can describe a functioh: [N] — [M] by N x M Boolean variableg;; which are 1 iff (i) = j and O
otherwise. Ley/ = (y11,...,YNMm)-

Definition 2.1. We say that a polynomid& e-approximates the propertyif
1. ¢(f)=21implies 1- e <P(y) < 1fory= (y11,...,Ynm) corresponding td;
2. ¢(f) =0 implies 0< P(y) < e fory = (y11,...,Ynm) corresponding td;
3. If ¢(f) is undefined, then & P(y) < 1 for the corresponding.

A polynomial P approximated if it e-approximated for some fixede < 1/2.

The polynomialP is allowed to take any value if does not correspond to ary (This happens if
for somei € [N] there is no or there is more than ope [M] with y;; = 1.)
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Lemma 2.2 ([1, 2]). If a quantum algorithm computes with error € using T queries then there is a
polynomial Ryi1,...,ynm) of degree at mos2T thate-approximates).

A lower bound on the number of queries can be then shown by proving that such a polyRomial
does not exist. For the collision and element distinctness problems, we have

Theorem 2.3 (R2, 2)).
1. If a polynomial P approximates the collision property for}/l%, the degree of P iQ(N/3);

2. If a polynomial P approximates the element distinctness property ferN?), the degree of P
is Q(N?/3);

Note. More precisely, Shi32, 2] proved that any polynomial approximating another problem, the
half two-to-oneproblem, has degre@(N'/3). He then used that to deduce tiatN?/3) and Q(N?%/3)
guantum queries are needed for the collision problem (wWen %) and the element distinctness
problem (wherM = Q(N?)). His proof can be easily modified to show a lower bound on the degree of
polynomials approximating the collision and element distinctness problems.

By Theorem2.3, Q(NY/3) and Q(N%3) queries are required to solve the collision problem and
element distinctness problem if the rangds sufficiently large. Previously, only weaker lower bounds
of Q(NY/#) [2] andQ(y/NTogN) [16] were known ifM = N.

3 Results
We call a propertyy symmetridf, for any 7 € Sy ando € Sy,
¢(f)=¢(ofm).

Thatis,¢ ( f) should remain the same if we permute the inpufdet.., N} before applyingf or permute
the output sef1,...,M} after applyingf. The collision and element distinctness properties are both
symmetric.

Our main result is

Theorem 3.1. Let¢ : ' — {0,1} be a symmetric property defined on a set of functifhs F(N,M).
Let¢’ be the restriction op to f : [N] — [N]. Then, the minimum degree of a polynomial (in iye [N],
j € [M]) approximating¢ is equal to the minimum degree of a polynomial (in y< [N], j € [N])
approximatingy’.

Theorem.3and3.1imply thatQ(NY/3) andQ(N?/3) queries are needed to solve the collision and
element distinctness problems, eveiit= N. (ForM < N, these problems do not make sense because
they both involvef being one-to-one as one of the cases.)

The proof ofTheorem 3.1s in two steps.

1. We describe a different way to describe an input functioby variableszy, ..., zy instead of
Yi1,---,Ynm. We prove that a polynomial of degrkén zy, ... ., zy exists if and only if a polynomial
of degreekin yi1, ..., ynm exists.
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2. We show that a polynomi&)(z,...,zy) for M > N exists if and onlyQ(z, ..., zy) exists.

The first step can be useful on its own. The representatidnbgfy;, ..., ynm gave the lower bounds
of [2]. The new representation lay, ..., zy might yield new lower bounds that are easier to prove using
this approach.

3.1 New polynomial representation

We introduce variableg, ..., zv, with zj = |f~1(])| (equivalently,zj = |{i | yij = 1}|). We say that
a polynomialQ in z, ..., zy approximates if it satisfies requirements similar @efinition 2.1 (Q €
[1—¢,1]if ¢(f)=1,Qe€ [0,€] if ¢(f) =0, andQ € [0,1] if z,...,zu correspond td € F(N,M) for
which ¢ (f) is not defined.)

Example 3.2. A polynomial Q(zi, ...,z ) approximates the collision property if:

1. Q(z,...,2u) € [1—¢,1] if N of the variablesy, ..., zy are 1 and the remaining — N variables
are 0;

2. Q(z1,...,2m) € [0, €] if % of the variablegy, ..., zy are 2 and the remaining — % variables are
0;
3. Q(z,...,z2w) €[0,1] if z1,...,2y are non-negative integers am4-- - - + 2y = N.
Example 3.3. A polynomialQ(zi, ...,z ) approximates element distinctness if:

1. Q(z,...,2u) € [1—¢,1] if N of the variablesy, ..., zy are 1 and the remaining — N variables
are 0;

2. Q(zy,...,zw) € [0,¢€]if z1,...,2v are non-negative integes,+ - - - +2zy = N, andz > 1 for some
i

In both cases, there is no restriction Q(zi,...,zy) whenz + --- +zy # N because such, ...,
zv do not correspond to anfy: [N] — [M].

Lemma 3.4. Let¢ : 3 — {0,1}, F' C F(N,M) be symmetric. Then, the following two statements are
equivalent:

(1) There exists a polynomial Q of degree at most kin.z, zy approximatingg;
(2) There exists a polynomial P of degree at most kiif} .., ynm approximatingg.

Proof. To see that (1) implies (2), we substituje=y1j +Y2j + ... +Yynj into Q and obtain a polynomial
iny;; with the same approximation properties. Next, we show that (2) implies (1).

Let P(y11,...,ynm) be a polynomial approximating. We defineQ(z,...,zy) as follows. LetS
be the set of aly = (y11,...,Ynm) corresponding to function$ : [N] — [M] with the property that,
for everyi € [M] the number ofj with f(j) =i is exactlyz. We defineQ(zi,...,zu) as the expecta-
tion of P(y11,...,ynm) Wheny = (y11,...,Ynm) IS picked uniformly at random fror8. (An equivalent
way to defineQ is to fix one functionf with this property and to defin® as the expectation of of
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P(y11,---,Ynm), fory = (y11,...,ynm) corresponding to the functiofz, with 7 being a random ele-
ment ofSy.)

Since¢ is symmetric, we have (f) = ¢(fx). Therefore, ifP(y11,...,ynm) approximates, then
Q(z,...,zv) also approximateg.

It remains to prove thaD is a polynomial of degree at maosin z,...,zy. Let

= VYiyj1Yiziz ** Yicik

be a monomial oP. It suffices to prove that eadfl] is a polynomial of degree at mosbecausé [P
is the sum oE[l] over alll.

We can assume thatfor £ € {1,...,k} are all distinct. (If the monomidlcontains two variableg;
with the samé, j, one of them is redundant becalyﬁe: yij- If | containsyij, yij, j # ', thenyijyijy =0
becausé (i) cannot be equalandj’ at the same time. Theh=0.) We have

k
E[I] = Pr[yiljl = 1]J_Lpr[yi/jzs =1 ‘ Yidjs o Yie1jer = 1} .

There areN variablesy;j,. Out of themz;, variables are equal to 1 and eagf is equally likely to be
1. Therefore,

7
Pr[yiljl =1]= ﬁ
Furthermore, les; be the number of < ¢ such thatj, = j,. Then,
Zi, — S
PV[Yizjf =1 | Yidii Yieajea = 1] = N Jig_ 1
because, once we have ggf, =1, ..., Vi, ,j, , = 1, we have also set all othg;j, ..., yi, ,j t0 0. Then,

we haveN — ¢ — 1 variablesy;;, which are not set yet and, out of them),— s, must be 1.
ThereforeE[l] is a product ok terms, each of which is a linear functionzf ... ,zy. This means
thatE[l] is a polynomial inz, . .., zy of degreek. This completes the proof of the lemma. O

3.2 Lower bound for properties with small range

We now finish the proof of heorem 3.10bviously, the minimum degree of a polynomial approximating
¢’ is at most the minimum degree of a polynomial approximatin@ecause we can take a polynomial
approximatingg and obtain a polynomial approximatirg by restricting it to variablegj, j € [N]).
In the other direction, we can take a polynonfalapproximatingg’ and obtain a polynomia®’ in
z1,...,Zy approximatingpy’ by Lemma 3.4 We then construct a polynomi@lin zi, ..., zy of the same
degree approximating. After that, using_emma 3.4in the other direction gives us a polynomRin
Y11, - -, YNM @pproximatingp.

It remains to construd® from Q. For that, we can assume th@tis symmetric w.r.t. permuting
z1,...,zn. (Otherwise, replac€ by the expectation 0Q'(z; (), ...,z n)), wherer is a uniformly
random permutation of1,2,...,N}.) SinceQ@ is symmetric, it is a sum of elementary symmetric

polynomials
Q::l,wq - Z Z|C:le|0222‘(;I '

i1,...m€[N]
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Let Q be the sum of elementary symmetric polynomialgiin. ., zy with the same coefficients.

We claim thatQ approximate®. To see this, consider an input functién [N] — [M]. There are at
mostN valuesj € {1,...,M} such that there exists= {1,...,N} with f(i) = j. This means that, out of
M variablesz, ..., zy corresponding td, at mostN are nonzero.

Consider a permutation € Sy that maps all € [M] with z #0to{1,...,N}. Let f’ = nf. Since
¢ is symmetric,¢(f) = ¢(f’). Sincef’is a function from[N] to [N], Q/ correctly approximateg on
f’. SinceQ(z,...,z\,0,...,0) = Q(z,...,2v), Q also correctly approximateg on f’. SinceQ is
symmetric w.r.t. permutations @, ...,zy, Q approximatesp on the input functionf as well. This
completes the proof ofheorem 3.1

3.3 Lower bound on the polynomial degree of the AND-OR tree

As a by-product, our result provides a better lower bound on the polynomial degree of a well-studied
Boolean function.
This Boolean function is the two-level AND-OR tree B variables. Lei;,...,xy. € {0,1} be
the variables. We split them inté groups, with theé™" group consisting OK(i— 1)N+1» X(—1)N+2s - - - XiN-
The AND-OR functiorg(xy, ..., Xy2) is defined as

n iN
axe,-xe2)=A VX .

i=1j=(i—1)N+1

A polynomial p(xi,...,Xy2) approximateg if 0 < p(xa,...,Xy2) < € whenevergy(xy,...,Xy2) = 0 and
1—¢e<p(X,...,Xn2) < 1wheneveg(Xy,...,Xy2) = 1 (similarly to Definition 2.7).

It has been an open problem to determine the minimum degree of a polynomial approximating the
two-level AND-OR tree. The best lower bound$,/NlogN) by Shi [21], while the best upper bound
is O(N). (Curiously, the quantum query complexity of this problem is known. ®{#l), as shown
by [9, 3]. If the polynomial degree i®(N), this would be the second example of a Boolean function
with a gap between the polynomial degree and quantum query complexity, with the first example being
the iterated functions ird].) We show

Theorem 3.5. Any polynomial approximating g has degi@éN?/3).

Proof. Consider the element distinctness problemMos N. An instance of this problenf, € (N, N)
can be described Qy? variablesy1s, . .., ynn (as shown irSection2.2).

The values of the functionf(1), f(2), ..., f(N), are all distinct if and only if, for eacl € [N],
there exists € [N] with f(i) = j. This, in turn, is equivalent to saying that, for each|[N], one of the
variablesyi;, Yai, . . ., Yni is equal to 1.

Assume we have a polynomi(xy, ..., Xy2) of degreed approximating the two-level AND—OR tree
functiong. Consider the polynomia(y1s,. .., ynn) obtained fromP by replacingx;_i)n-j with y;i. If
theN valuesf (i) are all distinct, then, for eaghe {1,...,N}, there exist$such thaff (i) = j. Therefore,
one of the variableg,;, ... ,ynj is 1 and the OR of those variables is also 1. This means that the AND—
OR functiong(x,...,Xy2) is equal to 1. If the value$(i) are not all distinct, then there exisis [N]
such that there is nowith f(i) = j. Then,ys;,yai,...,yni are all 0, implying thag(x, ..., xy2) = 0 for
the corresponding assignmeat . . ., Xyz2.
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This means thaD approximates the element distinctness property, in the sergectibn2.2. Since
degreeQ(N?%/3) is required to approximate element distinctness, Q(N%/3). O

4 Conclusion

We have shown that, for any symmetric property of functibngN] — [M], its polynomial degree is the
same for alM > N. Thus, if we prove a lower bound for the degree for some Idgthis immediately
implies the same bound féf = N. Since the polynomial degree is a lower bound for quantum query
complexity, this can be used to show quantum lower bounds. As particular cases of our result, we get
that the collision problem has degr€gN1/3) and that the element distinctness problem has degree
Q(N?/3), even ifM = N. This impliesQ(N/3) andQ(N%?) quantum lower bounds on these problems
forM =N.

A part of our result is a new representation for polynomials describing properties of funétions
[N] — [M]. This new description might be useful for proving new quantum lower bounds. We conclude
with two open problems.

Modified element distinctness problem.Say we are giverf : [N] — [N] and we are promised that
either f is one-to-one or there aiej, k such thatf (i) = f(j) = f(k). We would like to know
which of these two is the case. What is the quantum query complexity of this problem?

The problem is quite similar to element distinctness in which we have to distinguish one-to-one
function from one havind (i) = f(j) for somei, j with i # j. The knownO(N%3) quantum
algorithm still applies, but th€(N%3) quantum lower bound of2] (by a reduction from the
collision problem) breaks down. The best lower bound that we can prée\N%/?) by a reduction

from Grover’s search. Improving this boundgijZ/3) is an open problem.

This problem is also similar to element distinctness if we look at it in our mew. ., zy rep-
resentation. For element distinctness, a polyno@iahust satisfyQ(1,...,1) € [L—¢,1] and
Q(z,...,zv) € [0,¢] if zz+---+2zy = N andz > 2 for somei. For our new problem, we must
haveQ(1,...,1) € [1—¢,1] andQ(z,...,zv) € [0,¢] if z2+---+2zy = N andz > 3 for somei.

In the first case, degre®(N%/3) is needed]. In the second case, no such lower bound is known.

Polynomial degree vs. quantum query complexity for symmetric properties.Let ¢ be a symmetric
property of functionsf : [N] — [M]. Let ded¢) be the minimum degree of a polynomial that
e-approximatest andQ(¢) be the minimum number of queries in a quantum query algorithm
computinge with error at most. Is it true that these two quantities are polynomially related:
Q2(¢) = O(ded(¢)) for some constard?

This open problem was first proposed by Aaronsbr?], regarding properties which are only
symmetric with respect to permuting inputsfto¢ (f) = ¢(fx) for anyr € Sy. It remains open

both in this case and in the case of properties having the more general symmetry considered in
this paper ¢ (f) = ¢ (o fr), for all r € Sy ando € Sy). Itis known thatQ,(¢) = O(ded(¢)) if

M=2.
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